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Abstract: We consider the problem of finding an optimal design under a Poisson

regression model with a log link, any number of independent variables, and an

additive linear predictor. Local D-optimality of a class of designs is established

through use of a canonical form of the problem and a general equivalence theorem.

The results are applied in conjunction with clustering techniques to obtain a fast

method of finding designs that are robust to wide ranges of model parameter values.

The methods are illustrated through examples.
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1. Introduction and Notation

We consider experiments in which the ith observation has a Poisson distri-
bution with rate λi dependent on p independent variables through the log-linear
model

ln(λi) = ηi = f(xi)Tβ = β0 +
p∑

j=1

βjxji , i = 1, . . . , n , (1.1)

where xi = (x1i, . . . , xpi)T, f(xi) = (1, xT
i )T, β0, . . . , βp are unknown constants,

and βj 6= 0 for j > 0 (see McCullagh and Nelder (1989, Chap. 6)). Our
aim is to find a design for an experiment that enables efficient estimation of
β = (β0, . . . , βp)T in the sense of minimizing the volume of the 100(1 − α)%
confidence ellipsoid for β, that is, a D-optimal design. A complication is that,
in common with all non-linear models, the optimal design depends on the un-
known values of the model parameters. Locally optimal designs can be found
by assuming particular values for the parameters that can be updated in a se-
quence of experiments (see Atkinson, Donev and Tobias (2007, Chap. 17)). Al-
ternative ways of overcoming parameter dependence are through Bayesian design
(Chaloner and Larntz (1989) and Firth and Hinde (1997)), maximin criteria (Sit-
ter (1992) and Biedermann, Dette and Pepelyshev (2006)), and compromise or
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parameter-robust design (Woods, Lewis, Eccleston and Russell (2006) and Dror
and Steinberg (2006)).

Little guidance is available on how to design a multivariable experiment for
Poisson regression. For single variable toxicology experiments, Minkin (1993)
found locally optimal designs for estimation of the slope parameter in terms of
an “effective dose”, and compared the performance of the optimal designs with
designs having different numbers of equally-spaced support points. For models
with one or two variables, Wang, Myers, Smith and Ye (2006) investigated the
dependence of locally D-optimal designs on functions of the parameter values,
and Wang, Smith and Ye (2006) developed sequential designs. For a single vari-
able, Ford, Torsney and Wu (1992) used a transformation of the design space
to a canonical form, together with geometric arguments, to find locally optimal
designs for a class of nonlinear models including Poisson regression.

2. Locally D-Optimal Designs

An approximate design ξ ∈ Ξ in design space X with finite support is repre-
sented as

ξ =
{

x1 x2 . . . xs

ν1 ν2 . . . νs

}
,

where xi ∈ X , X is a compact subset of Rp, 0 < νi ≤ 1 and
∑s

i=1 νi = 1. Under
(1.1), the information matrix for ξ is

M(ξ, β) =
s∑

i=1

νiw(xi)f(xi)f(xi)T

= XTWX ,

where w(xi)= λi = exp(ηi), X = (f(x1), . . . , f(xs))T and W = diag {νiw(xi)}s
i=1.

We want to find a D-optimal design ξ∗ satisfying

|M(ξ∗, β)| = max
ξ∈Ξ

|M(ξ, β)| .

The efficiency of a design ξ is then measured relative to ξ∗ as{
|M(ξ, β)|
|M(ξ∗, β)|

} 1
p+1

. (2.1)

In order to suppress the dependence of this design problem on β, we follow
Ford et al. (1992) and apply a linear transformation to f(xi) to obtain f(zi) =
Bf(xi) , i = 1, . . . , s , where zi = (z1i, . . . , zpi)T ∈ Z,

B =
(

B11 0
0 B22

)
, B11 =

(
1 0
β0 β1

)
,
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B22 = diag {β2, . . . , βp} and βj 6= 0 (j = 1, . . . , p). It follows from (1.1) that
ηi =

(
B−1f(zi)

)T
β =

∑p
j=1 zji. Let ψ ∈ Ψ be a design measure over the

induced design space Z. Then

ψ =
{

z1 z2 . . . zs

ν1 ν2 . . . νs

}
.

As the D-optimal design criterion is invariant to a linear transformation of the
design space (see, for example, Pukelsheim (1993, Chap. 6)), it is sufficient to
find a locally optimal design over Ψ; see also Ford et al. (1992).

