OPTIMAL BOUNDS FOR INVERSE PROBLEMS WITH JACOBI-TYPE EIGENFUNCTIONS

Thomas Willer
Université de Provence

Supplementary Material

This note contains in section S 1 the proof for the main result given in Theorem 2, and in section S2 the proof for two preliminary results on needlets, i.e. Lemma 1 and Theorem 7 in the main paper.

S1. Proof of the main result

We recall the three conditions required on the families of functions f_{0}, \ldots, f_{m} :

- Condition (i): for all $i \in\{0,1, \ldots, m\}, f_{i} \in B_{\pi, r}^{s}(M)$,
- Condition (ii): for all $\mathfrak{i} \neq \mathfrak{j},\left\|f_{i}-f_{j}\right\|_{p}^{p} \geq 2 \delta$ for some $\delta>0$,
- Condition (iii'): for all $i \in\{1, \ldots, m\}, P_{f_{i}} \ll P_{f_{0}}$ and $\frac{1}{m} \sum_{i \geq 1} \mathcal{K}\left(P_{f_{i}}, P_{f_{0}}\right) \leq$ $\theta \log (M+1)$, where $0<\theta<\frac{1}{8}$ and P_{f} denotes the probability distribution of the process Y under the hypothesis f .

Consider Condition (iii'). Let $\mathrm{I}=[\mathrm{a}, \mathrm{b}]$ (the case $\mathrm{I}=[\mathrm{a}, \mathrm{b}[$ is similar). If we define the variables $\widetilde{Y}(w)=Y(w(.-a) / \sqrt{\lambda(.)})$ and $\widetilde{\xi}(w)=\xi(w(.-a) / \sqrt{\lambda(.)})$ for all $w \in \widetilde{V}=\mathbb{L}^{2}([0, b-a], d x)$ then Model (2.1) in the main text is equivalent to: $\widetilde{Y}(w)=(\operatorname{Kf}(.+a) \sqrt{\lambda(.+a)}, w)_{\tilde{V}}+\epsilon \widetilde{\tilde{\xi}}(w)$, which is equivalent to the stochastic equation: $\forall t \in[0, b-a], d \widetilde{Y}_{t}=K f(t+a) \sqrt{\lambda(t+a)} d t+\epsilon d W_{t}$ where $\left(W_{t}\right)_{t \geq 0}$ denotes the standard Wiener process. Then using Girsanov's formula, for all $f, g \in U, P_{f}$ is absolutely continuous with respect to P_{g}, and under the hypothesis g the likelihood ratio $\Lambda_{\epsilon}(f, g):=\frac{\mathrm{dP}_{f}}{d \mathrm{P}_{\mathrm{g}}}(\mathrm{Y})$ is distributed as: $\log \Lambda_{\epsilon}(f, g) \sim \mathcal{N}\left(-\frac{1}{2}\left\|\frac{K(f-g)}{\epsilon}\right\|_{V}^{2},\left\|\frac{K(f-g)}{\epsilon}\right\|_{V}\right)$. Thus

$$
\mathcal{K}\left(P_{f}, P_{g}\right)=E_{f} \ln \left(\Lambda_{\epsilon}(f, g)\right)=-E_{f} \log \left(\Lambda_{\epsilon}(g, f)\right)=\frac{1}{2}\left\|\frac{K(f-g)}{\epsilon}\right\|_{V}^{2} .
$$

Then Condition (iii') can be replaced by
Condition (iii): $f_{0}=0$ and for all $\mathfrak{i} \in\{1, \ldots, m\},\left\|\mathrm{Kf}_{\mathrm{i}}\right\|_{V}^{2} \leq \theta \log (M+1) \epsilon^{2}$ where $0<\theta<\frac{1}{4}$.
Sparse cases
Condition (i) is satisfied if $u_{j}:=2^{j s}\left(\sum_{\eta \in \mathbb{Z}_{j}}\left|\left\langle f_{1}, \psi_{j, \eta}\right\rangle\right|^{\mid}\left\|\psi_{j, \eta}\right\| \|_{\pi}^{\pi}\right)^{1 / \pi}$ belongs to $l^{r}(M)$, where $f_{1}=\gamma \psi_{j_{0}, \eta_{1}}$. Using the first part of Lemma 1, $u_{j}=0$ whenever $\left|j-\mathfrak{j}_{0}\right| \geq 2$. So in the sequel we assume that $\mathfrak{j} \in\left\{\mathfrak{j}_{0}-1, \mathfrak{j}_{0}, \mathfrak{j}_{0}+1\right\}$, and the l^{r} norm of $\left(\mathfrak{u}_{\mathfrak{j}}\right)$ is bounded by a constant M (independent of $\gamma>0$ and j_{0}), if for instance $u_{j} \leq 3^{-\frac{1}{r}} M$. We have $u_{j}^{\pi}=2^{j \pi s} \gamma^{\pi} \sum_{\eta \in \mathbb{Z}_{j}}\left|\left\langle\psi_{j_{0}, \eta_{1}}, \psi_{j, \eta}\right\rangle\right|^{\pi}\left\|\psi_{j, \eta}\right\|_{\pi}^{\pi} \leq c\left(I_{1}+I_{2}\right)$, with, using the bound of Theorem 6

$$
\begin{aligned}
& \mathrm{I}_{1}=2^{j[\pi s+(\pi-2)(\alpha+1)]} \gamma^{\pi} \sum_{k=1}^{2^{j-1}}\left|\left\langle\psi_{j_{0}, \eta_{1}}, \psi_{j, \eta}\right\rangle\right|^{\pi^{-}-(\pi-2)(\alpha+1 / 2)}, \\
& \mathrm{I}_{2}=2^{j[\pi s+(\pi-2)(\beta+1)]} \gamma^{\pi} \sum_{k=2^{j-1}+1}^{2^{j}}\left|\left\langle\psi_{j_{0}, \eta_{1}}, \psi_{j, \eta}\right\rangle\right|^{\pi}\left(2^{j}-k+1\right)^{-(\pi-2)(\beta+1 / 2)} .
\end{aligned}
$$

