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Abstract: We focus on developing nonparametric Bayes methods for collections

of dependent random functions, allowing individual curves to vary flexibly while

adaptively borrowing information. A prior is proposed, which is expressed as a

hierarchical mixture of weighted kernels placed at unknown locations. The induced

prior for any individual function is shown to fall within a reproducing kernel Hilbert

space. We allow flexible borrowing of information through the use of a hierarchical

Dirichlet process prior for the random locations, along with a functional Dirich-

let process for the weights. Theoretical properties are considered and an efficient

MCMC algorithm is developed, relying on stick-breaking truncations. The meth-

ods are illustrated using simulation examples and an application to reproductive

hormone data.
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1. Introduction

In functional data analysis (FDA), interest focuses on studying random
curves for different subjects. There has been rapidly increasing interest in FDA in
the statistical literature, with much of this literature focusing on developing more
flexible methods for longitudinal data (Zhao, Marron and Wells (2004), Müller
(2005) and Morris and Carroll (2006), among others). In this article, the focus
is on nonparametric Bayesian methods, defining random probability measures
for collections of dependent functions. Our goal is to treat the individual curves
nonparametrically, while also borrowing information across subjects flexibly.

In contrast, much of the Bayesian literature on FDA treats the mean curve
nonparametrically, but requires parametric assumptions on the distribution about
the mean. For example, Bigelow and Dunson (2007) model the basis coeffi-
cients in a multivariate adaptive spline model as normally distributed. A related
approach was independently developed by Thompson and Rosen (2006) in the
setting of a univariate spline model, with variable selection used to select the
basis functions. Morris and Carroll (2006) propose a wavelet-based functional
mixed model, placing a normal distribution of the random wavelet coefficients.
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Behseta, Kass and Wallstrom (2005) avoid choosing an explicit set of basis func-
tions through use of a hierarchical Gaussian process.

In order to allow a distribution function to be unknown, a common approach
is to use a Dirichlet process (DP) prior (Ferguson (1973, 1974)) or DP mixture
(DPM) (Berry and Christensen (1979), Lo (1984), Escobar (1994) and Escobar
and West (1995)). To model a collection of random functions, one possible strat-
egy is to define a DP with support on a function space. Using a closely-related
formulation to the dependent Dirichlet process (DDP) of MacEachern (1999,
2000), De Iorio, Müller, Rosner and MacEachern (2004) and Gelfand, Kottas
and MacEachern (2005) proposed a functional DP (FDP) for spatial data. The
FDP approach relies on replacing the atoms in the Sethuraman (1994) represen-
tation of the DP with random functions drawn from a Gaussian process (GP).
Hence, the functional distribution is formulated as a mixture across infinitely-
many GP realizations. A related FDP approach has been to approximate the
function through a basis series expansion with a DP prior on the basis coefficients.
Ray and Mallick (2006) placed a DP prior on the distribution of the coefficients
in a hierarchical wavelet model to induce functional clustering. Bigelow and
Dunson (2006) instead allow both the basis functions and their distribution to
be unknown. Although these FDP models can be effective, they focus on global
clustering of curves. Curves that are clustered together are assumed to take the
same values along their range and no possibility exists for local deviations. The
approach we propose allows curves to be clustered globally but to deviate from
one another locally.

In the frequentist literature, kernel-based methods have been widely used
for function estimation, due largely to practical advantages in high-dimensional
problems (Schölkopf and Smola (2002) and Shawe-Taylor and Cristianini (2004)).
There has also been some recent focus on kernel methods in the Bayes liter-
ature on estimation of a single function (Tipping (2001), Sollich (2002) and
Chakraborty, Ghosh and Mallick (2005)). However, to our knowledge, kernel
methods have not been used for Bayesian functional data analysis. Our proposed
approach builds on recent work by Liang, Liao, Mukherjee and West (2006) and
Pillai, Liang, Mukerjee, Wolpert and Wu (2006), who considered formal Bayes
kernel methods for posterior inference on a single curve.

