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Abstract: The covariance ordering, for discrete and continuous time Markov chains,

is defined and studied. This partial ordering gives a necessary and sufficient condi-

tion for MCMC estimators to have small asymptotic variance. Connections between

this ordering, eigenvalues, and suprema of the spectrum of the Markov transition

kernel, are provided. A representation of the asymptotic variance of MCMC es-

timators in terms of eigenvalues and eigenvectors is extended to continuous time.

This representation is used to establish convergence of the asymptotic variance of

MCMC estimators derived from the discretization of a continuous time Markov

chain.
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1. Introduction

The basic idea of Markov chain Monte Carlo (MCMC) is that of approxi-
mating an expectation µ = Eπ{f(X)} =

∫
f(x)π(dx) by an empirical average

µ̂n = (1/n)
∑n

i=1 f(Xi) over the sample path of a discrete time Markov chain
X1, . . . , Xn having π as its unique stationary and limiting distribution. If the
Markov chain and the function f are “well behaved” (Tierney (1994)), then µ̂n

will obey the Central Limit Theorem (CLT):
√

n (µ̂n − µ) D−→ N(0, σ2). Typi-
cally, for a fixed probability distribution π, the asymptotic variance, σ2, depends
on both the function f and the structure of the Markov chain through its tran-
sition operator P . Thus we denote it by v(f, P, π). If, for a particular function
f and transition kernel P , the CLT does not hold, then we define v(f, P, π) to
be ∞. There are often many different Markov chains with a specified stationary
distribution π. Which is best? Or, a simpler question, given just two chains to
consider, which is better? Efficiency is the relevant criterion here, as everywhere
else in statistics. The chain P is better than Q for estimating the expectation
of the function f , if v(f, P, π) < v(f,Q, π), (assuming both chains are station-
ary with respect to π so that µ̂n is an asymptotically unbiased estimator for µ).
Applications in which one is interested in the expectation of a single function
f are rare. Usually, expectations of several functions are of interest, sometimes
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of many different functions. For example, the posterior mean and variance of
a Bayesian image reconstruction involve expectations for millions of pixels and
trillions of pairs of pixels. A likelihood function calculated by MCMC involves
an expectation depending on a continuous parameter, that is, an uncountable
family of expectations. Thus, contrary to what is often done in classical statis-
tical inference when looking for minimum variance estimates, we do not assume
any prior knowledge of the function whose expectation we want to evaluate. So,
given two Markov chains P and Q stationary with respect to π, we say that P is
more efficient than Q if v(f, P, π) ≤ v(f,Q, π) for all functions f that obey the
CLT (efficiency partial ordering).

In Section 2, we recall two partial orderings for discrete time Markov chains
that imply the efficiency ordering. One is Peskun ordering (1973), extended by
Tierney (1998) to general state spaces, and the other is the covariance ordering
introduced by Mira and Geyer (1999). Ordering Markov chains, is also important
in the study of time invariance estimating equations (abbreviated TIEE), a gen-
eral framework to construct estimators for a generic model (Baddeley (2000)). A
criterion to study the performance of time invariance estimators is the Godambe-
Heyde asymptotic variance, that is strictly connected with ordering Markov
chains. Indeed, Mira and Baddeley (2001), have shown that Peskun ordering
is a necessary condition for the Godambe-Heyde ordering. All the results in the
literature regarding orderings of Markov Chains for MCMC or TIEE purposes (to
our knowledge) are for discrete time Markov chains, and nothing has been said
about continuous time. Only recently, Leisen and Mira (2008) have extended the
Peskun ordering to continuous time Markov chains and, in Section 3, we recall
the basic definition and theorems. Theoretically this result is important in the
TIEE framework to study the performance of estimators, and could open new
simulation strategies in the MCMC contest. How can a continuous time Markov
chain be used to simulate a probability distribution? Leisen and Mira (2008) have
intuitively answered this question in finite state state spaces by using a result
that is formally proved in Section 4 of this paper. To distinguish the asymptotic
variance of a continuous time Markov chains by the asymptotic variance of the
discrete time Markov Chains, we use the notation v(f,Q), instead of v(f,Q, π).
Relevant facts about continuous time Markov chains, the CLT, and a rigorous
definition of asymptotic variance will be given in Section 3. Moreover, in Section
3, we extend covariance ordering to continuous time Markov chains and establish
the equivalence between covariance ordering and efficiency of continuous time
Markov chains.

2. Ordering Discrete Time Markov Chains

Let L2(π) be the Hilbert space of measurable functions that have finite second
moment with respect the measure π, and let L2

0(π) be the subset of L2(π) of
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functions having zero mean under π. We define the inner product on L2(π) by
〈f, g〉 =

∫
f(x)g(x)π(dx). In classical statistics, estimates are compared in terms

of their asymptotic relative efficiency, likewise here we prefer a Markov chain if it
produces estimators that are asymptotically more efficient on a sweep-by-sweep
basis.