Using the second part of Lemma 1, we have for any $\zeta,\left|\left\langle\psi_{j_{0}, \eta_{1}}, \psi_{j, \eta_{k}}\right\rangle\right| \leq c \frac{1}{k^{\zeta}}$. Thus choosing any $\zeta>\frac{-(\pi-2)(\alpha+1 / 2)+1}{\pi}$, we obtain $\mathrm{I}_{1} \leq c 2^{j[\pi s+(\pi-2)(\alpha+1)]} \gamma^{\pi}$. Moreover $\sum_{k=1}^{2^{j-1}} \frac{\left(2^{j}-k+1\right)^{-(\pi-2)(\beta+1 / 2)}}{k^{〔 \pi}} \leq \mathrm{c} 2^{-\zeta \pi j 2^{j}}{ }^{j 1-(\pi-2)(\beta+1 / 2)]_{+}}$, so for a large enough $\zeta, \mathrm{I}_{2} \leq \mathrm{c} 2^{\mathrm{j}\left(\pi s+(\pi-2)(\beta+1)-\zeta \pi+[1-(\pi-2)(\beta+1 / 2)]_{+}\right)} \gamma^{\pi} \leq \mathrm{cI}_{1}$. Thus, we have, for all $\mathfrak{j} \in\left\{\mathfrak{j}_{0}-1, \mathfrak{j}_{0}, \mathfrak{j}_{0}+1\right\}, \mathfrak{u}_{j}^{\pi} \leq \mathrm{c}^{\mathrm{j}_{0}[\pi s+(\pi-2)(\alpha+1)]} \gamma^{\pi}$, and condition (i) is satisfied if, for a small enough c depending on M,

$$
\gamma \leq \mathrm{c} 2^{-\mathrm{j}_{0}\left[s+\left(1-\frac{2}{\pi}\right)(\alpha+1)\right]} .
$$

Condition (iii) is satisfied if $\int_{\mathrm{I}}\left(\frac{\mathrm{K}\left(\gamma \psi_{j_{0}, \eta_{1}}\right)(\mathrm{t})}{\epsilon}\right)^{2} \mathrm{~d} \lambda(\mathrm{t}) \leq \mathrm{C}$. We have $\psi_{j_{0}, \eta}(\mathrm{x})=$ $\sum_{l=2^{j-2}+1}^{2^{j}-1} c_{j, \eta, l} P_{l}(x)$ and $K^{*} K P_{l}=b_{l}^{2} P_{l}$, thus

$$
\left\|K\left(\psi_{j_{0}, \eta_{1}}\right)\right\|_{V}^{2}=\sum_{l}\left[b_{l} c_{j, \eta, l}\right]^{2} \asymp 2^{-2 v j_{0}} \sum_{l}\left[c_{j, \eta, l}\right]^{2}=2^{-2 v j_{0}}\left\|\psi_{j_{0}, \eta_{1}}\right\|_{u}^{2} \leq C 2^{-2 v j_{0}}
$$

Condition (iii) is then satisfied if $\frac{\gamma 2^{-\gamma j_{0}}}{\epsilon} \leq c$.

Regular case

Condition (i): for $\varepsilon \in E_{j_{0}}$, let $u_{j}:=2^{j s}\left(\sum_{\eta \in \mathbb{Z}_{j}}\left|\left\langle f_{\varepsilon}, \psi_{j, \eta}\right\rangle\right|^{\pi}\left\|\psi_{j, \eta}\right\| \|_{\pi}^{\pi}\right)^{1 / \pi}$. Once again $\mathfrak{u}_{\mathfrak{j}}=0$ whenever $\left|\mathfrak{j}-\mathfrak{j}_{0}\right| \geq 2$. Now let $\mathfrak{j} \in\left\{\mathfrak{j}_{0}-1, \mathfrak{j}_{0}, \mathfrak{j}_{0}+1\right\}$. Then we have $u_{j}^{\pi} \leq c\left(I_{1}+I_{2}\right)$, with
$\mathrm{I}_{1}=2^{\mathrm{j}[\pi s+(\pi-2)(\alpha+1)]} \gamma^{\pi} \sum_{\mathrm{k}=1}^{2^{j-1}} k^{-(\pi-2)(\alpha+1 / 2)}\left(\sum_{\mathrm{l}=1}^{2^{\mathrm{j}-1}} l^{\delta} \mid\left\langle\psi_{\mathrm{j}_{0}, \eta_{l}}, \psi_{j, \eta_{k}}\right\rangle\right)^{\pi}$,
$I_{2}=2^{j[\pi s+(\pi-2)(\beta+1)]} \gamma^{\pi} \sum_{k=2^{j-1}+1}^{2^{j}}\left(2^{j}-k+1\right)^{-(\pi-2)(\beta+1 / 2)}\left(\sum_{l=1}^{2^{j} 0^{-1}} l^{\delta} \mid\left\langle\psi_{j_{0}, \eta_{l}}, \psi_{j, \eta_{k}}\right\rangle\right)^{\pi}$.
Using Lemma 11 with some ζ given later, we have $\left|\left\langle\psi_{j_{0}, \mathfrak{n}_{l}}, \psi_{j, \mathfrak{\eta}_{k}}\right\rangle\right| \leq c \frac{1}{\left(1+\left|l-2^{j^{j} 0_{k}} k\right|\right)^{\zeta}}$. Then, for $x \in \mathbb{R}$, let $\lfloor x\rfloor$ denote the largest integer smaller than x. We have

