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Abstract: In this paper we consider the problem in causal inference of estimat-

ing the local complier average causal effect (CACE) parameter in the setting of

a randomized clinical trial with a binary outcome, cross-over noncompliance, and

unintentional missing data on the responses. We focus on the development of a mo-

ment estimator that relaxes the assumption of latent ignorability and incorporates

sensitivity parameters that represent the relationship between potential outcomes

and associated potential response indicators. If conclusions are insensitive over a

range of logically possible values of the sensitivity parameters, then the number of

interpretations of the data is reduced, and causal conclusions are more defensible.

We illustrate our methods using a randomized encouragement design study on the

effectiveness of an influenza vaccine.
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1. Introduction

Well-designed randomized clinical trials are a powerful tool for investigating
causal relationships and producing valid estimates of a causal effect of treatment.
But in trials involving human subjects there are oftentimes problems of noncom-
pliance and missing data which standard analyses either ignore, which can lead
to biased estimators, or account for in such a way that the estimand can no longer
be considered a causal effect. Rubin developed an approach to causal inference
using potential outcomes (Rubin (1974, 1978)) that has been referred to as the
Rubin Causal Model (Holland (1986)). This model provides a framework for
defining the parameters of interest and correctly attributing the data observed
between different treatment groups to causal effects of the treatments.

Method-of-moment estimators are useful in understanding where information
comes from within the observed data and what assumptions help to identify
the estimands of interest. Frangakis and Rubin (1999) developed a moment
estimator for the complier average causal effect (CACE) in a setting where there
was unintentional missing data and only the intervention group could receive
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the new treatment. Zhou and Li (2006) later extended these moment methods
to a setting of cross-over noncompliance (i.e., intervention and control subjects
could receive the new treatment) and missing data. This paper extends the
results of Zhou and Li (2006) by developing the asymptotic theory for their
moment estimator and examining its performance in finite samples, and under
deviations from model assumptions in the setting of a binary response, cross-over
noncompliance, and unintentional missing data on the responses. This paper also
focuses on the development of a moment estimator that relaxes the assumption
of latent ignorability and incorporates sensitivity parameters that represent the
relationship between potential outcomes and associated potential nonresponse
indicators. These parameters are assumed known, and are allowed to take on a
plausible range of values in order to assess the sensitivity of the conclusions to
varying assumptions regarding this relationship.

Sections 2-4 introduce the setting, notation, and assumptions. In Section 5
we give the results of Zhou and Li (2006) for a CACE estimator derived under
the assumption of latent ignorability, and we extend their results by deriving the
asymptotic distribution of their estimator. Section 6 provides simulation results
that examine the finite sample properties of the estimator under conditions that
follow the assumptions, or follow certain deviations from these assumptions. In
Section 7 we derive the CACE estimator and its asymptotic distribution when
the latent ignorability assumption is relaxed and sensitivity parameters are intro-
duced. In Section 8 we illustrate our methods using a randomized encouragement
design study on the effectiveness of an influenza vaccine.

2. Setting and Notation

The setting consists of a clinical trial with N subjects assigned to treatment
Z, where Z is an N -vector of treatment assignments with ith element Zi. In this
setting Zi = 1 if subject i is assigned the new treatment, and Zi = 0 if assigned
the control. Let Di be the treatment received under the observed treatment
assignment, where Di = 1 if subject i received the new treatment and Di = 0 if
subject i received the control. Then let D(Z) be the vector of potential treatment
receipts given the vector of treatment assignments Z with ith element Di(Z). Let
Yi be the binary outcome for subject i under the observed treatment assignment
and let Yi(Z) be the binary potential outcome given the vector for treatment
assigments Z.

Let Ri be the binary indicator for response under the assigned treatment,
equal to 1 if response Yi was observed for subject i and 0 otherwise. Then
let Ri(Z) be the binary indicator for response equal to 1 if response Yi(Z) was
observed for subject i and 0 otherwise, for a given vector of treatment assignments
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Table 1. Notation
Notation Specifics General Description

Zi 1 if i assigned treatment Treatment assignment indicator

0 if i assigned control

Di(Zi) 1 if i received treatment under assignment Zi Potential outcome formulation