Definition 1. If P and Q are Markov chains with stationary distribution π, then
P is at least as efficient as Q, P ºE Q, if v(f, P, π) ≤ v(f,Q, π),∀f ∈ L2

0(π).

2.1. Peskun and Tierney ordering

Throughout the paper we consider Markov chains with values in a space E

that can be finite or general. The following ordering was introduced by Peskun
(1973) for finite state spaces.

Definition 2. Given two Markov chains Q1, Q2, stationary with respect to π,
Q1 = {q(1)ij}i,j∈E , Q2 = {q(2)ij}i,j∈E , we say that Q1 is better than Q2 in the
Peskun sense and write Q1 ºP Q2, if q(1)ij ≥ q(2)ij ,∀i 6= j.

Peskun ordering is also known as the off-diagonal ordering because in order
for Q1 ºP Q2, each of the off-diagonal elements of Q1 has to be greater than,
or equal to, the corresponding off-diagonal elements in Q2. This means that Q1

has higher probability of moving around in the state space than Q2 and therefore
the corresponding Markov chain will explore the space in a more efficient way
(better mixing). Thus, we expect that the resulting MCMC estimators will be
more precise than the ones obtained by averaging along a Markov chain generated
via Q2. This intuition is stated rigorously in the next theorem (Peskun (1973)).

Theorem 1. Given two Markov chains Q1, Q2, reversible with respect to π, if Q1

dominates Q2 in the Peskun sense, then v(f,Q1, π) ≤ v(f,Q2, π),∀f ∈ L2
0(π).

The first use of Peskun ordering appears in Peskun (1973), where the au-
thor shows that the Metropolis-Hastings algorithm (Tierney (1994)), the main
algorithm used in MCMC, dominates a class of competitors reversible with re-
spect to some π. The competitor algorithms considered by Peskun (1973) are all
algorithms with the same propose/accept updating structure, and with symmet-
ric acceptance probability (see also Baddeley (2000)). Tierney (1998) extended
Peskun ordering to a general state space (E, E), where E is the associated σ-
algebra. We identify Markov chains with the corresponding transition kernels
Q(x,A) = Pr(Xn ∈ A|Xn−1 = x) for every set A ∈ E , and let Qf be the opera-
tor on L2(π) induced by Q: (Qf)(x) =

∫
Q(x, dy)f(y).

Definition 3. Let Q1, Q2 be transition kernels on a measurable space with
stationary distribution π. Then Q1 dominates Q2 in the Tierney ordering, Q1 ºT
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Q2, if, for π−almost all x in the state space, we have Q1(x,B \ {x}) ≥ Q2(x, B \
{x}), ∀B ∈ E .

The next theorem, due to Tierney (1998), extends Theorem 2.1.1 by Peskun
(1973) from finite to general state spaces.

Theorem 2. Given two Markov chains Q1, Q2, reversible with respect to π, if
Q1 dominates Q2 in the Tierney sense, v(f,Q1, π) ≤ v(f,Q2, π),∀f ∈ L2(π).

The proof of the last theorem uses the following result.

Theorem 3. If Q1 ºT Q2 then Q2 − Q1 is a positive operator.

2.2. Covariance ordering

The Peskun criterion and the generalization given by Tierney order only a
limited number of Markov chains. For example, the ordering does not allow a
comparison between two distinct transition matrices having all zeros on the main
diagonal, or two transition kernels for which P (x, {x}) = 0 for every x in the state
space. The latter includes all Gibbs samplers with continuous full conditional
distributions. Furthermore, if only one of the off-diagonal entries of P − Q is
“out of order” then P and Q are incomparable. A natural way to define a weaker
ordering for comparing more Markov chains is given in the following definition.

Definition 4. P dominates Q in the covariance ordering, P ºC Q, if Q − P is
a positive operator on L2

0(π), that is, if 〈f, (Q − P )f〉 ≥ 0, for every f ∈ L2
0(π).

Restricting ourselves to L2
0(π) does not reduce the generality of the previous

definition (see Mira (2001)). The binary relation ºC defines a partial ordering
on the space of reversible Markov chains with respect to π, since it is symmetric,
anti-reflexive and transitive (see the Appendix). By Theorem 3 we have the
following.

Theorem 4. Let P,Q be two Markov Chains reversible with respect to π, then

P ºP Q ⇒ P ºC Q.

The covariance ordering is equivalent to the Löwner partial ordering, (ºL

), on positive, bounded, linear operators on a Hilbert space, Löwner (1934).
Löwner ordering is defined on positive operators, therefore we need to consider
the Laplacian of P , lP = I−P , instead of P . Since P ºP I for every P stationary
with respect to π, we have that lP ≥ 0.

Definition 5. Let lP , lQ be positive, bounded, self-adjoint, linear operators on a
Hilbert space.Then lP dominates lQ in the Löwner sense, lP ºL lQ, if lP − lQ ≥ 0.