In Section 2, we first provide background on the functional Dirichlet process
and recent work on Bayes kernel methods, proposing modifications to allow kernel
selection in the single function case. Section 3 generalizes these methods to
the hierarchical case. Section 4 develops methods for posterior computation.
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Section 5 considers simulation examples. Section 6 presents an application to an
epidemiologic data set, and Section 7 discusses the results.

2. Priors for Random Curves

2.1. Functional Dirichlet process

We propose a nonparametric prior for dependent random functions. Let the
random function for subject i be denoted ηi, with {ηi(x),x ∈ X} a stochastic
process over X , for i = 1, . . . , n. Formally, ηi is a random variable defined on
a probability space (Ω,F ,P), where Ω is a function space, F is a σ-algebra of
subsets of Ω, and P is a probability measure over (Ω,F). Following a Bayesian
approach, we treat P as random to assign a prior over the collection of dependent
random functions {ηi, i = 1, . . . , n}.

One possibility for P is to use a DP prior (Ferguson (1973, 1974)), with a
base measure chosen to have support on a function space. Specifically, using the
Sethuraman (1994) constructive stick-breaking representation of the DP, one can
let

ηi ∼ G =
∞∑

h=1

phδθh
, θh

i.i.d.∼ GP (µ, C), (2.1)

where ph = Vh
∏

l<h(1− Vl), Vh
i.i.d.∼ beta(1, α), h = 1, . . . ,∞, and the functional

atoms, {θh}, are drawn independently from a Gaussian process (GP) centered
on µ with covariance function C. Note that (2.1) generates a random probabil-
ity measure with support on a function space by assigning random weights to
functional atoms generated from a Gaussian process. Due to the almost sure
discreteness of the DP, there will be a positive probability that ηi = ηi′ , so that
the approach allows clustering of curves.

It is worth commenting on some properties of (2.1). The prior borrows infor-
mation between ηi and ηi′ by allowing global clustering of functions allocated to
the same functional atom and by generating the functional atoms from the same
GP. Borrowing information through global clustering can be quite restrictive in
that two functions, ηi and ηi′ , may be very similar or even identical in certain
subregions of X without being identical everywhere. The dependence structure
between different functional atoms drawn from the same GP is also restrictive,
being driven by the covariance function C, which is typically parameterized by
two or three unknowns. In addition, computation becomes increasingly difficult
as the number of observations along the curve, accrued across all subjects in
the sample, increases. The computational burden is driven by the need to cal-
culate inverses of large matrices. Motivated by this problem in the setting of
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spatial data, Xia and Gelfand (2005) proposed a kernel-based method for fast
approximate computation in Gaussian process models.

2.2. Kernel methods

Kernel-based methods have been widely used to estimate functions in the
frequentist literature, due largely to practical advantages in high-dimensional
problems (Schölkopf and Smola (2002) and Shawe-Taylor and Cristianini (2004)).
From computational, theoretical and applied perspectives, it is often appealing
to estimate the function η subject to the constraint that η ∈ H, where H is a
reproducing kernel Hilbert space (RKHS). As noted by Wahba (1990), functions
generated from a GP are almost surely outside an RKHS. A number of authors
(Tipping (2001), Sollich (2002) and Chakraborty et al. (2005)) have considered
Bayesian kernel-based methods using the additive model (Hastie, Tibshirani and
Friedman (2001)):

η(x) =
n∑

i=1

wi K(x,xi), (2.2)

where η is the function of interest (dropping the i subscript in focusing on esti-
mation of a single function), K : X × X → <+ is a uniformly bounded Mercer
kernel, and w = (w1, . . . , wn)′ is a vector of unknown coefficients.