0 if i received control under assignment Zi of treatment receipt

Di Treatment receipt indicator under

observed assignment

Ci n if Di(0) = 0 and Di(1) = 0 Compliance type principal stratum:

c if Di(0) = 0 and Di(1) = 1 n=never-taker; c=complier;

a if Di(0) = 1 and Di(1) = 1 a=always-taker; d=defier

d if Di(0) = 1 and Di(1) = 0

Yi(Zi) Binary outcome of interest under Potential outcome formulation

assignment Zi of the outcome of interest

Yi Binary outcome of interest under

observed assignment

Ri(Zi) 1 if Yi(Zi) would be observed Response indicator for Yi(Zi)

0 if Yi(Zi) would not be observed

Ri Response indicator for Yi under

observed assignment

ηzt E[Yi(z)|Zi = z, Ci = t]

ψtzd P (Ci = t|Zi = z, Di = d)

ωt P (Ci = t)

φzty E[Ri(z)|Zi = z, Ci = t, Yi(z) = y]

fzt φzt0/φzt1

πzd P (Ri = 1, Zi = z, Di = d)

ξzd P (Zi = z, Di = d)

vzd P (Yi = 1, Ri = 1, Zi = z, Di = d)

Z. Then a random subset of the N subjects are assigned to treatment arm Z.
Table 1 provides a summary of the notation used throughout the paper.

3. Definition of Causal Estimands

We make the stable unit treatment value assumption (SUTVA) which allows
us to write the potential outcomes as functions of Zi rather than of the entire
vector Z. Formally the SUTVA states that Di(Z) equals Di(Z

′
), Yi(Z) equals

Yi(Z
′
), and Ri(Z) equals Ri(Z

′
) if Zi = Z

′
i which means that we can write

Di(Z), Yi(Z), and Ri(Z) as Di(Zi), Yi(Zi), and Ri(Zi), respectively. Under the
SUTVA we can define the intention-to-treat (ITT) causal effect of Z on D as
E[Di(1) − Di(0)].

We assume that compliance is all-or-none, meaning that any switching of
treatments was done soon after randomization so that the subject is assumed
to have completely taken the new treatment or the control. We can stratify the
population into four compliance principal strata (Frangakis and Rubin (1999))
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as determined by the value of the vector [Di(0), Di(1)], where

Ci =


n (never-taker) if Di(0) = Di(1) = 0
a (always-taker) if Di(0) = Di(1) = 1
c (complier) if Di(0) = 0 and Di(1) = 1
d (defier) if Di(0) = 1 and Di(1) = 0.

Note that unlike membership to the observed compliance strata, membership
to these principal compliance strata (referred to as compiance types for the re-
mainder of the paper) is unaffected by assigned treatment and therefore can be
considered as a baseline covariate (Frangakis and Rubin (2002)). For our setting
we make the assumption of monotonicity (Imbens and Angrist (1994)), where
Di(1) ≥ Di(0) for all subjects (i.e., there are no defiers) where compliance type
is observable when Zi 6= Di. Here subjects with observed Zi = Di = 0 are a
mixture of compliers and never-takers, and subjects with observed Zi = Di = 1
are a mixture of compliers and always-takers.

Let ψtzd = P [Ci = t|Zi = z,Di = d] be the probability of compliance
type t given the assigned treatment z and received treatment d, and let ηzt =
E[Yi(z)|Zi = z, Ci = t] be the conditional expectation of the outcome given
treatment assignment z and compliance type t. Then, under the monotonicity
assumption, we define the ITT effect as ITT =

∑
t∈{n,a,c} ωtITTt where ωt =

P (Ci = t) and ITTt = E[Yi(1) − Yi(0)|C = t] is the average ITT effect of Z on
Y for the subpopulation of compliance type t. Noncompliers (never-takers and
always-takers), by definition, do not carry information about the comparison
between treatments. Thus we focus on the the subpopulation of compliers and
define the complier average causal effect (CACE) to be ITTc, or

CACE = E[Yi(1) − Yi(0)|Ci = c] = η1c − η0c,

which is the treatment effect among the subpopulation of compliers and the focus
of the remainder of the paper. Table 1 provides a summary of the notation used
throughout the paper.