The following conditions are equivalent:
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1. P ºC Q i.e., Q − P ≥ 0;
2. lP ºL lQ i.e., lP − lQ ≥ 0.

A variety of inequalities are obtainable, for any partial ordering, once the
order-preserving functions are identified. For the Löwner ordering or, better,
for a generalization of it that does not require the operators to be positive,
the following theorem characterizes the class of order preserving functions, see
Löwner (1934). Let f be a bounded real-valued function of a real variable, x,
defined in an interval. Consider a bounded self-adjoint operator, A, on a Hilbert
space, H, whose spectrum lies in the domain of f . Then by f(A) we mean the
self-adjoint operator defined as

f(A) =
∫

f(λ)EA(dλ), (2.1)

where EA(·) is the spectral measure defined on the Borel subset of σ(A), the
spectrum of A (see Theorem 2.2, p. 269 of Conway (1985)). Moreover, if g is a
complex function, (Img) means the imaginary part of g.

Theorem 5. A necessary and sufficient condition for a continuous real-valued
function f on the interval (I1, I2) to have the property that f(A) ≤ f(B) for all
pairs of bounded, self-adjoint operators A and B with σ(A), σ(B) ⊆ (I1, I2) and
A ≤ B, is that f is analytic in (I1, I2) and can be analytically continued into the
whole upper half-plane with (Imf) ≥ 0.

Further characterizations of such classes of functions can be found in Korányi
(1956). A function that satisfies the conditions of Theorem 5 is h(x) = (ax + b)
/(cx + d) with ad − bc > 0 either in x > −d/c or x < −d/c. For example, take
a = b = d = 1 and c = −1 and then ad − bc = 2 > 0, so h(x) = (1 + x)/(1 − x)
preserves the ordering for x < 1. Thus

P ºC Q if and only if Q ≥ P if and only if
I + Q

I − Q
≥ I + P

I − P
.

We use this fact to prove that the covariance ordering is equivalent to the effi-
ciency ordering. This provides a characterization of the efficiency ordering.

Theorem 6. Let P and Q be reversible and irreducible transition kernels with
stationary distribution π. Then P ºE Q if and only if P ºC Q.

For proving the theorem we need some technical lemmas and propositions.
We denote the domain and range of an operator A by D(A) and R(A), respec-
tively. An operator on L2

0(π) is said to be densely defined if D(A) is dense in
L2

0(π). We recall that an operator is positive, A ≥ 0, if 〈g,Ag〉 ≥ 0 ∀g ∈ L2
0(π),

and that A−1/2 has been defined in (2.1).
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Lemma 1. Let A be a positive, self-adjoint, injective, bounded operator. Then,
for every g ∈ D(A), 〈g,Ag〉 = supf∈D(A−1/2)

[
2〈f, g〉 −

〈
A−1/2f,A−1/2f

〉]
.

Proof. Since A is positive, A−1 is also positive. This allows us to take square
roots of both A and A−1. Let h = Ag so g = A−1h. Clearly D(A−1) ⊂ D(A−1/2),
and for every f ∈ D(A−1/2),

0 ≤
〈
A− 1

2 (f − h), A− 1
2 (f − h)

〉
=

〈
A− 1

2 f,A− 1
2 f

〉
− 2

〈
A− 1

2 f,A− 1
2 h

〉
+

〈
A− 1

2 h,A− 1
2 h

〉
.

Now substitute h = Ag and use the fact that 〈f, g〉 = 〈g, f〉, true in a real Hilbert
space but not true in complex Hilbert spaces. Thus

〈g,Ag〉 ≥
[
2〈f, g〉 −

〈
A− 1

2 f,A− 1
2 f

〉]
, ∀f ∈ D(A− 1

2 ) (2.2)

and the supremum is achieved by taking f = h since, in this case, the right hand
side equals the left hand side in (2.2).

Corollary 1. Suppose A and B are positive, self-adjoint, injective, bounded oper-
ators. If

〈
B−1/2f,B−1/2f

〉
≤

〈
A−1/2f,A−1/2f

〉
,∀f ∈ D(A−1/2), and D(A−1/2)

⊂ D(B−1/2), then A ≤ B.

Proof. By Lemma 1 we have, for every g ∈ D(A) = D(B),

〈g,Bg〉 = sup
f∈D(B− 1

2 )

[
2〈f, g〉 −

〈
B− 1

2 f,B− 1
2 f

〉]
≥ sup

f∈D(A− 1
2 )

[
2〈f, g〉 −

〈
A− 1

2 f,A− 1
2 f

〉]
= 〈g,Ag〉.

Lemma 2. For a transition kernel P with stationary distribution π, the asymp-
totic variance can be written as v(g, P ) =

〈
g, [2l−1

P − I]g
〉
,∀g ∈ D(l−1

P ).