We consider a design region X of rectangular shape. In this common situ-
ation, the above transformation maps X to another rectangular region. Sitter
and Torsney (1995) gave an alternative transformation, which need not be shape
preserving, and described induced design regions of various shapes.

Let ej be the jth column vector of the p × p identity matrix, j = 1, . . . , p.
Lemma. With ηi =

(
B−1f(zi)

)T
β =

∑p
j=1 zji, where aj ≤ zji ≤ bj, for aj, bj

constants, and bj − aj ≥ 2 (j = 1, . . . , p), a D-optimal design for the canonical
first-order Poisson regression model is given by

ψ∗ =

{
z∗1 z∗2 · · · z∗p+1
1

p+1
1

p+1 · · · 1
p+1

}
,

where z∗j = b − 2ej , j = 1, . . . , p, and z∗p+1 = b for b = (b1, . . . , bp)T.

The proof is outlined in the Appendix. Clearly, the lemma can be extended to
regions Z where some or all of the components are unbounded from below.

Example 1. Wang, Myers, Smith and Ye (2006) reported D-optimal designs
for (1.1) with p = 1 and p = 2, and support points defined in terms of qi = λi/λc,
where λc = exp(β0) and λi = exp(ηi). In their context of toxicity studies,
where xji ≥ 0 and βj < 0 (i = 1, . . . , s; j = 1, 2), the canonical variables satisfy
z1i ≤ β0, z2i ≤ 0. The D-optimal support points are {z1 : β0−2, β0} for p = 1,
and {(z1, z2) : (β0−2, 0), (β0,−2), (β0, 0)} for p = 2. At these support points,
q1 = exp(−2), q2 = 1 for p = 1, and q1 = q2 = exp(−2) and q3 = 1 for p = 2,
matching the results from Wang, Myers, Smith and Ye (2006).

An optimal design in X space for finitely bounded variables follows directly
from the Lemma by application of the inverse transformation to obtain f(xi) =
B−1f(zi), i = 1, . . . , p + 1.

Theorem. A D-optimal design for Poisson regression, with ηi = f(xi)Tβ, lj ≤
xji ≤ uj and |βj(uj − lj)| ≥ 2 (j = 1, . . . , p), has the p + 1 equally weighted
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support points:

x∗
j = c −

( 2
βj

)
ej , j = 1, . . . , p,

x∗
p+1 = c,

for c = (c1, . . . , cp)T, where cj = uj if βj > 0 and cj = lj if βj < 0.

Remark 1. The D-optimal design does not depend on the value of β0 and is
invariant to permutation of the variable labels.

Remark 2. In practice, the requirement |βj(uj−lj)| ≥ 2 is not overly restrictive.
For example, the use of the standardized design space [−1, 1]p requires |βj | ≥ 1,
j = 1, . . . , p.

Example 2. For p = 2, suppose that β = (1,−2, 3)T, and x1i ∈ [0, 10], x2i ∈
[0, 12] (i = 1, . . . , s). Then the design with equally weighted support points
{(1, 12), (0, 34/3), (0, 12)} is D-optimal.

Remark 3. When bj − aj < 2 for some j = 1, . . . , p, it can be shown that
the D-optimal saturated design for the canonical model has equally weighted
support points zi = b + max(−2, ai − bi)ei (i = 1, . . . , p), and zp+1 = b. Ford
et al. (1992) proved that this design is D-optimal for p = 1 over Ψ. In general,
the D-optimal design over Ψ is not saturated when bj − aj < 2 for some j. For
example, if β = (−0.91, 0.04,−0.69)T and xji ∈ [−1, 1] (i = 1, . . . , s; j = 1, 2),
then z1 ∈ [−0.95,−0.87], z2 ∈ [−0.69, 0.69], and the D-optimal design in X
has support points (−1,−1), (−1, 1), (1,−1), and (1, 1), with respective weights
ν1 = 0.311, ν2 = 0.163, ν3 = 0.313, and ν4 = 0.213.