for ζ large enough. Moreover

$$
\begin{aligned}
\sum_{l \geq\left\lfloor 2^{j^{-j}-j} k\right\rfloor+1} \frac{l^{\delta}}{\left(1+\left|l-2^{j_{0}-j} k\right|\right)^{\zeta}} & \leq \sum_{l \geq\left\lfloor 2^{j_{0}-j} k\right\rfloor+1} \frac{l^{\delta}}{\left(l-\left\lfloor 2^{j_{0}-j} k\right\rfloor\right)^{\zeta}}=\sum_{l \geq 1} \frac{\left(l+\left\lfloor 2^{j_{0}-j} K\right\rfloor\right)^{\delta}}{l^{\zeta}} \\
& \leq c \sum_{l \geq 1} \frac{l^{\delta}+\left\lfloor 2^{j_{0}-j} k\right\rfloor^{\delta}}{l^{\zeta}} \leq C k^{\delta},
\end{aligned}
$$

for ζ large enough. To obtain the last line, we used the fact that $\delta \geq 1$. Thus $\sum_{l=1}^{2 j^{j} 0^{-1}} \frac{l^{\delta}}{\left(1+\left|l-2^{j} 0^{-j} k\right|\right)^{¿}} \leq c k^{\delta}$, and

$$
\mathrm{I}_{1} \leq \mathrm{c} 2^{\mathrm{j}[\pi s+(\pi-2)(\alpha+1)]} \gamma^{\pi} \sum_{\mathrm{k}=1}^{2^{\mathrm{j}-1}} k^{-(\pi-2)(\alpha+1 / 2)} k^{\delta \pi}=c 2^{\mathrm{j}\left[s+\delta+\frac{1}{2}\right]} \gamma
$$

For I_{2}, remark that for any $k \in\left\{2^{j-1}+1, \ldots, 2^{j}\right\}$ and any $l \in\left\{1, \ldots, 2^{j_{0}-1}\right\}$, we have $\left|\frac{k}{2^{j}}-\frac{l}{2^{i} 0}\right|=\frac{k}{2^{j}}-\frac{l}{2^{i} j} \geq\left|\frac{2^{j}-k}{2^{j}}-\frac{l}{2^{i o}}\right|$. So for such a k, as previously, $\left.\left.\sum_{l=1}^{2^{j} 0^{-1}} \frac{l^{\delta}}{\left(1+\mid l-2^{j}-j\right.} k \right\rvert\,\right)^{¿} \leq \sum_{l=1}^{2^{j} 0^{-1}} \frac{l^{\delta}}{\left(1+\left|l-2^{j} 0^{-j}\left(2^{j}-k\right)\right|\right)^{i}} \leq c\left(2^{j}-k\right)^{\delta}$, and
$\mathrm{I}_{2} \leq \mathrm{c} 2^{j[\pi s+(\pi-2)(\beta+1)]} \gamma^{\pi} \sum_{k=2^{j-1}+1}^{2^{j}}\left(2^{j}-k+1\right)^{-(\pi-2)(\beta+1 / 2)}\left(2^{j}-k+1\right)^{\delta \pi}=c 2^{j\left[s+\delta+\frac{1}{2}\right]} \gamma$.

Finally we have $u_{j} \leq c 2^{j\left[s+\delta+\frac{1}{2}\right]} \gamma$ so f_{ε} belongs to $B_{\pi, r}^{s}(M)$ if, for a small enough c depending on M,

$$
\gamma \leq c 2^{-\mathrm{j}_{0}\left[s+\delta+\frac{1}{2}\right]} .
$$

Condition (ii): for all $\varepsilon^{u}, \varepsilon^{v} \in E_{j_{0}}$ with $u \neq v, f_{u}-f_{v}=\sum_{k=1}^{2^{j}-m-1} \gamma\left(\varepsilon_{k}^{u}-\right.$ $\left.\varepsilon_{\mathrm{k}}^{v}\right) \mathrm{k}^{\delta} \psi_{\mathrm{j}_{0}, \eta_{2} m_{k}}$. So by Theorems 7 and 6 , we have

$$
\left\|f_{u}-f_{v}\right\|_{u}^{2} \geq c \gamma^{2} \sum_{k=1}^{2^{j o}-m-1}\left(\varepsilon_{k}^{u}-\varepsilon_{k}^{v}\right)^{2} k^{2 \delta}=c \gamma^{2} \sum_{\left\{k \mid \varepsilon_{k}^{u} \neq \varepsilon_{k}^{v}\right\}} k^{2 \delta} .
$$