Proof. For any g ∈ D(l−1
P ) there exists an f ∈ L2

0(π) such that g = lP f so
that Pf = f − g. Using a result in Gordin and Lifsic (1978) we can write the
asymptotic variance as

v(g, P ) = ‖f‖2 − ‖Pf‖2 = ‖f‖2 − ‖f − g‖2

= 〈f, f〉 − 〈f − g, f − g〉 = 2〈g, f〉 − 〈g, g〉
= 2

〈
g, l−1

P g
〉
− 〈g, g〉 =

〈
g, [2l−1

P − I]g
〉
.

The previous result generalizes the representation of the asymptotic vari-
ance given in Kemeny and Snell (1969) for finite state spaces. Notice that the
transition kernel does not need to be reversible for Lemma 2 to hold.
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Proof of Theorem 6. Let us consider two cases depending on whether the
Laplacian is an invertible operator on L2

0(π).

Case (1) Suppose lP is invertible. Let h(lP ) = 2/lP − I = (I + P )/(I − P ).
Using Lemma 2, P ºE Q holds if and only if, for all f ∈ L2

0(π), 〈f, h(lP )f〉 ≤
〈f, h(lQ)f〉 which, by definition, is equivalent to

h(lP ) ≤ h(lQ) (2.3)

and, by Theorem 5, this is true if and only if

Q − P ≥ 0. (2.4)

Case (2) If lP is not invertible, we have to prove the equivalence of (2.3) and
(2.4) without using Theorem 5 on any non-invertible operator.

First we prove P ºC Q implies P ºE Q. Assume P ºC Q, and let KεP =
I−(1−ε)P for 0 < ε < 1. KεP is invertible since its spectrum σ(KεP ) ⊆ (ε, 2−ε)
does not contain zero. Furthermore, h(KεP ) is also invertible since its spectrum
is σ(h(KεP )) = h(σ(KεP )) ⊆ (ε/(2 − ε), (2 − ε)/ε) . Then, for all 0 < ε < 1,
Q − P ≥ 0 implies KεQ ≤ KεP and, from case (1), this is true if and only if

〈f, h(Kε,Q)f〉 ≥ 〈f, h(Kε,P )f〉, ∀f ∈ L2
0(π). (2.5)

We now want to take the limit as ε → 0. Consider

〈f, h(Kε,P )f〉 =
∫

1 + (1 − ε)λ
1 − (1 − ε)λ

EfP (dλ).

The derivative of the integrand with respect to ε is −2λ/[1 − (1 − ε)λ]2 thus, for
λ ∈ [−1, 0), the integrand is increasing in ε while for λ ∈ [0, +1), the integrand
is decreasing. This suggests that we write

〈f, h[Kε,P ]f〉 =
∫ 0

−1

1 + (1 − ε)λ
1 − (1 − ε)λ

EfP (dλ) +
∫ 1

0

1 + (1 − ε)λ
1 − (1 − ε)λ

EfP (dλ).

For every λ ∈ σ(P ) and every ε ∈ (0, 1), the integrals are finite by construc-
tion, therefore a modified version of the standard monotone convergence theorem
(Fristed and Gray (1997)) can be used to take the limit inside the integral and
we get that (2.5) implies (2.3). Hence P ºC Q implies P ºE Q.

Now we prove the implication in the other direction: P ºE Q implies P ºC

Q. Assuming P ºE Q we have that (2.3) holds. We now use the properties
of the Laplacian and, in particular, the fact that the range of l

1/2
Q is the set of

functions that have a finite asymptotic variance, see Kipnis and Varadhan (1986);
i.e., v(f, P ) ≤ v(f,Q) < ∞,∀f ∈ R(l1/2

Q ) and R(l1/2
Q ) ⊆ R(l1/2

P ). It follows that〈
l
− 1

2
P f, l

− 1
2

P f

〉
≤

〈
l
− 1

2
Q f, l

− 1
2

Q f

〉
∀f ∈ R(l

1
2
Q) = D(l

− 1
2

Q ) (2.6)
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and, by Corollary 1, we have lQ ≤ lP , hence P ºC Q.

The final part of this subsection is devoted to two examples where Peskun
ordering fails while the covariance ordering holds. The first is a toy example, the
second refers to data augmentation algorithms.

Toy example. Let P and A be the matrices

P =


0.3 0.3 0.2 0.2
0.3 0.3 0.2 0.2
0.2 0.2 0.3 0.3
0.2 0.2 0.3 0.3

 A =


0.1 0.1 −0.1 −0.1
0.1 0.1 −0.1 −0.1

−0.1 −0.1 0.1 0.1
−0.1 −0.1 0.1 0.1


and let Q = P +A. Then both P and Q are reversible with respect to the uniform
distribution, but are not comparable in the Peskun sense while P ºC Q.