3. Robust Design

Often experimenters have little information about parameter values prior to
observing the data. Woods et al. (2006) found compromise designs for GLMs
which are robust to wide ranges of parameter values. Dror and Steinberg (2006)
approximated these methods by using a K-means clustering algorithm (see, for
example, Hastie, Tibshirani and Friedman (2001, Chap. 14)). They applied the
algorithm to the design points of a large number of locally optimal designs found
by computer search for ranges of parameter values. The cluster means were
then used as equally weighted support points of a cluster design. The use of the
theorem in Section 2 allows the efficient computation of a cluster design, ξc, by
removing the need to perform computer searches, as follows.

Algorithm

1. Define a p-dimensional parameter space B for β̃ = (β1, . . . , βp)T, and a design
space X that satisfies the conditions in the theorem for all β̃ ∈ B.
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2. Sample N vectors β̃k (k = 1, . . . , N) from B using uniform quasi-random
numbers, generated as a Sobol sequence; see Gentle (2003, Chap. 3).

3. For each β̃k, apply the theorem to construct a locally optimal design ξ∗j .

4. Apply a clustering algorithm to the total of N(p+1) design points (see below).

5. Use each cluster mean as an equally weighted support point of ξc.

Example 3. Suppose that p = 2, x1i, x2i ∈ [−1, 1] (i = 1, . . . , p + 1), and
B = [1, 1 + α] × [−1 − α,−1] with α > 0. Figure 1 (a) shows the ensemble
of design points from the locally D-optimal designs obtained from the theorem
using N = 1, 000 values of β̃ for each of α = 1, 5, 20. All the designs include the
point (1, 1). The figure shows that the spread of the remaining values for each of
x1i and x2i increases with α, reflecting increasing uncertainty in the value of β̃.

Figure 1 (a) suggests that the natural clusters in the design points are not
well-described by spheres of equal volume, and hence a more flexible clustering
algorithm than K-means may be advantageous. We compared K-means with
the model-based clustering algorithm of Fraley and Raftery (2002) that assumes
that points arise from a mixture of normal distributions with differing means
and possibly differing covariance matrices. The EM algorithm may be used to
estimate the conditional probability of each data point belonging to each cluster,
and the parameters for each component distribution. We also investigated the
number of support points (clusters) that should be selected. To allow estimation
of the variance components in the model-based clustering, the locally optimal
design points were “jittered” slightly through the addition of a small amount of
uniform random noise.

Example 3 cont. For each of the K-means and model-based techniques, a
cluster design was formed with s = 3, . . . , 22 support points for each of α =
1, 5, 20. The efficiency (2.1) of each design was calculated for each value of β̃k

(k = 1, . . . , N). Figure 1 (b) shows how the median and minimum efficiencies
vary with s and α. The use of model-based clustering frequently results in higher
median and minimum efficiencies than K-means. This is often achieved with
fewer support points, as for α = 5 where the design with highest efficiency is
found from model-based clustering and has the three support points (1.0,-1.0),
(0.3,-1.0), (1.0,-0.3). As α increases, the parameter space B increases in volume
and hence efficiencies are lower. The most efficient design for α = 20 has more
support points than that for smaller α. Generally, K-means designs require
more support points than designs from model-based clustering, see Figure 1 (b).
For fixed numbers of support points, designs from the two methods may differ
substantially, see Figure 2.
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(a) (b)

Figure 1. Example 3 for α = 1, 5, 20: (a) design points (◦), often overlapping,
from 1, 000 locally optimal designs for each parameter space; (b) median and
minimum efficiencies for 3, . . . , 22 support points for cluster designs with K-
means (dashed) and model-based (dotted).

This approach to finding designs is particularly useful for experiments with
large numbers of variables, as in screening experiments. To avoid the need to
evaluate designs with many different numbers of support points, as in Example
3, standard metrics from the unsupervised learning literature for the selection
of the number of clusters can be employed, such as the Bayesian Information
Criterion (BIC); see Fraley and Raftery (2002).

Example 4. For p = 10 variables and a first-order Poisson regression model
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(a) (b)

Figure 2. Cluster designs for Example 3 for α = 20 and 3, 5, 22 support
points: (a) K-means; (b) model-based clustering.

with log link, suppose a robust design is required across the parameter space

βj ∈
{

[1, 1 + α] for j = 1, 3, 5, 7, 9 ,

[−1 − α,−1] for j = 2, 4, 6, 8, 10 .
(3.1)

Cluster designs were found using model-based clustering for (3.1) with α =
1, 2, 3, and N = 1, 000. For each robust design, the number of support points
(clusters), chosen using BIC, was found to be 21. Table 1 gives the median and
minimum efficiencies across B and shows that, for each value of α, the cluster
design performs well across the parameter space. As in Example 3, the median
and minimum efficiencies decrease as α increases, but good performance is main-
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Table 1. Median and minimum efficiencies for the model-based cluster de-
signs in Example 4, with parameter spaces defined through (3.1).