Expression (2.2) is motivated by the representer theorem of Kimeldorf and
Wahba (1971), which states that the solution to the problem of minimizing a
goodness-of-fit loss function subject to an RKHS norm penalty lies in a subspace
of H, represented as in (2.2). This allows one to use (2.2) to obtain an estimator
of η, which can be interpreted in a Bayesian manner as a maximum a posteriori
(MAP) estimator (Wahba (1999) and Poggio and Girosi (1990)). However, as
noted by Liang et al. (2006), a Bayesian would typically be interested not just in
a single function estimator, such as the MAP, but more generally in the posterior
of η. The full posterior is very useful in assessing uncertainty in estimation, in
performing inferences about features of the function, and in making predictions.

Pillai et al. (2006) and Liang et al. (2006) note problems in obtaining the
posterior directly through use of the finite representation (2.2). One issue is that
the prior would need to be defined in a sample-dependent manner, as the sample
size n is a component of (2.2). Another important issue is that (2.2) was derived
in solving an optimization problem. Using this representation for full posterior
inference causes not just the MAP estimator but all samples from the posterior
to lie in a subspace of H characterized by (2.2). Unless one has a priori reason
to believe that this subspace is rich enough to characterize all uncertainty in the
function, it seems more appealing to define a prior with large support in H.
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Pillai et al. (2006) instead induce a prior on a function space, G, through
a prior on a space of signed Borel measures, Γ, by using the integral operator
LK : Γ → G defined as

LK [γ](x) :=
∫
X

K(x,u)dγ(u) = η(x), (2.3)

where γ ∈ Γ and η ∈ G. When Γ = B(X ), the space of all signed Borel measures,
then G = HK , with HK the RKHS associated with kernel K. Pillai et al.
(2006) focus on Lévy process priors, that form a general class including Brownian
motion, Poisson processes, and Dirichlet processes as special cases. Liang et al.
(2006) instead apply the decomposition dγ(u) = φ(u) dπ(u), with the coefficient
function φ assigned a GP prior and the probability measure π assigned a DP
prior on X .

3. Priors for Dependent Random Curves

3.1. Hierarchical kernel priors

In order to generalize (2.3) to define a prior for dependent random functions,
we let

ηi(x) =
∫
X

K(x,u) dγi(u), i = 1, . . . , n, (3.1)

where γ = {γ1, . . . , γn} is a collection of dependent random signed measures,
with γi ∈ Γ ⊂ B(X ), for i = 1, . . . , n. In particular, we focus on the case in
which Γ = M, with M the space of finite discrete measures expressed as

M =
{

µ =
∑

h

φhπhδτh
: {φh} ⊂ <, {πh} ⊂ (0, 1), {τh} ⊂ X ,

∑
h

πh = 1,
∑

h

|φh|πh < ∞
}

. (3.2)

In this case, ηi ∈ G = LK [M], the range of the integral operator LK over the
space M. From Pillai et al. (2006) , for every µ ∈ M, LK [µ] ∈ HK and LK(M)
is dense in HK with respect to the RKHS norm.

By choosing a prior for γi with support in M, we induce a prior on ηi with
support in HK . We modify the Liang et al. (2006) specification to favor a sparse
representation through the use of kernel function selection. Bayesian stochastic
search variable selection (SSVS) methods (George and McCulloch (1993)) have
been widely used for basis function selection (Smith and Kohn (1996)). Using
the decomposition dγi(u) = φ0i(u) {1 − dπi(u)} + φ1i(u) dπi(u), we propose the
hierarchical specification

πi ∼ F, φ0i ∼ G0 and φ1i ∼ G1, (3.3)
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where πi ∈ Π is a random probability measure on (X ,S), with Π the space of
probability measures on (X ,S), F is a random probability measure on (Π, T ),
φji : X → <, j = 0, 1, are random functions, and Gj , j = 0, 1, are random prob-
ability measures on (Ψ,U), with Ψ a function space. Here, S, T ,U correspond
to σ-algebras for each of the above mentioned spaces. The function φ0i is as-
signed a GP prior (which we refer to as the GP spike) whose covariance function,
C0, allows little deviation from the function’s prior mean. The function φ1i is
also assigned a GP prior (which we refer to as the GP slab) but with covariance
function C1 allowing large deviations from the prior mean.