Data augmentation. By using the covariance ordering, Hobert and
Marchev (2008), prove that a class of data augmentation algorithms is better than
the usual data augmentation algorithm (DA) of Tanner and Wong (1987). This
class contains the PX-DA algorithm of Liu and Wu (1999) and the marginal data
augmentation algorithm (MA) of Meng and van Dyk (1999). Suppose that we
want to sample from fX(x) on a space Y, and that a joint density f(x, y) having
fX(x) as its marginal is available. Furthermore, assume that it is straightforward
to sample from fX|Y (x|y) and fY |X(y|x). Then the DA reversible kernel to sam-
ple from fX(x) is given by P (x|x′) =

∫
Y fX|Y (x|y)fY |X(y|x′)dy. If R is a Markov

kernel reversible with respect to fY (y), one can build another reversible algorithm
(wrt to fX(x)) as PR(x|x′) =

∫
Y

∫
Y fX|Y (x|y′)R(y, dy′)fY |X(y|x′)dy. Hobert and

Marchev (2008) prove that PR ºE P by showing that PR ºC P . In the sequel we
construct a specific example where P and PR are not comparable in the Peskun

sense. Let fX = [3/8, 3/8, 1/4] and take f(x, y) =

 3/10 1/20 1/40
2/10 1/10 3/40
1/10 1/20 1/10

 .

The DA kernel is P = fY |XfX|Y =

 0.4416667 0.3583333 0.2
0.3583333 0.3861111 0.2555556
0.3 0.3833333 0.3166667

 and

if R = fX|Y fY |X , then R is reversible w.r.t. fY (y) and PR = fY |XRfX|Y = 0.3834722 0.3732870 0.2432407
0.3732870 0.3754475 0.2512654
0.3648611 0.3768981 0.2582407

. P and PR are not comparable in Peskun

sense but P − PR is positive semidefinite, so PR ºC P .

2.3. Orderings and eigenvalues

Let us first consider finite state spaces. Let {λ0P , λ1P , . . .} be the eigenvalues
of P , arranged in decreasing order, and let {e0P , e1P , . . .} be the corresponding
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normalized right eigenvectors, so that PejP = λjP ejP , j = 0, 1, . . .. For P

stationary with respect to π, there is an eigenvalue equal to one, λ0P , which is
associated with the constant eigenvector. Since this is always the case let us re-
strict our attention to the eigenvalues associated with non-constant eigenvectors.
Reversibility of a transition kernel ensures that the eigenvalues and eigenvectors
are real. The following theorem is proved in Mira (2001).

Theorem 7. For P,Q reversible with respect to π, Q − P ≥ 0 if and only if
λiP ≤ λiQ for all i.

The previous theorem is a known fact for symmetric matrices. In our setting
neither P nor Q need to be symmetric but, if we consider them as operators on
L2(π), they are indeed self-adjoint operators, provided that the detailed balance
condition holds. By Theorem 3, P ºP Q implies that Q − P ≥ 0, thus Peskun
ordering induces an ordering on all the eigenvalues of the two transition matrices.
This proof can be generalized to compact operators on Hilbert spaces since their
spectra are either empty, finite, or countable with zero as the only limit point,
(Conway (1985)). But, as noticed in Chan and Geyer (1994), not many Markov
chains used for MCMC purposes have compact transition operators.

Let us now move to general state spaces. While in finite state spaces we
have a finite number of eigenvalues and it makes sense to compare and order
them, in general state spaces we cannot talk about eigenvalues anymore, but
need to introduce the concept of a spectrum. Let σ(P ) be the spectrum of P

considered as an operator on L2(π), that is, the set of λ’s such that λI − P is
not invertible, where I denotes the identity operator on L2(π). The spectrum
includes the eigenvalues, the λ’s for which λI − P is not one-to-one, but it also
includes the values λ such that λI −P is not onto. For linear operators on finite
dimensional vector spaces, one-to-one and onto are equivalent so that σ(P ) is
the set of the eigenvalues of P. The norm of a linear operator on L2(π) is defined
by ‖P‖ = supu∈L2(π)

u 6=0

‖Pu‖/‖u‖, where ‖u‖2 = 〈u, u〉. The spectrum is a non-

empty closed subset of the interval [−1, +1] since the norm of P is less than or
equal to one, by Jensen’s inequality, and the norm of an operator bounds the
spectrum (Conway (1985, Proposition 1.11 (e), p.239)). On general state spaces
it does not make sense to say that the spectrum of one operator is smaller than
the spectrum of another operator; we can, at most, compare the suprema of the
spectra and this is what we will do. For reversible geometrically ergodic chains,
all the eigenvalues but the principal one, λ0P = 1, are bounded away from ±1,
see Roberts and Rosenthal (1997).