α = 1 α = 2 α = 3
median eff. 0.936 0.877 0.748
minimum eff. 0.895 0.803 0.633

tained even for α = 3. The use of the BIC statistics allows an informed choice of
the number of support points without the need to evaluate more than one design.

4. Conclusions

The results presented in this paper allow the analytic construction of D-
optimal designs for first-order Poisson regression with a log-link, and demon-
strate their use in the fast construction of designs robust to parameter values.
First-order models are commonly used in practical data analysis, and are par-
ticularly appropriate for the analysis of data from experiments early in scientific
investigations. Hence the methods from this paper are particularly important for
screening experiments that may involve a large number of variables. The use of
the Theorem enables much larger problems to be tackled than computer search
currently allows.
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Appendix. Proof of the Lemma

The result is proved using a general equivalence theorem (Atkinson, Donev
and Tobias (2007, p.122)). Let M(ψ∗) be the information matrix for the design
ψ∗ defined in the lemma. We show that the standardised variance of the predicted
response at point z0, d(z0, ψ

∗) = w(z0)f(z0)TM−1(ψ∗)f(z0), satisfies d(z0, ψ
∗) ≤

p + 1 for all z0 ∈ Z, and d(z0, ψ
∗) = p + 1 at each support point z∗i of ψ∗.

Some algebra shows that symmetric matrix M−1(ψ∗) has (i, j)th entry
p + 1

4 exp(
∑p

i=1 bi)
mij ,

where m11 = (2−
∑p

i=1 bi)2+e2
∑p

i=1 b2
i , m1j = 2−

∑p
i=1 bi−e2bj−1, mjj = 1+e2

(2 ≤ j ≤ p + 1), mij = 1 (2 ≤ i < j ≤ p + 1), and e = exp(1). Further,

d(z0, ψ
∗) =

p + 1
4

exp

(
p∑

i=1

zi0 −
p∑

i=1

bi

)
g(z0) ,
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where

g(z0) = m11 + 2
p+1∑
i=2

m1iz(i−1)0 + 2
p∑

i=2

p+1∑
j=i+1

mijz(i−1)0z(j−1)0 +
p+1∑
i=2

miiz2
(i−1)0 .

It is easy to show that d(z0, ψ
∗) = p+1 for z0 = z∗i , i = 1, . . . , p+1. The Karush-

Kuhn-Tucker theorem (see, for example, Borwein and Lewis (2000, pp.160-161))
provides the following necessary conditions for the constrained maximization of
d(z0, ψ

∗) to be achieved:

∂d(z0, ψ
∗)

∂zj0
− µj = 0 , (A.1)

subject to
µj(bj − zj0) = 0 , µj ≥ 0 , zj0 ≤ bj , (A.2)

for j = 1, . . . , p, where the µj are Lagrange multipliers.
If µj > 0 for every j, then (A.1) and (A.2) imply that zj0 = bj and d(z0, ψ

∗) =
p+1. If µj = 0 for at least one j, without loss of generality set µ1 = . . . = µr = 0
(1 ≤ r ≤ p). Then to satisfy (A.2), z(r+1)0 = br+1, . . . , zp0 = bp. From (A.1),
after some algebra, zj0 = bj − t, j = 1, . . . , r, where t = 2/r or t = 4/(r +
e2). For each solution ∂d/∂z∗j0 ≥ 0 (j = r + 1, . . . , p), and hence from (A.1),
µj ≥ 0, satisfying (A.2). As d(z0, ψ

∗) = t(p + 1)/2 if t = 2/r, and d(z0, ψ
∗) =

(p + 1) exp(−rt) if t = 4/(r+e2), the maximum value of d(z0, ψ
∗) over Z is p+1

when r = 1 and z10 = b1 − 2. From the general equivalence theorem mentioned,
ψ∗ is D-optimal.
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