4. Additional Assumptions

In addition to the SUTVA and monotonicity, there are two assumptions that
are sometimes plausible and that help facilitate inference: the compound exclu-
sion restriction for never-takers and always-takers (Frangakis and Rubin (1999))
which generalizes the standard exclusion restriction (Angrist, Imbens and Ru-
bin (1996) and Imbens and Rubin (1997)); and latent ignorability (Frangakis
and Rubin (1999)). The compound exclusion restriction states that among the
subpopulation of never-takers or always-takers, treatment assignment does not
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affect potential outcomes or missing data distributions, or P [Yi(1), Ri(1)|Ci =
n] = P [Yi(0), Ri(0)|Ci = n] and P [Yi(1), Ri(1)|Ci = a] = P [Yi(0), Ri(0)|Ci = a].
Next we invoke a latent ignorability assumption which states that, within each
latent compliance type, potential outcomes and associated potential response in-
dicators are independent, or P [Ri(1), Ri(0)|Yi(1), Yi(0), Ci] = P [Ri(1), Ri(0)|Ci].
We make the assumption of latent ignorability here because it is more plausible
than the assumption of standard ignorability (Rubin (1978) and Little and Rubin
(1987)).

5. Asymptotic Theory of the CACE Moment Estimator

Under the SUTVA, monotonicity assumption, latent ignorability, and the
compound exclusion restriction for never-takers and always-takers, the CACE is
identifiable and Zhou and Li (2006) derived the following moment estimators

η̂1c =
∑

YiRiZiDi −
∑

YiRi(1 − Zi)Di∑
RiZiDi −

∑
Ri(1 − Zi)Di

;

η̂0c =
∑

YiRi(1 − Zi)(1 − Di) −
∑

YiRiZi(1 − Di)∑
Ri(1 − Zi)(1 − Di) −

∑
RiZi(1 − Di)

.

Then the estimator for the CACE computed by Zhou and Li (2006) is ĈACE
LI

=
η̂1c − η̂0c. Note that in the first summation for η̂1c, contributions come from
subjects with Zi = Di = 1, which consist of a mixture of compliers and always-
takers. Since we are interested in the average among compliers, the averages for
the always-takers (in the second term) are subtracted. Note that Angrist, Imbens
and Rubin (1996) develop an equivalent estimator for the case where there are no
missing outcomes (i.e., Ri = 1 for all subjects) under the assumptions of SUTVA,
monotonicity, and an exclusion restriction on outcomes only. Let πzd = P (Ri =
1, Zi = z,Di = d) denote the joint probability of observing the response with
treatment assignment z and treatment receipt d; and let vzd = P (Yi = 1, Ri =
1, Zi = z,Di = d) denote the joint distribution of observing outcome Y = 1 with
treatment assignment z and treatment reciept d. The following theorem, proved
in the online appendix (http://www.stat.sinica.edu.tw/statistica) using
the delta method, forms a basis for inference about the estimator.

Theorem 5.1. Under the assumptions of Section 3,

√
n(ĈACE

LI
− CACE) →d N(0, (V0 + V1)

1
2 )

as n → ∞, where

V0 =
A2(3π10 − π00) + A(π00 − π10 − 4v10) + 2v10

(π00 − π10)2
,

http://www.stat.sinica.edu.tw/statistica
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V1 =
B2(3π01 − π11) + B(π11 − π01 − 4v01) + 2v01

(π11 − π01)2
,

for A = (v00 − v10)/(π00 − π10) and B = (v11 − v01)/(π11 − π01).

Then for N subjects in the study, by defining (1/N)
∑n

i=1 Ri1[Zi=z,Di=d] and
(1/N)

∑n
i=1 YiRi1[Zi=z,Di=d] to be the usual sample estimates for πzd and vzd,

respectively, and letting V̂0 and V̂1 be the corresponding estimators for V0 and
V1, respectively,

√
n(ĈACE

LI
− CACE)(V̂0 + V̂1)−

1
2 →d N(0, 1)

6. Simulation Study

In this section we examine some finite sample properties of this estimator,
first under hypothetical conditions that follow the assumptions of latent ignora-
bility and the compound exclusion restriction, and then under certain deviations
from latent ignorability.

6.1. Numerical results under latent ignorability and the compound
exclusion restriction

The N = 300 subjects were randomized to the control or new treatment arm
with P (Zi = 1) = 0.5 where Ci was generated independently as a multinomial
random variable. Subject outcomes Yi were generated from a binomial distribu-
tion with a mean conditional upon treatment assignment Zi and compliance type
Ci. We fixed average outcomes E[Yi(1)|Zi = 1, Ci = a) = E[Yi(1)|Zi = 1, Ci =
n] = 0.5 for simplicity, which implies (by the compound exclusion restriction)
that E[Yi(0)|Zi = 0, Ci = a) and E[Yi(0)|Zi = 0, Ci = n] equal 0.5 as well. We
also fixed E[Yi(1)|Zi = 1, Ci = c] to be 0.5.