When considering a transition kernel as an operator on L2
0(π) we eliminate

from its spectrum the eigenvalue equal to one associated with constant functions.
Unless otherwise stated, in the sequel a transition kernel will be considered as an
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operator on L2
0(π). Let λmax,P = sup{λ : λ ∈ σ(P ) }, then the following theorem

is the analogue, for a general state space, of Theorem 7:

Theorem 8. Let P,Q be reversible with respect to π, and assume P ºC Q, then

λmax,P ≤ λmax,Q. (2.7)

Proof. It follows directly from Theorem X.4.2 of Dunford and Schwartz (1963)
that, for any bounded self-adjoint operator A on a Hilbert space, we have λmax,A =
sup‖f‖=1 〈f,Af〉. Thus (2.7) holds whenever Q − P ≥ 0, and Theorem 3 finishes
the proof.

3. Continuous Time Markov Chains and Their Orderings

Let {X(t)}t∈<+ be a continuous time MC (CTMC) taking values on a finite
state space E . Let G = {gij}i,j∈E be the generator of the MC. G is a matrix
with row sums equal to zero, having negative entries along the main diagonal
and positive entries otherwise. Assume that the MC is reversible; this condition,
usually checked on the MC transition matrix, can also be checked on the generator
by requiring that πigij = πjgji ∀i, j ∈ E . Let I be the identity matrix, c =
supi |gii|, and ν ≥ c, then Pν = I + G/ν is a stochastic matrix. Note that if G
is reversible with respect to π, then so is Pν , ∀ν. We could use such CTMC for
MCMC purposes in the following way. Assume without loss of generality, that
f has zero mean and finite variance under π, f ∈ L2

0(π). Furthermore assume
that f belongs to the range of the generator, R(G), of the CTMC. Suppose we
are interested in estimating µ =

∫
f(x)π(dx). Construct a CTMC {X(t)}t∈<+

ergodic with respect to π, fix t > 0, and take µ̂nt = (1/
√

n)
∫ nt
0 f(X(s))ds to be

the MCMC estimator. By Theorem 2.1 in Bhattacharya (1982), µ̂nt converges
weakly to the Wiener measure with zero drift and variance parameter

v(f,G) = −2〈f, g〉 = −2
∫

f(x)g(x)π(dx) ≥ 0,

where g belongs to the domain of the generator and is such that Gg = f .
In Proposition 2.4 of Bhattacharya (1982), it is proved that v(f,G) > 0 for

all non-constant (a.s. π) bounded f in the range of G, provided for some t > 0
and all x, the transition probability P (t, x, dy) and the invariant measure, π, are
mutually absolutely continuous. If, however, G is reversible, then v(f,G) > 0 for
all nonzero f in the range of G, without the additional assumption of boundedness
and mutual absolute continuity.

3.1. Peskun ordering for continuous time Markov chains

Let E be a finite state space. The following ordering has been introduced by
Leisen and Mira (2008).
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Definition 6. Suppose that G1 = {g(1)ij} and G2 = {g(2)ij} are the generators
of CTMCs stationary with respect to π (i.e., πG1 = 0, πG2 = 0 ). We say that G1

dominates G2 in the Peskun sense, and write G1 ºEP G2, if g(1)ij ≥ g(2)ij ,∀i 6= j.

Now, let E be a general state space and E the associated sigma-algebra.
We begin by recalling some definitions and results from Leisen and Mira (2008)
on Peskun ordering and then extend, to general state spaces, the covariance
ordering. Consider an homogeneous continuous time Markov chain, {Xt}t∈<+ ,
taking values on E, with transition kernel P (t, x, dy) and generator G : D(G) →
R(G), where D(G) and R(G) are the domain and range of G, respectively. If the
generator of the process can be written as an operator

Gf(x) =
∫

f(y)Q(x, dy), (3.1)

where the kernel Q is defined in terms of the transition kernel P , Q(x, dy) =
∂
∂tP (t, x, dy) |t=0, then, in the general case, Peskun ordering has been extended,
in Leisen and Mira (2008), in the following way.

Definition 7. Let G1 and G2 be the generators of two CTMCs admitting the
representation (3.1), with kernels Q1 and Q2 respectively, both stationary with
respect to a common distribution π, taking values on E. Assume supx Qi(x,E \
{x}) < ∞, i = 1, 2. Then G1 dominates G2 in the Tierney ordering, G1 ºEP G2,
if Q1(x, A \ {x}) ≥ Q2(x,A \ {x}) ∀A ∈ E .

Then, for E finite or general, and in the hypothesis of the previous definitions,
two results are available in Leisen and Mira (2008):

Theorem 9. If G1 ºEP G2 and if the corresponding CTMCs are reversible,
then G2 − G1 is a positive operator.

Theorem 10. If G1 ºEP G2 and if the corresponding CTMCs are reversible,
then v(f,G1) ≤ v(f,G2) ∀f ∈ R(G1) ∩ R(G2), where v(f,G1) and v(f,G2) are
the asymptotic variances of estimators µ̂n obtained by simulating the CTMCs
that have G1 and G2, respectively, as generators.

