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This note contains the proof that there is no complete sufficient statistic
under design in which all affected families from a population of a known size are
obtained, calculations of the asymptotic variances and the asymptotic relative
efficiencies of those six test statistics, and algorithms to obtain the estimates of
0 in those three test statistics for the local alternative in which the prevalence of

the latent factor with a substantial effect tends to zero.

S1. Proof of completeness
For design in which all affected families from a population of a known size
are obtained, under the null hypothesis, the nuisance parameters are {pg, M }. If

we define a function g(D,M?) as following:

N -1 N -1
<D_1)g<D,Ma>|m7V_1:1,m?:1+( - >9(D7Ma)|m‘;v_1=1,m‘;=0=0,

and g = 0 otherwise. It implies E{g(D,M®*)} = 0 for any {pg, M }. Therefore, by
the definition of completeness, { D, M“} is not complete for nuisance parameter
{po, M}. On the other hand, it is minimal sufficient statistic. Hence, there is no

complete sufficient statistic for the null hypothesis.

S2. Variances of test statistics
Define Sp(p) = Zfil[d? — 2nipd; — (nip — nip*® — n?p?)]. Noting that Sp =
Sp(®) = Sp(po) + (b — po) Eo(0Sp(po)/0p) + 0p(v/N), it can be verified that

I

Vary(Sp) = ZZnZ(nZ — 1)p2(1 —po)?.
i=1
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Similarly, by Taylor expansion, we obtain

I
Varg(Sme) = anl(nl _ 1)p3(1 —po)? + Ai(pO)Bi(p())(Tg],?((;O_) 3n;pg + nfpg)]
=1 7
I
nipoAi(po) Bi(po)
2T Gy )

where A;(p) = n;p — n;p? — n?p2, Bi(p) = (1 —p)™ and Ci(p) =1 — (1 — p)™.

One estimate of Varg(Sme) is

- N2l = DR =9 Adp)Bi() (nap — 3map® + nZi?)
VorolShee) = 2 gy C2) |
—[Z nzPAég;;)Bz (ﬁ)]Q/Nﬁ(l ﬁ)
=1 g

Again by Taylor expansion and

I I
P =po =) _(di —nipo/Ci(po))/ D _[ni = nipo(1 = po)" =" /Ci(po)] + 0,(1),
=1 i=1
we obtain
3 ! (r 2B,
Varo(Spme) = ;[Q"i("i — Dpg(1 —po)” — W]

{211 [nipo A (po) Bi(po) / Ci(po) — napo(1 — po) (1 — 2130)]}2‘
Soi_1 nipo[1 = po — Bi(po)(1 — po + nipo)]/Ci(po)

One estimate of it is

~ . B I 2n;(n; — Dp*2(1 = p*)2  Ai(p*)?By(p*)
Varo(Spme) = ;[ Ci(p*) - C?(p*) }

{3 [nip Ai(p) Bi(p*) /C2(p*) — mip* (1 — p*) (1 — 2p*)/Ci(p*)]}2.

Yty nap*[1 = p* = Bi(p*)(1 — p* + nip*)] /C2(p*)
Similarly,
: (e —1)? (e —1)?

a - fe Ny _ 1 _ pn.p% 7
Varo(TD)—g{[l—i—e (1+€a+5)2] 1—nse (1+e"‘+5)2}’
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(ef —1)2 1+ e

I
Varg(Tve) = Y {1+ eam]ni — 1= Bi(po)[l - (m)m]Z/Ci(po)}

=1

F_1  Bilp)e?
np() € po (& ]
_{Z C; lpo 1+ eotB 1 ; cop T p1)" 1} /Npo(1 — po),

(ef —1)2 s 1+e”
m] —1—Bi(po)[1 — (m

I ; B B; s ;
S et — Tk + (L—p)" P

S nipo(1— po — Bi(po)(1 — po + nipo))/Ci(po)

)"/ Ci(po) }

S3. Asymptotic relative efficiency

Start with the tests for the first locally alternative. Let d be {dy,--- ,dy}.
Denote probability distribution of d by f(d;#,p, F'), probability distribution of
D by fp, and conditional probability distribution of d given D by fo. Be-
cause Eo{Sp bg o lo=0} = 0 and the derivative of the conditional log-likelihood

%Mzo is zero, we have

E 1
s 2o oot~ EolS0 22100} = Eofsp

In addition, Eo{Sp2iel . dlajn|, 1 — E0{31°ng\9 OEO{SDalogf|D}} =0.