We varied the following parameters: proportions of compliance types, true
CACE, and response probabilities for subjects. For the response probabilites,
we either let the response probability for all compliance types equal 0.5 which
gave us a missing at random (MAR) missing data mechanism, or we let the
response probabilities depend on latent compliance type (where E(Ri(z)|Zi =
z, Ci = c) = E(Ri(z)|Zi = z, Ci = a) = 0.5 but E(Ri(z)|Zi = z, Ci = n) =
0.8 for z ∈ (0, 1)), which gave us a not missing at random (NMAR) missing
data mechanism since response probabilities depend on compliance type which
is not observed for all subjects. Table 3 reports the coverage rates of nominal
95 percent confidence intervals and the bias for ĈACE.LI Note that when the

response mechanism was MAR, ĈACE
LI

performed well, giving good coverage
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Table 2. Influenza Vaccine Data

R = 1 ,Z = 0 Y=0 Y=1 Total
D=0 573 49 622
D=1 143 16 159
Total 716 65 781

R = 1 ,Z = 1 Y=0 Y=1 Total
D=0 499 47 546
D=1 256 20 276
Total 755 67 822

R=0, Y=· D=0 D=1 Total
Z=0 492 17 509
Z=1 497 9 506
Total 989 26 1015

Table 3. Simulation results: N=300 with 5,000 replications of the data.

compliance Types MAR NMAR
CACE (n, c, a) Coverage Bias Coverage Bias
0 (0.15,0.7,0.15) 94.8 0.002 95.3 0.000

(0.2,0.6,0.2) 95.6 0.002 95.3 -0.001
(0.25,0.5,0.25) 96.5 0.003 95.4 0.003

0.2 (0.15,0.7,0.15) 94.9 0.002 95.3 -0.001
(0.2,0.6,0.2) 95.5 0.005 95.2 0.003
(0.25,0.5,0.25) 96.3 0.006 95.9 0.000

0.4 (0.15,0.7,0.15) 95.4 0.002 95.3 0.001
(0.2,0.6,0.2) 95.8 0.007 95.6 0.003
(0.25,0.5,0.25) 96.6 0.012 95.6 0.006

and relatively little bias (Table 3). When the response mechanism was NMAR,
the estimator continued to perform well. In both scenarios, true compliance type
probabilities and true CACE values were not critically important in terms of the
behavior of the estimator.

6.2. Numerical results with deviations from latent ignorability

Next we tested the sensitivity of our estimator to potential outcomes that
are no longer independent of potential response indicators for subjects in the
control arm. Let f0t = P (Ri(0) = 1|Zi = 0, Ci = t, Yi = 0)/P (Ri(0) = 1|Zi =
0, Ci = t, Yi = 1), where f0t represents the amount of dependence between po-
tential outcomes and associated response indicators for subjects in the control
arm. Note that f0t ≡ 1 corresponds to having latent ignorability, and distance
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from f0t to 1 corresponds to the degree of dependence between outcomes and
response indicators. We fixed the true CACE to zero and the response proba-
bilities P (Ri(z) = 1|Zi = z, Ci = n) = P (Ri(z) = 1|Zi = z, Ci = a) = 0.5 and
P (Ri(z) = 1|Zi = z, Ci = c) = 0.7 for z ∈ (0, 1). We then varied the compliance
type proportions and allowed f0t to vary between 1/2 and 2 for all compliance
types in the control arm (where f0n = f0c = f0a). Table 4 reports the coverage

rates of nominal 95 percent confidence intervals and the bias for ĈACE
LI

. When
f0t was less than one, the estimator underestimated the true CACE, whereas for
values greater than one, the estimator overestimated the true CACE. The fur-
ther f0t from one (meaning the more dependence between outcome and response),
the worse the coverage probabilities. Higher proportions of compliers (relative to
always-takers and never-takers) improved the bias somewhat but slightly wors-
ened the coverage probabilities. Overall we see how sensitive our results can be
when latent ignorability does not hold.