3.2. Covariance ordering for continuous time Markov chains

In this section, the covariance ordering for continuous time is introduced.
We start with a few definitions.

Definition 8. Let E be a finite state space and let G1, G2 be stationary with
respect to π. We say that G1 dominates G2 in the covariance ordering, and write
G1 ºEC G2, if G2 − G1 is a positive operator on D(G1) ∩ D(G2).

If E is a general state space and E the associated sigma-algebra, the covari-
ance ordering is defined in the following way.
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Definition 9. Let G1 and G2 be the generators of two CTMCs admitting the
representation (3.1), with kernels Q1 and Q2, respectively, both stationary with
respect to a common distribution π taking values on E. Assume supx Qi(x,E \
{x}) < ∞, i = 1, 2. Then G1 dominates G2 in the covariance ordering, G1 ºEC

G2, if G2 − G1 is a positive operator on D(G1) ∩ D(G2).

It is easy to show that the continuous covariance ordering is a partial order-
ing.

Theorem 11. Given two CTMCs on a state space E, with generators G1 and G2

reversible w.r.t. a distribution π, with the representation (3.1) and supx Qi(x,E \
{x}) < ∞, i = 1, 2, in the general case, the following are equivalent.

1. G1 ºEC G2,
2. v(f,G1) ≤ v(f,G2) for all functions f ∈ R(G1) ∩ R(G2).

Proof. “(1) ⇒ (2)” is a little modification of the proof of Theorem 10 in Leisen
and Mira (2008).
“(2) ⇒ (1)” For all functions f ∈ R(G1) ∩ R(G2), we have:

v(f,Gi) = −2〈f, gi〉, i = 1, 2, (3.2)

where gi ∈ D(Gi) and is such that

Gigi = f, i = 1, 2. (3.3)

We have that

v(f,G1) = −2〈G1g1, g1〉 = −2〈G1(g1 − g2 + g2), (g1 − g2 + g2)〉
= −2〈G1(g1 − g2), (g1 − g2)〉 − 2〈G1g1, g2〉

−2〈G1g2, g1〉 + 2〈G1g2, g2〉
≥ −2〈G2g2, g2〉 − 2〈G2g2, g2〉 + 2〈G1g2, g2〉,

where the last inequality follows from the self-adjontness of G1 and G2, by (3.3)
and from the fact that −2〈G1(g1 − g2), (g1 − g2)〉 ≥ 0. So, from the hypothesis,
−2〈G2g2, g2〉 − 2〈G2g2, g2〉 + 2〈G1g2, g2〉 ≤ v(f,G1) ≤ v(f,G2) = −2〈G2g2, g2〉,
which gives 〈(G2 − G1)g2, g2〉 ≥ 0, and concludes the proof.

3.3. Continuous orderings and eigenvalues

In this section, we give, for continuous time, analogous theorems as the ones
given in Section 2.3. As in Section 2.3, first consider finite state spaces.

Theorem 12. For G1, G2 generators of Markov chains reversible with respect to
π, if G2 − G1 ≥ 0, then λiG1 ≤ λiG2 for all i.
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Proof. Let c1 = supi |g(1)ii|, c2 = supi |g(2)ii|, and ν ≥ max(c1, c2). Define
P1(ν) = I+G1/ν and P2(ν) = I+G2/ν We have that G1 = ν(P1(ν)−I) and G2 =
ν(P2(ν)− I). If G2 −G1 ≥ 0, it follows that P2(ν)−P1(ν) ≥ 0; i.e., for Theorem
7, λiP1(ν) ≤ λiP2(ν) for all i. But λiP1(ν) = 1 + λiG1/ν and λiP2(ν) = 1 + λiG2/ν,

and so λiG1 ≤ λiG2 for all i.

Let us now move to general state spaces. For a generator G that admits the
representation (3.1), let λmax,G = sup{λ : λ ∈ σ(G) }.

Theorem 13. Given two Markov chains with generators G1 and G2 reversible
with respect to π, suppose G1 ºEC G2. Then

λmax,G1 ≤ λmax,G2 . (3.4)

Proof. Let c1 = supx Q1(x,E \ {x}) < ∞, c2 = supx Q2(x,E \ {x}) < ∞, and
ν ≥ max(c1, c2). Then

P1ν(x, dy) = δx(dy) +
1
ν

Q1(x, dy) and P2ν(x, dy) = δx(dy) +
1
ν

Q2(x, dy) (3.5)

are transition kernel of CTMCs reversible with respect to π, and such that
P1ν ºP P2ν . By Theorem 3, it then follows that P2ν − P1ν = (Q2 − Q1)/ν

is a positive operator. So, from Theorem 8, we have that λmax,P1ν ≤ λmax,P2ν .
From (3.5) and from the fact that λmax,P1ν = sup||f ||=1 〈f, P1νf〉 and λmax,P2ν =
sup||f ||=1 〈f, P2νf〉, the conclusion follows.