Let $N_{u, v}$ denote the cardinality of the set $\left\{\mathrm{k} \in\left\{1, \ldots, 2^{\mathrm{j}_{0}-\mathrm{m}-1}\right\} \mid \varepsilon_{k}^{u} \neq \varepsilon_{k}^{v}\right\}$, then we have $\mathrm{N}_{u, v} \geq \mathrm{c} 2^{j_{0}}$ and, since $\delta>0$,

$$
\begin{equation*}
\left\|f_{u}-f_{v}\right\|_{u}^{2} \geq c \gamma^{2} \sum_{k=1}^{N_{u, v}} k^{2 \delta}=\gamma^{2} N_{u, v}^{1+2 \delta} \geq c \gamma^{2} 2^{j_{0}(1+2 \delta)} \tag{1.1}
\end{equation*}
$$

Let us distinguish two cases. Suppose $2<p<\infty$ and let $1 / p+1 / q=1$. By (1.1), and Hölder's inequality, we have

$$
c 2^{j_{0}(1+2 \delta)} \leq\left\|f_{u}-f_{v}\right\|_{\mathbb{L}^{2}(\mu)}^{2} \leq\left\|f_{u}-f_{v}\right\|_{\mathbb{L}^{\mathfrak{p}}(\mu)}\left\|f_{\mathfrak{u}}-f_{v}\right\|_{\mathbb{L}^{q}(\mu)} .
$$

Using Theorem 5, and the fact that, under our assumptions, $q \delta-(q-2)(\alpha+$ $1 / 2)>-1$, we have

$$
\left\|f_{u}-f_{v}\right\|_{\mathbb{L}^{q}(\mu)} \leq c \gamma 2^{j^{\frac{(q-2)}{q}(\alpha+1)}}\left(\sum_{k=1}^{2^{j} 0-m-1} k^{q \delta-(q-2)(\alpha+1 / 2)}\right)^{1 / q} \leq c^{\prime} \gamma 2^{j^{j}\left(\frac{1}{2}+\delta\right)},
$$

therefore $\left\|f_{\mathcal{U}}-f_{v}\right\|_{\mathbb{L}^{\mathfrak{p}}(\mu)}^{p} \geq \boldsymbol{c} \gamma^{p^{p}}{ }^{\text {jop }^{\circ} p\left(\frac{1}{2}+\delta\right)}$.
Suppose now $1<\mathrm{p}<2$, we have, using (1.1),

$$
c 2^{j_{0}(1+2 \delta)} \leq\left\|f_{u}-f_{v}\right\|_{\mathbb{L}^{2}(\mu)}^{2} \leq\left\|f_{u}-f_{v}\right\|_{\mathbb{L}^{\mathfrak{p}}(\mu)}^{p}\left\|f_{u}-f_{v}\right\|_{\mathbb{L}^{\infty}(\mu)}^{2-p} .
$$

From Theorem 4, we infer, for all $0 \leq \theta \leq \pi / 2$,

$$
\left|\psi_{\mathrm{j}_{0}, \eta_{k}}(\cos \theta)\right| \leq C \frac{2^{\mathrm{j}_{0}(1+\alpha)}}{\left(1+2^{j_{0}}\left|\theta-\frac{k \pi}{2^{j_{0}}}\right|\right)^{\mathrm{l}}} \frac{1}{\left(2^{j_{0}} \theta+1\right)^{\alpha+1 / 2}} .
$$

Thus, for l large enough, $\left|\psi_{j_{0}, \eta_{k}}(\cos \theta)\right| \leq C \frac{2^{j}(1+\alpha)}{k^{\alpha+1 / 2}} \frac{1}{\left(1+2^{j} \rho\left|\theta-\frac{k \pi}{2^{j}}\right|\right)^{2}}$. Moreover, since $\delta-(\alpha+1 / 2) \geq 0$,
$\left|f_{u}(\cos \theta)-f_{v}(\cos \theta)\right| \leq c \gamma 2^{j_{0}(\alpha+1)} \sum_{k=1}^{2^{j}{ }^{j}-m-1} k^{\delta-(\alpha+1 / 2)} \frac{1}{\left(1+2^{j_{0}}\left|\theta-\frac{k \pi}{2^{j}}\right|\right)^{2}} \leq c^{\prime} \gamma 2^{j_{0}\left(\frac{1}{2}+\delta\right)}$,
where in the last line we used the fact that for any $\theta, \sum_{k=1}^{2 j^{j}-m-1} \frac{1}{\left(1+2^{j} 0\left|\theta-\frac{k \pi}{2^{j} 0}\right|\right)^{2}} \leq$ $\mathrm{c} \sum_{l=1}^{+\infty} \frac{1}{\mathrm{l}^{2}}$. Similarly the same bound holds for any $\pi / 2 \leq \theta \leq \pi$, thus, we have $\left\|f_{\mathfrak{u}}-f_{v}\right\|_{\mathbb{L}^{\infty}(\mu)} \leq c 2^{j_{0}\left(\frac{1}{2}+\delta\right)}$, and, once again, $\left\|f_{\mathfrak{u}}-f_{v}\right\|_{\mathbb{L}^{\mathfrak{p}}(\mu)}^{p} \geq c \gamma^{p} 2^{j^{j} \mathfrak{p}\left(\frac{1}{2}+\delta\right)}$.
Condition (iii): we have $\sqrt{T_{j_{0}}} \geq \exp \left(\frac{\rho}{2} 2^{j_{0}}\right)$, so Condition (iii) is satisfied if for all $\varepsilon^{u} \in E_{j_{0}}, \int_{I}\left(\frac{K\left(f_{u}\right)(t)}{\varepsilon}\right)^{2} d \lambda(t) \leq c 2^{j_{0}}$ for a small enough constant c. We have $f_{u}=\sum_{k=1}^{2^{j}-m-1} \beta_{j_{0}, k} \psi_{j_{0}, \eta_{2} m_{k}}=\sum_{k=1}^{2^{j} 0-m-1} \sum_{l \in \mathbb{N}} \beta_{j_{0}, k} c_{j_{0}, \eta_{k}, l} P_{l}(x)$, with $\beta_{j_{0}, k}=$ $\gamma \varepsilon_{\mathrm{k}}^{\mathrm{u}} \mathrm{k}^{\delta}$. Thus,

