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Supplementary Material

This note contains Lemmas 2 and 3, and technical proofs.

Lemma 2 (Convexity Lemma). Let {hn(u) : u ∈ U} be a sequence of random convex functions

defined on a convex, open subset U of IRd. Suppose h(u) is a real-valued function on U for

which hn(u) → h(u) in probability, for each u ∈ U . Then for each compact subset K of U ,

sup
u∈K

| hn(u)− h(u) |→ 0 in probability.

The function h(·) is necessarily convex on U .

Proof of Lemma 2. There are many versions of the proof for this well known Convexity Lemma.

To save space, we skip its proof. Interested readers are referred to Pollard (1991).

Denote a linear approximation to ρτ (εi − t) by Di = (1 − τ){εi < 0} − τ{εi ≥ 0}. One

intuitive interpretation of Di is that Di can be thought of as the first derivative of ρτ (εi − t)

at t = 0 (cf Pollard, 1991). Moreover, the condition that εi has the τ -th quantile zero implies

E(Di) = 0. Define Ri,n(u) = ρτ (εi − xT
i u/

√
n)− ρτ (εi)−Dix

T
i u/

√
n, Wn =

∑n
i=1 Dixi/

√
n,

and Wn,11 =
∑n

i=1 Dixi1/
√

n. Then Wn
L→ N(0, τ(1− τ)Σ) and Wn,11

L→ N(0, τ(1− τ)Σ11).

Lemma 3. For model (3.1) with true parameter β0, denote Gn(u) =

n∑
i=1

[ρτ (εi − xT
i u/

√
n)−

ρτ (εi)], where εi = yi − xT
i β0. Under Conditions (i) and (ii), we have, for any fixed u,

Gn(u) =
f(0)

2
uT

∑n
i=1 xix

T
i

n
u + W T

n u + op(1). (1)

Proof of Lemma 3. Note first that Condition (i) ensures that the function M(t) = E(ρτ (εi −
t)− ρτ (εi)) has a unique minimizer at zero, and its Taylor expansion at origin has the following

form M(t) = f(0)
2

t2 + o(t2). Hence, for large n, we have

E(Gn(u)) =

n∑
i=1

M(
xT

i u√
n

) =

n∑
i=1

[
f(0)

2
(
xT

i u√
n

)2 + o((
xT

i u√
n

)2)]

=
f(0)

2n
uT (

n∑
i=1

xix
T
i )u + o(

1

2n
uT (

n∑
i=1

xix
T
i )u).
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So, under Condition (ii), we have E(Gn(u)) =
f(0)

2n
uT (

n∑
i=1

xix
T
i )u + o(1).

Hence Gn(u) = E(Gn(u)) + W T
n u +

∑n
i=1(Ri,n(u) − ERi,n(u)). By routine calculation,

we get | Ri,n(u) |≤| xT
i u/

√
n | {| εi |≤| xT

i u/
√

n |}. For fixed u, due to the cancelation of

cross-product terms, we get

E(

n∑
i=1

[Ri,n(u)− ERi,n(u)])2 =

n∑
i=1

E(Ri,n(u)− ERi,n(u))2

≤
n∑

i=1

E(Ri,n(u))2

≤
n∑

i=1

[
| xT

i u√
n
|2 E{| εi |≤| xT

i u√
n
|}

]

≤ (

n∑
i=1

| xT
i u√
n
|2)E{| εi |≤ ‖ u ‖√

n
max

j=1,2,··· ,n
‖ xj ‖}

→ 0 (2)

as in Pollard (1991), where ‖ · ‖ denotes the Euclidean norm operator. Here the last step

converging to zero holds because

n∑
i=1

| xT
i u√
n
|2 = uT (

n∑
i=1

xix
T
i /n)u → uT Σu

max
j=1,2,··· ,n

‖ xj ‖ /
√

n → 0 due to

∑n
i=1 ‖ xi ‖2

n
→ trace(Σ).

Equation (2) implies that
∑n

i=1(Ri,n(u)− ERi,n(u)) = op(1). This completes the proof.