7. Relaxing the Latent Ignorability Assumption

7.1. Defining the causal parameters

Once again, for binary outcome Y , we let ψtzd = P [Ci = t|Zi = z,Di = d]
and ηzt = E[Yi(z)|Zi = z, Ci = t] as in Section 3, where we focus on the CACE
(1). We invoke the SUTVA, monotonicity assumption, and the compound ex-
clusion restriction for never-takers and always-takers. Letting φzty = P (Ri(z) =
1|Zi = z, Ci = t, Yi(z) = y), we relax the assumption of latent ignorability and
incorporate sensitivity parameters that represent the relationship between the
potential outcomes and associated response indicators, where the sensitivity pa-
rameters fzt are defined as

fzt =
φzt0

φzt1
, (7.1)

and represent the ratio of response probabilities between subjects with outcome
Y = 0 versus those with outcome Y = 1 (for a given assigned treatment z and
compliance type t). These parameters are assumed known and are allowed to take
on a plausible range of values in order to assess the sensitivity of the conclusions
of a study to various assumptions regarding the relationship between outcomes
and response indicators. If conclusions are insensitive over a range of logically
possible values for fzt, then the number of interpretations of the data is reduced,
and causal conclusions are more defensible.

Under monotonicity, there are no defiers, and under the compound exclusion
restrictions, η1a = η0a for always-takers and η1n = η0n for never-takers. Letting
η1a = η0a ≡ ηa and η1n = η0n ≡ ηn, note that ηzt can be specified in terms of
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η0c, η1c, ηa, and ηn. Next we note that ψa10 = ψa00 = 0 since one cannot be an
always-taker if one receives the control, and ψn11 = ψn01 = 0 since one cannot
be a never-taker if one receives the new treatment. Similarly ψc01 = ψc10 =
0 since, for compliers, Zi = Di. Since only always-takers have Di = 1 with
Zi = 0 and only never-takers have Di = 0 then Zi = 1, then ψa01 = ψn10 = 1.
Also note that ψc00 + ψn00 = ψc11 + ψa11 = 1. Then, letting ψa ≡ ψa11 and
ψn ≡ ψn00, note that ψtzd can be specified in terms of ψa and ψn. And since
the compound exclusion restriction implies that response probabilities for always-
takers (or never-takers) do not depend on treatment assignment, φ0n1(ηn+f0n(1−
ηn)) = φ1n1(ηn +f1n(1−ηn)) and φ0a1(ηa +f1a(1−ηa)) = φ1a1(ηa +f0a(1−ηa)),
so that φzty can be specified in terms of φ0n1, φ1a1, φ1c1, and φ0c1. Let θ =
(ψa, ψn, ηa, ηn, φ1a1, φ0n1, φ0c1, φ1c1, η0c, η1c).

7.2. Estimation

Let ξzd = P (Zi = z,Di = d), πzd = P (Ri = 1, Zi = z,Di = d), and
vzd = P (Yi = 1, Ri = 1, Zi = z,Di = d). Then, with N subjects in the
study, let ξ̂zd = (1/N)

∑n
i=1 1[Zi=z,Di=d], π̂zd = (1/N)

∑n
i=1 Ri1[Zi=z,Di=d], and

v̂zd = (1/N)
∑n

i=1 YiRi1[Zi=z,Di=d] be unbiased estimators for ξzd, πzd, and vzd,
respectively. The following result, proved in the online appendix (http://www.
stat.sinica.edu.tw/statistica), defines the moment estimators when latent
ignorability is relaxed.

Result 7.1. Under the assumptions of Section 3, the estimators for the param-
eters in the always-taker and never-taker subpopulations are:

ψ̂a =
ξ̂01

ξ̂11

, ψ̂n =
ξ̂10

ξ̂00

,

η̂a =
f0av̂01

π̂01 + (f0a − 1)v̂01
, η̂n =

f1nv̂10

π̂10 + (f1n − 1)v̂10
,

φ̂0a1 =
v̂01

ξ̂01η̂a

, φ̂1n1 =
v̂10

ξ̂10η̂n

,

φ̂1a1 =
φ̂0a1(η̂a + f0a(1 − η̂a))

η̂a + f1a(1 − η̂a)
, φ̂0n1 =

φ̂1n1(η̂n + f1n(1 − η̂n))
η̂n + f0n(1 − η̂n)

.