$$
\begin{aligned}
\left\|K\left(f_{u}\right)\right\|_{\mathbb{L}_{2}(I, \lambda)}^{2} & =\sum_{l}\left[\sum_{k=1}^{2^{j_{0}-m-1}} \beta_{j_{0}, k} b_{l} c_{j_{o}, \eta_{k}, l}\right]^{2} \asymp 2^{-2 v j_{0}} \sum_{l}\left[\sum_{k=1}^{2^{j_{0}-m-1}} \beta_{j_{0}, k} c_{j_{0}, \eta_{k}, l}\right]^{2} \\
& =2^{-2 v j_{0}}\left\|\sum_{k=1}^{2^{j} j_{0}-m-1} \beta_{j_{0}, k} \psi_{j_{0}, \eta_{2} m_{k}}\right\|_{\mathbb{L}_{2}(I, \mu)}^{2} \leq c 2^{-2 v j_{0}} \sum_{k=1}^{2^{j_{0}-m-1}} \beta_{j_{0}, k}^{2} \\
& \leq c 2^{-2 v j_{0}} \gamma^{2} \sum_{k=1}^{2 j_{0}-m-1} k^{2 \delta}=c 2^{-2 v j_{0}} \gamma^{2} 2^{(2 \delta+1) j_{0}} .
\end{aligned}
$$

So finally we need $\frac{2^{-v j_{0}} \gamma 2^{\left(\delta+\frac{1}{2}\right) j_{0}}}{\epsilon} \leq \mathrm{C} 2^{\mathrm{j}_{0} / 2}$, i.e. $\frac{2^{(\delta-v) \mathrm{j}_{0}}}{\epsilon} \leq \mathrm{C}$ with a small enough constant C.

S2. Proof of two new properties of needlets

Lemma 1. We have

1. $\forall \mathfrak{j}, \mathfrak{j}^{\prime}, k, l$ such that $\left|\mathfrak{j}^{\prime}-\mathfrak{j}\right| \geq 2,\left\langle\psi_{\mathfrak{j}, \mathfrak{\eta}_{k}}, \psi_{\mathfrak{j}^{\prime}, \eta_{l}}\right\rangle=0$,
2. $\forall \zeta>0, \exists \mathfrak{c}_{\zeta}$ such that $\forall \mathfrak{j}, \mathfrak{j}^{\prime}, k, l$ with $\left|\mathfrak{j}^{\prime}-\mathfrak{j}\right| \leq 1,\left|\left\langle\psi_{j, \eta_{k}}, \psi_{\mathfrak{j}^{\prime}, \mathfrak{\eta}_{l}}\right\rangle\right| \leq \frac{\mathfrak{c}_{\zeta}}{\left(1+\left|k-2^{j-j^{\prime}} l\right|\right)^{\zeta}}$.

Proof of Lemma 1. The needlets are $\psi_{j, \eta}=\sum_{l=2^{j-2}+1}^{2^{j}-1} c_{j, \eta, 1} P_{l}(x)$, with coefficients $c_{j, \eta, l}=a\left(l / 2^{j-1}\right) P_{l}(\eta) \sqrt{b_{j, \eta}}$. So if $\left|j^{\prime}-\mathfrak{j}\right| \geq 2$ then $\left\{2^{j-2}+1, \ldots, 2^{j}-1\right\} \cap$ $\left\{2^{j^{\prime}-2}+1, \ldots, 2^{j^{\prime}}-1\right\}=\emptyset$, and $\left\langle\psi_{j, \eta_{k}}, \psi_{j^{\prime}, \eta_{l}}\right\rangle=0, \quad \forall(k, l)$.

For the second part of the lemma we use Theorem 4. For any δ, there exists c_{δ} such that, for all j, k,

$$
\left|\psi_{j, \eta_{k}}(\cos \theta)\right| \leq c_{\delta} \frac{1}{\sqrt{\omega_{\alpha, \beta}\left(2^{j}, \cos \theta\right)}} \frac{2^{j / 2}}{\left(1+2^{j}\left|\theta-\frac{\pi k}{2^{j}}\right|\right)^{\delta}}, \quad 0 \leq \theta \leq \pi .
$$