Before we start the proof of Theorem 1, we want to point that W T
n u = E(W T

n u) +

Op(
√

Var(W T
n u)), together with Var(W T

n u) =

n∑
i=1

E(Dix
T
i u/

√
n)2 = τ(1−τ)uT

∑n
i=1 xix

T
i

n
u,

implies that W T
n u = Op

(√
τ(1− τ)uT

∑n
i=1 xixT

i
n

u

)
.

Proof of Theorem 1. We use the same strategy as in Fan and Li (2001). To prove Theorem 1,

it is enough to show that for any given δ > 0, there exists a large constant C such that

P

{
inf

‖u‖=C
Q(β0 + u/

√
n) > Q(β0)

}
≥ 1− δ (3)

which implies that with probability at least 1 − δ there exists a local minimum in the ball

{β0 + u/
√

n :‖ u ‖≤ C}. This in turn implies that there exists a local minimizer such that
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‖ β̂ − β0 ‖= Op(1/
√

n), which is exactly what we want to show. Note that

Q(β0 + u/
√

n)−Q(β0)

=

n∑
i=1

[ρτ (yi − xT
i (β0 + u/

√
n))− ρτ (yi − xT

i β0)] + n

d∑
j=1

[pλn(| βj0 + uj/
√

n |)− pλn(| βj0 |)]

≥
n∑

i=1

[ρτ (yi − xT
i (β0 + u/

√
n))− ρτ (yi − xT

i β0)] + n

s∑
j=1

[pλn(| βj0 + uj/
√

n |)− pλn(| βj0 |)],

where s is the number of components in β10 and βj0 denotes the j-th component of β10. Due

to Lemma 3, the first term on the right hand side is exactly Gn(u) =
f(0)

2
uT

∑n
i=1 xix

T
i

n
u +

W T
n u + op(1) for any fixed u.

By applying the Convexity Lemma (Lemma 2) to hn(u) = Gn(u)−W T
n u, we can strength-

ens this pointwise convergence to uniform convergence on any compact subsect of IRd.

Note that, for large n,

n

s∑
j=1

[pλn(| βj0 + uj/
√

n |)− pλn(| βj0 |)] = 0 (4)

uniformly in any compact set of IRd due to the facts that βj0 > 0 for j = 1, 2, · · · , s, SCAD

penalty is flat for coefficient of magnitude larger than aλn, and λn → 0.

Based on all the above, Q(β0 + u/
√

n) − Q(β0) is dominated by the quadratic term

f(0)uT (
∑n

i=1 xix
T
i )u/(2n) for ‖ u ‖ equal to sufficiently large C. Hence Condition (ii) implies

that (3) holds as we have desired and this completes the proof.

Proof of Lemma 1. For any β1 − β10 = Op(n−1/2), 0 <‖ β2 ‖≤ Cn−1/2,

Q((βT
1 ,0T )T )−Q((βT

1 , βT
2 )T )

= [Q((βT
1 ,0T )T )−Q((βT

10,0
T )T )]− [Q((βT

1 , βT
2 )T )−Q((βT

10,0
T )T )]

= Gn(
√

n((β1 − β10)
T ,0T )T )−Gn(

√
n((β1 − β10)

T , βT
2 )T )− n

d∑
j=s+1

pλn(| βj |) (5)

=
f(0)

2

√
n((β1 − β10)

T ,0T )

∑n
i=1 xix

T
i

n

√
n((β1 − β10)

T ,0T )T +
√

n((β1 − β10)
T ,0T )Wn

−f(0)

2

√
n((β1 − β10)

T , βT
2 )

∑n
i=1 xix

T
i

n

√
n((β1 − β10)

T , βT
2 )T −√n((β1 − β10)

T , βT
2 )Wn

+o(1) + op(1)− n

d∑
j=s+1

pλn(| βj |)

The conditions β1 − β10 = Op(n−1/2) and 0 <‖ β2 ‖≤ Cn−1/2 imply that

f(0)

2

√
n((β1 − β10)

T ,0T )

∑n
i=1 xix

T
i

n

√
n((β1 − β10)

T ,0T )T = Op(1)
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f(0)

2

√
n((β1 − β10)

T , βT
2 )

∑n
i=1 xix

T
i

n

√
n((β1 − β10)

T , βT
2 )T = Op(1)

and

√
n((β1 − β10)

T ,0T )Wn −
√

n((β1 − β10)
T , βT

2 )Wn = −√n(0T , βT
2 )Wn

=
√

n

√
τ(1− τ)βT

2 Σ22β2(1 + op(1)).