The estimators for the parameters in the complier subpopulation are:

φ̂0c1 =
φ̂0n1ψ̂nξ̂00(f0cη̂n + f0n(1 − η̂n)) + (1 − f0c)v̂00 − π̂00

f0cξ̂00(ψ̂n − 1)
,

φ̂1c1 =
φ̂1a1ψ̂aξ̂11(f1aη̂a + f1a(1 − η̂a)) + (1 − f1c)v̂11 − π̂11

f1cξ̂11(ψ̂a − 1)
,

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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η̂1c =
f1c(f1aâ01 + f0aâ11)

(f1c − 1)(f1aâ01 + f0aâ11) + f1ab̂01 + f0aĉ01

,

η̂0c =
f0c(f1nâ10 + f0nâ00)

(f0c − 1)(f1nâ10 + f0nâ00) + f1nb̂10 + f0nĉ10

,

âzd = v̂zd(v̂(1−z)d − π̂zd),

b̂zd = v̂zd(π̂(1−z)d − π̂zd),
ĉzd = (π̂zd − v̂zd)(π̂(1−z)d − π̂zd).

The estimator for the CACE derived without the LI assumption, but under known

(fixed) sensitivity parameters, is ĈACE
LI

= η̂1c − η̂0c.

(The proof is in the online appendix: http://www.stat.sinica.edu.tw/
statistica)

Note that the parameter estimates from the never-taker and always-taker
subpopulations generally involve summations over subjects with observed Zi 6=
Di; the parameter estimate from the complier subpopulation, η̂1c, incorporates
a mixture of summations across subjects with observed Zi = Di = 1 (which
consist of a mixture of compliers and always-takers) and subjects with Zi = 0
and Di = 1 (the observed always-takers); similarly η̂0c incorporates a mixture
of summations across subjects with observed Zi = Di = 0 (which consist of a
mixture of compliers and never-takers) and subjects with observed Zi = 1 and
Di = 0 (the observed never-takers). Note that if f1a = f0a (or f1n = f0n),
then neither contribute to the estimator ĈACE.LI . Since moment estimators
are non-parametric, they can unfortunately be outside the (-1,1) range of the
estimand of interest. The following theorem, proved in the online appendix
(http://www.stat.sinica.edu.tw/statistica) using the delta method, forms

a basis for inference about ĈACE
LI

.

Theorem 7.1 Under the assumptions of Section 3
√

n(ĈACE
LI

− CACE) →d N(0, δ
′
V0δ + β

′
V1β)

as n → ∞, for

V0 =


π00(1 − π00) −π00π10 (1 − π00)v00 −π00v10

−π10π00 π10(1 − π10) −π10v00 (1 − π10)v10

v00(1 − π00) −v00π10 v00(1 − v00) −v00v10

−v10π00 v10(1 − π10) −v10v00 v10(1 − v10)

 ,

V1 =


π11(1 − π11) −π11π01 (1 − π11)v11 −π11v01

−π01π11 π01(1 − π01) −π01v11 (1 − π01)v01

v11(1 − π11) −v11π01 v11(1 − v11) −v11v01

−v01π11 v01(1 − π01) −v01v11 v01(1 − v01)

 .

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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In this result, δ = (δ1, . . . , δ4)
′
is defined as follows:

δ1 = D−2
0 f0c[f1nv10(v00 − π10 + f0nv00(π10 − v10)](f0n(v10 − π10) − f1nv10),

δ2 = D−2
0 f0c[f1nv10(v00 − π10) + f0nv00(π10 − v10)](f0n(v10 − π10) − f1nv10),

+D−2
0 f0cf1nv2

10(f1n − f0n)(π00 − π10),

δ3 = D−2
0 f0c[f0n(π10 − v10) + f1nv10]2(π00 − π10),

δ4 = D−2
0 f0cf1nf0nπ2

10(π10 − π00),

for D0 = (f0c − 1)[f1nv10(v00 − π10) + f0nv00(π10 − v10)] + (π00 − π10)[f1nv10 +
f0n(π10 − v10)]; β = (β1, . . . , β4)

′
is defined as follows:

β1 = D−2
1 f1c[f1av01(v11 − π01 + f0av11(π01 − v01)](f0a(v01 − π01) − f1av01),

β2 = D−2
1 f1c[f1av01(v11 − π01) + f0av11(π01 − v01)](f0a(v01

−π01) − f1av01) + D−2
1 f1cf1av

2
01(f1a − f0a)(π11 − π01),

β3 = D−2
1 f1c[f0a(π01 − v01) + f1av01]2(π11 − π01),

β4 = D−2
1 f1cf1af0aπ

2
01(π01 − π11)

for D1 = (f1c − 1)[f1av01(v11 − π01) + f0av11(π01 − v01)] + (π11 − π01)[f1av01 +
f0a(π01 − v01)].