Note that we now have a distribution of random probability measures, F ,
and a distribution of random functions, G0 and G1. To facilitate functional
clustering, we allow F , G0 and G1 to be unknown through the nonparametric
prior

F ∼ DP (αF0), F0 ∼ DP (κF ∗
0 ),

G0 ∼ DP (β0G
∗
0), G∗

0 ≡ GP (µ, C0), (3.4)
G1 ∼ DP (β1G

∗
1), G∗

1 ≡ GP (µ, C1),

where α, κ, β0, β1 are DP precision parameters and F ∗
0 is a known probability

measure on (X ,S). Here, F is assigned a DP prior with the base measure further
assigned a DP, so that realizations from F will correspond to random probability
measures. This prior for F is equivalent to the hierarchical DP (HDP) of Teh,
Jordan, Beal and Blei (2006) and similar to that proposed by Tomlinson (1998),
so a more concise notation would be F ∼ HDP (α, κ, F ∗

0 ). In addition, Gj , j =
0, 1, are assigned DP priors with the base measure chosen to correspond to a GP,
so that realizations from Gj will correspond to random functions. The prior for
Gj is equivalent to the FDP described in Section 2.1. However, we do not use
the FDP as a prior for the distribution of ηi directly.

3.2. Properties

Using the Sethuraman (1994) representation of the DP components in for-
mulation (3.1)−(3.4), with the Teh et al. (2006) HDP generalization, we obtain
the specification

ηi(x) =
∞∑

h=1

K(x, τh) {(1 − πih)Φ0,Z0i(τh) + πihΦ1,Z1i(τh)},

Pr(Z0i = k) = ν0k = ν ′
0k

∏
l<k

(1 − ν ′
0l), ν′

0k ∼ beta(1, β0),

Pr(Z1i = k) = ν1k = ν ′
1k

∏
l<k

(1 − ν ′
1l), ν′

1k ∼ beta(1, β1),

(3.5)
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πih = π′
ih

∏
l<h

(1 − π′
il), π′

ih ∼ beta
(

απ0h, α
(
1 −

∑
l≤h

π0l

))
,

π0h = π′
0h

∏
l<h

(1 − π′
0l), π′

0h ∼ beta(1, κ),

τh
i.i.d.∼ F ∗

0 , Φ0h
i.i.d.∼ GP (µ, C0), Φ1h

i.i.d.∼ GP (µ, C1).

To clarify, one generates an infinite sequence of kernel locations, τ = (τh, h =
1, . . . ,∞)′, by sampling independently from F ∗

0 . These locations are assigned
global probability weights, π0 = (π0h, h = 1, . . . ,∞)′, generated from a stick-
breaking process. To allow individuals to vary in the probabilities, while accom-
modating dependence, subject-specific weights, πi = (πih, h = 1, . . . ,∞)′, are
generated from a stick-breaking process centered on the global process. Finally,
coefficient functions {Φ0h(·), h = 1, . . . ,∞} and {Φ1h(·), h = 1, . . . ,∞} are gen-
erated by i.i.d. sampling from Gaussian processes with covariance functions C0

and C1, respectively. Individual i is assigned to the hth GP spike function with
stick-breaking probability ν0h and to the hth GP slab function with probability
ν1h.

Under the hierarchical prior (3.5), the functions for subjects i and j are equal
with probability

Pr(ηi = ηj |α, β0, β1) =
1

(1 + α)(1 + β0)(1 + β1)
. (3.6)

This property follows from (3.1) - (3.4) using the Blackwell and MacQueen (1973)
Pólya urn scheme. To clarify, note that, under specification (3.1), the functions
ηi and ηj are equivalent if and only if φ0i = φ0j , φ1i = φ1j and πi = πj . Following
the hierarchical prior (3.3), this occurs when two draws from F are equal, two
draws from G0 are equal and two draws from G1 are equal. Marginalizing out
the random components in F,G0 and G1, we have Pr(φ0i = φ0j) = 1/(1 + β0),
Pr(φ1i = φ1j) = 1/(1 + β1) and Pr(πi = πj) = 1/(1 + α). Since the priors are
independent, (3.6) follows directly.