Note that

n

d∑
j=s+1

pλn(| βj |) ≥ nλn

(
lim inf

λ→0
lim inf
θ→0+

p′λ(θ)

λ

) (
d∑

j=s+1

|βj |
)

(1 + o(1))

= nλn

(
d∑

j=s+1

|βj |
)

(1 + o(1)),

where the last step follows based on the fact that lim infλ→0 lim infθ→0+
p′λ(θ)

λ
= 1.

Then
√

nλn → ∞ implies that nλn =
√

n(
√

nλn) is of higher order than
√

n. This

implies that, in (5), the last term dominates in magnitude and, as a result, Q((βT
1 ,0T )T ) −

Q((βT
1 , βT

2 )T ) < 0 for large n. The completes the proof.

Proof of Theorem 2. Similarly as in Fan and Li (2001), Part (a) holds simply due to Lemma

1. Next we prove part (b). By Theorem 1, we can show that there exists a root-n consistent

minimizer β̂1 of Q((βT
1 ,0T )T ) as a function of β1.

From the proof of Theorem 1, we see that
√

n(β̂1 − β10) minimizes Gn((θT ,0T )T ) +

n
∑s

j=1 pλn(| βj0 +
θj√

n
|), where θ = (θ1, θ2, · · · , θs)

T ∈ IRs. Notice that, as in the proof of

Theorem 1, Lemma 3 and the convexity lemma imply that

Gn((θT ,0T )T ) =
f(0)

2
(θT ,0T )

∑n
i=1 xix

T
i

n
(θT ,0T )T + (θT ,0T )Wn + op(1)

=
f(0)

2
θT

∑n
i=1 xi1x

T
i1

n
θ + θT

n∑
i=1

Dixi1/
√

n + op(1)

uniformly in any compact subset of IRs. Notice that, for large n, n
∑s

j=1 pλn(| βj0 + θj/
√

n |
) = n

∑s
j=1 pλn(| βj0 |) uniformly in any compact set of IRs, due to (4). Hence we have

Gn((θT ,0T )T ) + n

s∑
j=1

pλn(| βj0 +
θj√
n
|)

=
1

2
θT (f(0)

∑n
i=1 xi1x

T
i1

n
)θ + (

n∑
i=1

Dixi1/
√

n)T θ + n

s∑
j=1

pλn(| βj0 |) + rn(θ)

=
1

2
(θ − ζn)T (f(0)

∑n
i=1 xi1x

T
i1

n
)(θ − ζn)− 1

2
ζT

n (f(0)

∑n
i=1 xi1x

T
i1

n
)ζn + n

s∑
j=1

pλn(| βj0 |) + rn(θ)
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where ζn = −(f(0)
∑n

i=1 xi1xT
i1

n
)−1Wn,11 and the residual rn(θ) → 0 in probability uniformly in

any compact subset of IRs. Notice further that the term n
∑s

j=1 pλn(| βj0 |) does not depend

on θ. So this implies that, for large n, the local minimizer θ̂ is very close to ζn and satisfies

θ̂ − ζn = op(1).

That is, the minimizer θ̂ satisfies θ̂ = −(f(0)

∑n
i=1 xi1x

T
i1

n
)−1(

n∑
i=1

Dixi1/
√

n)+op(1). Hence

√
n(β̂1 − β10) = −(f(0)

∑n
i=1 xi1xT

i1
n

)−1(
∑n

i=1 Dixi1/
√

n) + op(1). Applying Slutsky ’s theorem,

we get
√

nf(0)Σ11(β̂1 − β10)
L→ N(0, τ(1− τ)Σ11). This completes the proof.