Then we have

8long 8logfc

lo=0o = Eo{Sp

lo=0} = 0.

0?EyS 0?log f dlog f 8logf
oz o= = Bo{Sp= 5" le=o} + Eo{Sn(—, ;) lo=o}
0% log fc

= FEo{Sp lo—o} = CVaro(Sp),

06?
where C' = Var(A;). Similarly, M‘g 0o =0 and OQEESTD’W\QZO = CVaro(Spma).

Therefore, the calculation of AE(Sp) and AE(Spme) is straightforward. Now

define
I
Ag=Sve—Sp=)_

=1

1 n2p?
m( i —nip” —nip?)[1 = (1—p)™ —I(d; > 0)),
where I(-) is an indicator function. By the facts that

8E9[1 - (1 - ﬁ)nl — I(dl > O)] | 82E9ﬁ‘ _ 82p9(a)|

=0, and
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GQEQI(di > 0)
062

we have OFEySnia/00|g—o = 0, and

2
lo=0 = na(1 — po)™ *{(1 — po) 0 g;ga) lo=o — (n; — 1) /(8p;éa) lo=0)*}

3E9AS CZ nipo — nip§ — npo)(l—Po)"in'(

_ )2
gz 0= 1—(1— po)™ ni = Lo

Then the calculation of the asymptotic efficiency of Snpe is straightforward, by

the fact that

0?FyAg 0%EySp

o =0t g
Similarly, for the second local alternative, PAE(Tp) = Varo(Tp)/N, PAE(Tp ma)

Varg(Tpae)/N, and PAE(Tie) = (Varg(Tp)+0EgAr/90]9—0)?/NV aro(Tha),

where A = Tyvge — T and OEpAr /00]p—o equals

AE(SMa) = ( |9:0)/NVCLT‘0(SMa).

I
(1 —po)™ Oéeﬂ—l 14+e* L+e*

3 1— i 1_ - 7\ .
;1 l—po nz{nze 1+€a+3[ (1+ea+ﬂ) ] [ (1—|-€O‘+5) ] }

S4. Estimation of 3

To see the identifiability of mixture binomial model, readers are referred
to Teicher (1961, p.248) or Teicher (1963, Proposition 4). Simply put, it is
identifiable provided that the proportion of families with size greater or equal to
three is not trivial. For estimation of 8 in the mixture binomial, there are many
packages for the simple setting in which a simple random sample of families of
same size is obtained; for example, see a review paper Haughton (1997). Here
we review a method of moment proposed by Blischke (1962) for the case where
family sizes are the same and greater or equal to three.e and greater or equal to

three. Define the jth sample factorial moment

Idl di—j+1
Z - ( J )

forj=1,---,n,
n( (n—j7+1)7 J

'\4\*—‘

=1

where n is the common family size. Because E(F}) = le (1-— 9)p%, by sub-
stituting F; for E(Fj), j = 1,2,3, the moment estimates of pg,p1 and @ are,
respectively,pg = A/2 — (A2 —4AF| +4F)2 /2 p1=A/2+ (A2 —4AFR +4F2) /2,
and 6 = (Fy—po)/(p1—po), where A = (F3—F1 Fy) /(Fa—F?). If A2—4AF|+4F, <
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0or (A2 —4AF +4F2)% < min(A,2— A), pp, p1 and € can be estimated by Fi, F}
and 0, respectively. Blischke (1962) also analyzed the asymptotic efficiency of
these estimates. This method can be generalized to the case in which family sizes

are various. To this end, we can replace jth sample factorial moment F; by

I . .

dilds = 1)+ (d: = j+ DI(n: = )
=y
=1

nznzfl) (z*.]‘i“l)

I
/> " I(ng > ), for j=1,2,3.
=1

Furthermore, for the design in which all affected families from a population of a
known size are obtained, we embed an iterative procedure into the above method
of moment as following. Starting with the initial estimates p(()o), pgo) and 60, we
estimate P(d; > 0) by Pi(o) =1-00(1 - pgo))”i — (1 =060)1 - p[()o))"i, for
i=1,2,---,I% Then replacing F},j = 1,2, 3, by

I I® d (d 1) 0) e
i \Ug — 0
i=1 =1 P
I 1
di(d; — 1)(d; —2) _(0)
- , S S
b3 ;ni(nil)(niQ)Pz I(n, _3)/12;[(7%_3),

respectively, leads to updated moment estimates p(()l), pgl) and ().
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