4. Asymptotic Variance: From Discrete to Continuous Time

Throughout this section we consider a finite state space E = {1, . . . , N}. We
recall some known facts on discrete and continuous time Markov chains.

Let {X(t)}t∈R be a Markov chain on E with generator Q = {qij}i,j∈E re-
versible with respect a probability distribution π. Let 0 = β1 > · · · > βN , be the
eigenvalues of Q, and let ui and vi be the eigenvectors, respectively left and right,
of Q; i.e., uT

i Q = βiu
T
i and Qvi = βivi, i = 1, . . . , N. Then, the t-step transition

matrix of the CTMC that has Q as generator, has the following properties.

1. P (t) is reversible with respect to π,

2. ui, vi are, respectively, left and right eigenvectors of P (t) with eigenvalues:
1 = eβ1t > · · · > eβN t.

A function f : E → R can be represented as

f =
N∑

i=1

〈f, vi〉vi. (3.6)
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Moreover, we recall a representation of the asymptotic variance of a discrete time
Markov chain in terms of eigenvalues (Bremaud (1998, p.235)):

Theorem 14. Let P be the transition matrix of a discrete time Markov chain,
{Yn}n∈N on E, reversible with respect to π. Let v(f, P, π) be the asymptotic
variance of the estimator µ̂n. Then if 1 = λ1 > · · · > λN are the eigenvalues
of P with right eigenvectors vi, the asymptotic variance v(f, P, π) admits the
representation

v(f, P, π) =
N∑

i=2

1 + λi

1 − λi
|〈f, vi〉|2.

We now give a continuous time analogous of Theorem 14.

Theorem 15. Let {X(t)}t∈R be a CTMC on E, reversible with respect to π with
generator Q. Let 0 = β1 > · · · > βN and vi, i = 1, . . . , N , be the eigenvalues of
Q with corresponding right eigenvectors. Then the asymptotic variance v(f,Q)
admits the representation v(f,Q) = −2

∑N
i=2 βi|〈g, vi〉|2.

Proof. From (3.6) we have that g =
∑N

i=1 〈g, vi〉vi. Hence,

v(f,Q) = −2〈f, g〉 = −2〈Qg, g〉 = −2

〈
Qg,

N∑
i=1

〈g, vi〉vi

〉

= −2
N∑

i=1

(〈g, vi〉 · 〈Qg, vi〉) = −2
N∑

i=1

(〈g, vi〉 · 〈g,Qvi〉)

= −2
N∑

i=1

(〈g, vi〉 · 〈g, βivi〉) = −2
N∑

i=2

βi|〈g, vi〉|2,

where the fifth equality follows from the self-adjointness of Q and the last from
the fact that β1 = 0.

4.1. A connection between discrete and continuous time Markov chains

The following theorem provides an interesting connection between the
asymptotic variances of estimators obtained by running a continuous time
Markov chain and a related discretization.

Theorem 16. Let {X(t)}t∈R be a CTMC on E, reversible with respect to π with
generator Q. Let 0 = β1 > · · · > βN and vi, i = 1, . . . , N , be the eigenvalues with
corresponding right eigenvectors. Let P (∆) be the ∆-step matrix of the CTMC,
∆ > 0 fixed, and v(f, P (∆), π) be the asymptotic variance of the discrete time
Markov chain that has P (∆) as transition matrix. If v(f,Q) is the asymptotic
variance of the CTMC X(t) and f ∈ R(Q), then

∆v(f, P (∆), π) → v(f,Q) as ∆ → 0.
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Proof. The eigenvalues of P (∆) are 1 = eβ1∆ > · · · > eβN∆, with corresponding
left eigenvectors vi. So, by Theorem 14,

v(f, P (∆), π) =
N∑

i=2

1 + eβi∆

1 − eβi∆
|〈f, vi〉|2.

But if f ∈ R(A), there exists g ∈ D(A) such that Qg = f . We have that

〈f, vi〉 = 〈Qg, vi〉 = 〈g,Qvi〉 = 〈g, βivi〉 = βi〈g, vi〉,

v(f, P (∆), π) =
N∑

i=2

1 + eβi∆

1 − eβi∆
β2

i |〈g, vi〉|2.

Thus

∆v(f, P (∆), π) =
N∑

i=2

∆
1 − eβi∆

(1 + eβi∆)β2
i |〈g, vi〉|2.

From lim
∆→0

(1 + eβi∆) = 2 and

lim
∆→0

∆
1 − eβi∆

= lim
∆→0

∆
1 − (1 + βi∆ + o(∆))

= − 1
βi

,

∆v(f, P (∆), π) →
N∑

i=2

− 1
βi

2β2
i |〈g, vi〉|2 = −2

N∑
i=2

βi|〈g, vi〉|2 = v(f,Q),

where the last equality follows from Theorem 15.
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