7.3. Simulation study results

In Table 4, data was generated under the model described in section 6 and

therefore ĈACE
LI

was estimated under the assumed known sensitivity parame-

ters. As expected, ĈACE
LI

performed well in this scenario with decent coverage
and relatively little bias.

8. Influenza Vaccination Study

Among patients who are older or have a high risk of pulmonary disease,
observational studies and experimental evidence suggest that those vaccinated
with an influenza vaccine have better outcomes (McDonald, Hui and Tierney
(1992)). A controlled clinical trial to confirm these results has never been per-
formed because of the ethical problems that arise from withholding the vaccine
from patients in the control arm. A solution to this problem involves performing
a controlled clinical trial where the intervention arm increases the use of the in-
fluenza vaccine without changing its use in the control arm. McDonald, Hui and
Tierney (1992) used this method to study the effects of computer-generated re-
minders of the influenza vaccine on flu-related hospitalizations in patients having
a high risk for pulmonary disease. For doctors in the intervention arm, computer
reminders were sent out when a patient with a scheduled visit was eligible for a
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Table 4. Simulation Results: N=300 with 5,000 replications of the

data (CACE = 0; ĈACE
LI

=estimator assuming latent ignorability;

ĈACE
LI

=estimator assuming no latent ignorability)

compliance Types ĈACE
LI

ĈACE
LI

f0t (n, c, a) Coverage Bias Coverage Bias
1
2 (0.15,0.7,0.15) 35.4 -0.220 95.8 -0.008

(0.2,0.6,0.2) 38.4 -0.249 95.6 -0.012
(0.25,0.5,0.25) 39.7 -0.292 95.6 -0.012

3
4 (0.15,0.7,0.15) 82.7 -0.093 95.3 -0.001

(0.2,0.6,0.2) 84.8 -0.105 95.5 -0.004
(0.25,0.5,0.25) 85.8 -0.125 95.7 -0.005

1 (0.15,0.7,0.15) 94.8 -0.001 95.2 -0.001
(0.2,0.6,0.2) 95.4 -0.002 95.5 -0.001
(0.25,0.5,0.25) 95.9 -0.001 95.9 -0.004

4
3 (0.15,0.7,0.15) 83.4 0.095 94.9 0.004

(0.2,0.6,0.2) 84.0 0.109 95.5 0.007
(0.25,0.5,0.25) 83.9 0.127 95.7 0.002

2 (0.15,0.7,0.15) 35.6 0.218 95.3 0.009
(0.2,0.6,0.2) 36.4 0.250 95.0 0.009
(0.25,0.5,0.25) 40.0 0.292 95.8 0.016

flu shot. Since the study did not maintain records on the clustering of patients
by doctor, we ignore this for the purposes of illustrating our methods. In this
analysis we want to estimate the effect of the flu vaccine on flu-related hospital-
izations (where Yi = 1 if subject i had a flu-related hospitalization and Yi = 0
otherwise). There were missing outcomes, but no information was given on how
the data came to be missing. The data are provided in Table 2.

Under latent ignorability, (where the sensitivity parameters equal 1 for all
compliance types and treatment groups), the estimate of the CACE is 0.01 with
95% confidence interval (-0.25, 0.26), indicating that there was no significant de-
crease in hospitalizations as a result of receiving the flu vaccine. We illustrate the
application of the proposed methods by presenting a sensitivity analysis where
the CACE is estimated under differing assumptions regarding the dependence
between outcomes and response indicators. Since no information was given on
how the data came to be missing, we considered four scenarios for testing the
sensitivity of our estimator to deviations in latent ignorability across assigned
treatment group and compliance type. Results from the following scenarios are
found in Figure 1 (a-d) where point estimates and 95% confidence intervals for
the CACE are displayed, assuming specified values of the sensitivity parameters.
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Figure 1. Sensitivity analysis for the influenza vaccination study (point
estimates and 95% confidence intervals for the CACE are displayed): (a)
Scenario I: no LI for control compliers; (b) Scenario II: no LI for control
never-takers; (c) Scenario III: no LI for control always-takers; (d) Scenario
IV: no LI for all control subjects.