We recall that $\omega_{\alpha, \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta}$, and $\omega_{\alpha, \beta}\left(2^{j} ; x\right)=\left(1-x+2^{-2 j}\right)^{\alpha+1 / 2}(1+$ $x+2^{-2 j} j^{\beta+1 / 2}$. For a given $\zeta>0$ and $\mathfrak{j}, \mathfrak{j}^{\prime}, k, l$ such that $\left|j^{\prime}-\mathfrak{j}\right| \leq 1$, we use this
inequality for $\left|\psi_{\mathfrak{j}, \mathfrak{\eta}_{k}}\right|$ with $\delta=\zeta+2$, and for $\left|\psi_{\mathfrak{j}^{\prime}, \mathfrak{n}_{l}}\right|$ with $\delta=\zeta$. Noticing that $\omega_{\alpha, \beta}\left(2^{j}, \cos \theta\right) \asymp \omega_{\alpha, \beta}\left(2^{j^{\prime}}, \cos \theta\right)$ we obtain

$$
\begin{aligned}
\left|\left\langle\psi_{j, \eta_{k}}, \psi_{j^{\prime}, \eta_{l}}\right\rangle\right| & \leq c 2^{j} \int_{0}^{\pi} \frac{\omega_{\alpha, \beta}(\cos \theta)}{\omega_{\alpha, \beta}\left(2^{j}, \cos \theta\right)} \frac{\sin \theta d \theta}{\left(1+2^{j}\left|\theta-\frac{\pi k}{2^{j}}\right|\right)^{\zeta+2}\left(1+2^{j^{\prime}}\left|\theta-\frac{\pi l}{2^{j}}\right|\right)^{\zeta}} \\
& \leq c \frac{I_{j, k, \alpha, \beta}}{\left(\min _{0 \leq \theta \leq \pi} f_{j, j^{\prime}, k, l}(\theta)\right)^{\zeta}},
\end{aligned}
$$

with $\mathrm{f}_{\mathrm{j}, \mathrm{j}^{\prime}, \mathrm{k}, \mathrm{l}}(\theta)=\left(1+2^{\mathrm{j}}\left|\theta-\frac{\pi \mathrm{k}}{2^{j}}\right|\right)\left(1+2^{\mathrm{j}^{\prime}}\left|\theta-\frac{\pi \mathrm{l}}{2^{j}}\right|\right), 0 \leq \theta \leq \pi$, and $\mathrm{I}_{\mathrm{j}, \mathrm{k}, \alpha, \beta}=$ $2^{j} \int_{0}^{\pi} \frac{\omega_{\alpha, \beta}(\cos \theta)}{\left.\omega_{\alpha, \beta} 2^{j}, \cos \theta\right)} \frac{\sin \theta \mathrm{d} \theta}{\left(1+2^{j}\left|\theta-\frac{\pi k}{2 j}\right|\right)^{2}}$.

First, we have $\min _{0 \leq \theta \leq \pi} \mathrm{f}_{\mathfrak{j}, \mathrm{j}^{\prime}, \mathrm{k}, \mathrm{l}}(\theta)=\min \left\{\mathrm{f}_{\mathrm{j}, \mathrm{j}^{\prime}, \mathrm{k}, \mathrm{l}}\left(\frac{\pi \mathrm{k}}{2^{j}}\right), \mathrm{f}_{\mathrm{j}, \mathrm{j}^{\prime}, \mathrm{k}, \mathrm{l}}\left(\frac{\pi \mathrm{l}}{2^{\prime}}\right)\right\} \geq 1+$ $\frac{\pi}{2^{j-j^{\prime} \mid} \mid}\left|k-2^{j-j^{\prime}} l\right| \geq c\left(1+\left|k-2^{j-j^{\prime}} l\right|\right)$. Second, let us divide $I_{j, k, \alpha, \beta}$ into two terms: $I_{j, k, \alpha, \beta}=I_{j, k, \alpha, \beta}^{1}+I_{j, k, \alpha, \beta}^{2}$, with

$$
\begin{aligned}
I_{j, k, \alpha, \beta}^{1} & =2^{j} \int_{0}^{\frac{\pi}{2}} \frac{\omega_{\alpha, \beta}(\cos \theta)}{\omega_{\alpha, \beta}\left(2^{j}, \cos \theta\right)} \frac{\sin \theta d \theta}{\left(1+2^{j}\left|\theta-\frac{\pi k}{2^{j} \mid}\right|\right)^{2}}, \\
I_{j, k, \alpha, \beta}^{2} & =2^{j} \int_{\frac{\pi}{2}}^{\pi} \frac{\omega_{\alpha, \beta}(\cos \theta)}{\omega_{\alpha, \beta}\left(2^{j}, \cos \theta\right)} \frac{\sin \theta d \theta}{\left(1+2^{j}\left|\theta-\frac{\pi k}{2^{j}}\right|\right)^{2}} \\
& =2^{j} \int_{0}^{\frac{\pi}{2}} \frac{\omega_{\alpha, \beta}(-\cos \theta)}{\omega_{\alpha, \beta}\left(2^{j},-\cos \theta\right)} \frac{\sin \theta d \theta}{\left(1+2^{j}\left|\pi-\theta-\frac{\pi k}{2^{j}}\right|\right)^{2}} \\
& =2^{j} \int_{0}^{\frac{\pi}{2}} \frac{\omega_{\beta, \alpha}(\cos \theta)}{\omega_{\beta, \alpha}\left(2^{j}, \cos \theta\right)} \frac{\sin \theta d \theta}{\left(1+2^{j}\left|\theta-\frac{\pi\left(2^{j}-k\right)}{2^{j}}\right|\right)^{2}} \\
& =I_{j, 2^{j}-k, \beta, \alpha}^{1} .
\end{aligned}
$$

We have $\sin \theta \omega_{\alpha, \beta}(\cos \theta)=\sin \theta\left(2 \sin ^{2}(\theta / 2)\right)^{\alpha}\left(2 \cos ^{2}(\theta / 2)\right)^{\beta} \leq c_{1} \theta^{2 \alpha+1}$, for all $0 \leq \theta \leq \frac{\pi}{2}$, and

$$
\omega_{\alpha, \beta}\left(2^{j} ; \cos \theta\right)=\left(2 \sin ^{2}(\theta / 2)+2^{-2 j}\right)^{\alpha+1 / 2}\left(2 \cos ^{2}(\theta / 2)+2^{-2 j}\right)^{\beta+1 / 2} \geq c_{2} \theta^{2 \alpha+1} .
$$