Proof of Theorem 3. Note that

Q1(β0 + u/
√

n)−Q1(β0)

=

n∑
i=1

[ρτ (yi − xT
i (β0 + u/

√
n))− ρτ (yi − xT

i β0)] + nλn

d∑
j=1

[w̃j | βj0 + uj/
√

n | −w̃j | βj0 |].

We consider the second term first, for j = 1, 2, · · · , s, we have βj0 6= 0; as a result, w̃j
P→ |βj0|−γ ;

hence nλn[w̃j | βj0 + uj/
√

n | −w̃j | βj0 |] P→ 0 as
√

n(| βj0 + uj/
√

n | − | βj0 |) → uj sign(βj0)

and
√

nλn → 0. On the other hand, for j = s + 1, s + 2, · · · , d, the true coefficient βj0 = 0; so√
nλnw̃j = n(1+γ)/2λn(

√
n|β̃j |)−γ with

√
nβ̃j = Op(1); so it follows that nλn[w̃j | βj0 +uj/

√
n |

−w̃j | βj0 |] P→∞ when uj 6= 0 and = 0 otherwise due to
√

n | uj/
√

n |= |uj | for large n. These

facts and the result of Lemma 3 imply that

Q1(β0 +
u√
n

)−Q1(β0)
L→ V (u) =

{
f(0)

2
u1Σ11u1 + W T

n,11u1 when uj = 0 for j ≥ s + 1

∞ otherwise,

where u1 = (u1, u2, · · · , us)
T . Noticing that Q1(β0 + u/

√
n) − Q1(β0) is convex in u and V

has a unique minimizer, the epi-convergence results of Geyer (1994) imply that

argmin Q1(β0 +
u√
n

) =
√

n(β̂
(AL) − β0)

L→ argmin V (u),

which establishes the asymptotic normality part. Next we show the consistency property of

model selection.

For any β1 − β10 = Op(n−1/2), 0 <‖ β2 ‖≤ Cn−1/2,

Q1((β
T
1 ,0T )T )−Q1((β

T
1 , βT

2 )T )

= [Q1((β
T
1 ,0T )T )−Q1((β

T
10,0

T )T )]− [Q((βT
1 , βT

2 )T )−Q((βT
10,0

T )T )]

= Gn(
√

n((β1 − β10)
T ,0T )T )−Gn(

√
n((β1 − β10)

T , βT
2 )T )− nλn

d∑
j=s+1

w̃j | βj | .

Note here the first two terms are exactly the same as in (5) and hence can be bounded similarly.
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However the third term goes to −∞ as n →∞ due to the following

nλn

d∑
j=s+1

w̃j | βj | = (n(1+γ)/2λn)
√

n

d∑
j=s+1

∣∣∣(√n|β̃j |)−γ
∣∣∣ |βj | → ∞.

Hence the condition that n(1+γ)/2λn →∞ implies that nλn

∑d
j=s+1 w̃j | βj | is of higher order

than any other terms and dominates as a result. This in turn implies that Q1((β
T
1 ,0T )T ) −

Q1((β
T
1 , βT

2 )T ) < 0 for large n. This proves the consistency of model selection of adaptive lasso

penalized quantile regression.

Proof of Corollary 1. Notice from the proofs of Theorem 1, Lemma 1, Theorem 2, and Theorem

3, it is enough to establish an asymptotic approximation similar as (1).

Note that the check function ρτ (·) can be rewritten as ρτ (r) = |r|/2 + (τ − 1/2)r. Hence,

Gn(u) =

n∑
i=1

[ρτ (εi − xT
i u/

√
n)− ρτ (εi)]

=

n∑
i=1

−xT
i u√
n

(
sign(εi)

2
+ (τ − 1

2
)) +

n∑
i=1

∫ xT
i u√

n

0

(I(εi ≤ s)− I(εi ≤ 0))ds

as in Knight (1999). By the same argument as in Knight (1999), we get Gn(u)
L→ −uT V + ς(u)

for some multivariate normal random vector V with mean zero. Then the result follows from

the strictly convexity of ς(·).