Note that, although we use 2-dimensional plots to illustrate the sensitivity anal-
ysis, 3-dimensional plots would allow the user to vary two sensitivity parameters
simultaneously.

8.1. Scenario I

To see how sensitive the estimator is to deviations in latent ignorability
among compliers in the control arm, we let f0n = f1n and f0a = f1a, fixed
f1c = 1, and allowed f0c to vary between 1/2 and 2. Results are displayed in
Figure 1a. Note that when the sensitivity parameter equals 1 for compliers in
the control arm, latent ignorability is assumed. The estimate of the CACE did
not change much as the sensitivity parameters for control compliers were varied.

8.2. Scenario II

To see how sensitive the estimator is to deviations in latent ignorability
among never-takers in the control arm, we let f0c = f1c = f0a = f1a = f1n = 1,
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and allowed f0n to vary between 1/2 and 2. Results are displayed in Figure
1b. The estimate of the CACE changed as the sensitivity parameters were var-
ied, although there remained no significant decrease in hospitalizations as the
confidence intervals all contain zero.

8.3. Scenario III

To see how sensitive the estimator is to deviations in latent ignorability
among always-takers in the control arm, we let f0c = f1c = f0n = f1n = f1a = 1,
and allowed f0a to vary between 1/2 and 2. Results are displayed in Figure 1c.
The estimate of the CACE did not change much as the sensitivity parameters
were varied.

8.4. Scenario IV

To see how sensitive the estimator is to deviations in latent ignorability
among all subjects in the control arm, we fixed the sensitivity parameters to 1
for those in the treatment arm (f1n = f1c = f1a ≡ 1) and varied the sensitivity
parameters between 1/2 and 2 for those in the control arm (1/2 < f0n = f0c =
f0a < 2). Results are displayed in Figure 1d. For patients in the control arm,
when the probability of observing an outcome given a flu-related hospitalization
differed from the probability of observing the outcome given no flu-related hos-
pitalization (i.e., f0n = f0c = f0a 6= 1), the estimate of the CACE varied consid-
erably, although standard errors increased as the dependence increased between
the outcome and reponse indicators. In fact, it was only when the probability
of observing an outcome given a flu-related hospitalization was two times the
probability of observing the outcome given no flu-related hospitalization, that
the interval estimate of the CACE excluded zero: -0.56 (95% CI: -0.92 to -0.20).
Thus we find that the CACE point estimate is somewhat sensitive to reasonable
deviations in latent ignorability across treatment group, although the CACE was
not significantly different from zero.

8.5. Summarizing results

Another way in which a sensitivity analysis can be summarized is a 95%
sensitivity interval (Rosenbaum (1999)) defined here to be the union of all 95%
confidence intervals for the CACE for varying values of fzt that we are confident
contain the true fzt. It has a similar property to the confidence interval in
that, if the assumption about the range in which the sensitivity parameter lies
is correct, then it will contain the true parameter of interest at least 95% of the
time (Rosenbaum (1999)). In the flu vaccine example, there is no information
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on how the data came to be missing, but typically this information could help
determine an accurate range for the sensitivity parameters.

9. Discussion

There were some limitations in applying these methods to the flu vaccination
study. One may question the validity of the compound exclusion restriction used
to identify the causal parameter of interest, particularly for the always-takers.
While it may make sense to assume that treatment assignment had no direct
effect on outcome (given treatment received) for never-takers, it may not make
sense to assume that treatment assignment had no direct effect on outcome for
always-takers. Never-takers may be the healthier patients since their doctors
might not encourage the vaccination under either treatment assignment. For
these patients, the assignment to treatment should not lead doctors to take other
measures that could directly affect outcome. On the other hand, always-takers
may be the sicker patients because their doctor might encourage them to get the
flu vaccination regardless of assigned treatment. For these patients, the added
impact of being assigned to the encouragement arm may lead the doctor to
encourage other precautionary measures beyond the flu vaccination, which could
directly affect the patient’s outcome. The setting or application will determine
which values of the sensitivity parameters are considered plausible. In the case
of the flu vaccine study, no information was given on how the data came to be
missing, so we used a wide range of values for the sensitivity parameters.

Future research topics could include methods that incorporate baseline co-
variates which are often collected in a randomized clinical trial, referencing work
by Levy, O’Malley and Normand (2004), as well as methods that incorporate
clustering effects commonly found in encouragement design studies.
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