Thus, $I_{j, k, \alpha, \beta}^{1} \leq c 2^{j} \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\left(1+2^{j}\left|\theta-\frac{\pi k}{2 j}\right|\right)^{2}} \leq c \int_{0}^{\frac{\pi 2^{j}}{2}} \frac{d \theta}{(1+|\theta-\pi k|)^{2}} \leq C$, since $\int_{-\infty}^{+\infty} \frac{d \theta}{(1+\theta)^{2}}$ is finite, and the same goes for $I_{j, k, \alpha, \beta}^{2}$.

Thus, there exists $C(\alpha, \beta)>0$ such that, for all $(j, k), I_{j, k, \alpha, \beta} \leq C(\alpha, \beta)$, which completes the proof of the lemma.

Theorem 7. If $\mathfrak{p} \in 2 \mathbb{N}^{*}$, there exist a constant $\mathfrak{c}_{p}>0$ and an integer n_{p} such that, for any collection of numbers $\left\{\lambda_{k}: k \in I_{j}\right\}, \mathfrak{j} \geq 0$, where $I_{j} \subset\left\{1,2, \ldots, 2^{j}\right\}$ and $\mathrm{k}, \mathrm{l} \in \mathrm{I}_{\mathrm{j}}, \mathrm{k} \neq \mathrm{l} \Longrightarrow|\mathrm{k}-\mathrm{l}| \geq \mathrm{n}_{\mathrm{p}}$,

$$
\left\|\sum_{k \in I_{j}} \lambda_{k} \psi_{j, \eta_{k}}\right\|_{\mathbb{L}^{p}(\mu)}^{p} \geq c_{p} \sum_{k \in I_{j}}\left|\lambda_{k}\right|^{p}\left\|\psi_{j, \eta_{k}}\right\|_{\mathbb{L}^{p}(\mu)}^{p} .
$$

Proof of Theorem 7. Let $p \in 2 \mathbb{N}^{*}$ and $\mathrm{I}_{\mathrm{j}} \subset\left\{1,2, \ldots, 2^{j}\right\}$. We have the decomposition $\left\|\left(\sum_{k \in I_{j}} \lambda_{k} \psi_{j, \eta_{k}}\right)\right\|_{\mathbb{L}^{p}(\mu)}^{p}=A+B$, where

$$
\begin{aligned}
& A=\sum_{k \in I_{j}} \lambda_{k}^{p}\left\|\psi_{j, \eta_{k}}\right\|_{\mathbb{L}^{p}(\mu)}^{p}, \\
& B=\sum_{\left(p_{k}\right)_{k \in I_{j}} \in \Lambda} \frac{p!\prod_{k \in I_{j}} \lambda_{k}^{p_{k}}}{\prod_{k \in I_{j}} p_{k}!} \int_{-1}^{1}\left(\prod_{k \in I_{j}} \psi_{j, n_{k}}^{p_{k}}(x)\right) \mu(x) d x,
\end{aligned}
$$

and $\Lambda=\left\{\left(p_{k}\right)_{k \in \mathrm{I}_{\mathrm{j}}} \quad \mid \quad p_{\mathrm{k}} \in \mathbb{N}, \quad \sum_{k \in \mathrm{I}_{\mathrm{j}}} p_{\mathrm{k}}=\mathrm{p}\right.$ and $\exists \mathfrak{u} \neq v$ such that $\mathrm{p}_{\mathrm{u}}>$ 0 and $\left.p_{v}>0\right\}$.

Let $\varphi_{j, k}(x)=\frac{1}{\sqrt{\omega_{\alpha, \beta}\left(2^{j}, x\right)}} \frac{2^{j / 2}}{\left(1+2^{j}\left|\arccos x-\frac{\pi k}{2 j}\right|\right)^{\frac{2}{s}}}$ for some $0<s<\min \left\{1, \frac{p}{\alpha \vee \beta+1}\right\}$. For $\left(p_{k}\right)_{k \in I_{j}} \in \Lambda$, we use Theorem 4 with $l=\frac{2}{s}+1$ for every $\psi_{j, \eta_{k}}, k \in I_{j}$. There exists C such that

$$
\prod_{k \in I_{j}}\left|\psi_{j, \mathfrak{\eta}_{k}}(\cos \theta)\right|^{p_{k}} \leq C \prod_{k \in I_{j}} \varphi_{j, k}(\cos \theta)^{p_{k}} \prod_{k \in I_{j}} \frac{1}{\left(1+2^{j}\left|\theta-\frac{\pi k}{2^{j}}\right|\right)^{p_{k}}} .
$$

Let $\mathfrak{u}, v \in \mathrm{I}_{\mathfrak{j}}, \mathfrak{u} \neq v$ such that $\mathfrak{p}_{\mathfrak{u}}>0$ and $p_{v}>0$, and let $\mathfrak{n}_{\text {inf }}=\min _{k, l \in I_{j}, k \neq l} \mid k-$ $l \mid$. We have

$$
\prod_{k \in I_{j}}\left(1+2^{j}\left|\theta-\frac{\pi k}{2^{j}}\right|\right)^{p_{k}} \geq\left(1+2^{j}\left|\theta-\frac{\pi u}{2^{j}}\right|\right)\left(1+2^{j}\left|\theta-\frac{\pi v}{2^{j}}\right|\right) \geq \mathrm{c}|u-v| \geq \mathrm{cn}_{\mathfrak{i n f}} .
$$

Thus we obtain

$$
\begin{aligned}
\sum_{\left(p_{k}\right)} \frac{p!\prod_{k \in I_{j}} \in \Lambda}{} \frac{\prod_{k \in I_{j}}\left|\lambda_{k}^{p_{k}}\right|}{\prod_{k \in I_{j}} p_{k}!} \prod_{k \in I_{j}}\left|\psi_{j, \eta_{k}}\right|^{p_{k}} & \leq \frac{C}{n_{\mathfrak{i n f}}} \sum_{\left(p_{k}\right)_{k \in I_{j}} \in \Lambda} \frac{p!\prod_{k \in I_{j}}\left|\lambda_{k}\right|^{p_{k}}}{\prod_{k \in I_{j}} p_{k}!} \prod_{k \in I_{j}} \varphi_{j, \eta_{k}}^{p_{k}} \\
& \leq C \frac{\left(\sum_{k \in I_{j}}\left|\lambda_{k}\right| \varphi_{j, \eta_{k}}\right)^{p}}{n_{\text {inf }}}
\end{aligned}
$$

Now let us proceed similarly to the sketch of the proof of Theorem 6 in the main text, given in Kerkyacharian, Picard, Petrushev, and Willer (2007). Let us recall the two main tools.

First, consider the maximal operator $\left(M_{s} f\right)(x)=\sup _{\text {Iəx }}\left(\frac{1}{|J|} \int_{J}|f(u)|^{s} d u\right)^{1 / s}$, where the supremum is taken over all intervals $\mathrm{J} \subset[-1,1]$ which contain $x, s>0$, and $|\mathrm{J}|$ denotes the length of J . Then one can infer the following bound from the Fefferman-Stein maximal inequality (see Fefferman and Stein (1971)). If $0<p, r<\infty$ and $0<s<\min \left\{p, r, \frac{p}{\alpha V \beta+1}\right\}$, then for any sequence of functions $\left(f_{k}\right)$ on $[-1,1]$

$$
\left\|\left(\sum_{k}\left(M_{s} f_{k}\right)^{r}\right)^{1 / r}\right\|_{\mathbb{L}^{p}(\mu)} \leq C\left\|\left(\sum_{k}\left|f_{k}\right|^{r}\right)^{1 / r}\right\|_{\mathbb{L}^{p}(\mu)}
$$

Second, set $\eta_{0}=1$ and $\eta_{2^{j}+1}=-1$, denote $I_{k}=\left[\frac{\eta_{k}+\eta_{k+1}}{2}, \frac{\eta_{k}+\eta_{k-1}}{2}\right]$ and put $H_{k}=h_{k} 1_{I_{k}}$ with $h_{k}=\left(\frac{2^{j}}{\omega_{\alpha, \beta}\left(2^{j} ; \eta_{k}\right)}\right)^{1 / 2}$, where $1_{I_{k}}$ is the indicator function of I_{k}. Then $\left\|\mathrm{H}_{k}\right\|_{\mathbb{L}^{p}(\mu)} \asymp\left\|\psi_{\mathfrak{j}, \eta_{k}}\right\|_{\mathbb{L}^{p}(\mu)}$, and one shows in Kerkyacharian, Picard, Petrushev, and Willer (2007) that, for any $s>0$,

$$
\varphi_{j, \eta_{k}}(x) \leq c\left(M_{s} H_{k}\right)(x), \quad x \in[-1,1], \quad \forall k=1,2, \ldots, 2^{j}, j \geq 0 .
$$

We use these two results, with $f_{k}=H_{k}$ and $r=1$. Noticing that the $\left(H_{k}\right)$ have disjoint supports, we obtain

$$
\begin{aligned}
\left\|\sum_{k=1}^{2^{j}}\left|\lambda_{k}\right| \varphi_{j, \eta_{k}}\right\|_{\mathbb{L}^{p}(\mu)}^{p} & \leq C\left\|\sum_{k=1}^{2^{j}}\left|\lambda_{k}\right| H_{k}\right\|_{\mathbb{L}^{\mathfrak{p}}(\mu)}^{p}=C \sum_{k=1}^{2^{j}}\left|\lambda_{k}\right|^{p}\left\|H_{k}\right\|_{\mathbb{L}^{p}(\mu)}^{p} \\
& \leq C^{\prime} \sum_{k=1}^{2^{j}}\left|\lambda_{k}\right|^{p}\left\|\psi_{j, \eta_{k}}\right\|_{\mathbb{L}^{\mathfrak{p}}(\mu)}^{p} .
\end{aligned}
$$

So there exists $C>0$ such that $|B| \leq C \frac{A}{n_{i n f}}$, and if we impose the condition on I_{j} that $n_{\text {inf }} \geq 2 C$, then we obtain $|B| \leq \frac{1}{2} A$, and thus

$$
\left\|\left(\sum_{k \in I_{j}} \lambda_{k} \psi_{j, \eta_{k}}\right)\right\|_{\mathbb{L}^{p}(\mu)}^{p} \geq \frac{1}{2} \sum_{k \in I_{j}} \lambda_{k}^{p}\left\|\psi_{j, \eta_{k}}\right\|_{\mathbb{L}^{p}(\mu)}^{p} .
$$