Note that, although the prior does allow functions to be identical, global
clustering of functions is not the only mechanism for borrowing information.
The component f0ih(x) = K(x, τh)(1 − πih) can be viewed as the hth spike
basis function, with θ0ih = Φ0,Zi(τh) the basis coefficient. Similarly, f1ih(x) =
K(x, τh)πih is the hth slab basis function with coefficient θ1ih = Φ1,Zi(τh). Then
we have ηi(x) =

∑∞
h=1 θ0ihf0ih(x) + θ1ihf1ih(x), a linear combination of random

spike and slab functions. Because the spike coefficient functions are concentrated
in a neighborhood of 0, the hth component in this specification for ηi(x) is close
to 0 if πih ≈ 0. Due to the structure of our specification, for reasonable values of
the hyperparameters, πih will tend to be close to zero except when the index h
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is small, so that a few basis functions will dominate for each individual, with the
remaining effectively dropping out. Subjects having a dominant basis function
at the same location will be clustered together locally in a neighborhood of that
basis function. This in turn allows subjects to have locally similar curves, while
allowing these curves to deviate in other regions of X .

3.3. Finite approximation

To gain additional intuition and facilitate efficient posterior computation, it
is useful to consider a finite approximation. Focusing on the case in which F ∗

0 is
the uniform probability measure on the bounded interval, [a, b], we consider the
following approximation to F ∗

0 :

F̃0 =
J∑

j=1

π0jδτj , τj = a +
(b − a)j
J + 1

,

π0 ∼ DJ

(
κ

J
, . . . ,

κ

J

)
,

where π0 = (π01, . . . , π0J)′, and DJ is the finite J-dimensional Dirichlet distri-
bution. This form is obtained by first using a discrete uniform approximation to
F ∗

0 , and then relying on the result of Ishwaran and Zarepour (2002) to obtain a
finite Dirichlet approximation to the weights.

Treating τ = (τ1, . . . , τJ)′ as a prespecified vector of potential kernel loca-
tions, we then obtain the approximation

ηi(xi) =
J∑

h=1

K(xi, τh){(1 − πih)φi0(τh) + πihφi1(τh)},

πi ∼ F, F ∼ DP
(
αF̃0

)
,

(3.7)
φi0 ∼ G0, G0 ∼ DP

(
β0G

∗
0

)
,

φi1 ∼ G1, G1 ∼ DP
(
β1G

∗
1

)
,

where xi is an ni × 1 vector of locations at which ηi is observed, and G∗
0 and G∗

1

are spike and slab Gaussian Processes as defined at (3.4).
To illustrate the approach, we plot samples from the prior in Figure 1, focus-

ing on the case in which K(t, τj) = exp(−ψ||t−τj ||2), τ is a grid of equally-spaced
values between 1 and 35, J = 100, α = 1, and G0j corresponds to the standard
normal distribution. For small values of ψ, the curves are very smooth, while for
larger values they fluctuate quite rapidly. In the bottom row of Figure 1, we vary
β0 = β1 while fixing ψ = 0.05. Larger values of β decrease the probability of
clustering, with each observation having its own curve as β → ∞. Smaller values
of β increase the probability of clustering the spike and slab coefficients across
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Figure 1. Random draws from the prior distribution (3.7) for different values
of Ψ and β.

individuals. However, even when coefficients are clustered together, the HDP
specification of the spike and slab mixture allows local deviations of individual
curves (as in the β = 0.1 panel of Figure 1). The 1-35 range for the data is
motivated by applications to modeling of hormone curves in the menstrual cycle.

4. Posterior Computation

Focusing on (3.7), we propose a Metropolis within Gibbs algorithm for pos-
terior computation. To avoid computations for the infinite dimensional GP’s we
focus on the value of the GP at J finite realizations τ = (τ1, . . . , τJ), where
xi ⊂ τ , ∀ i. We assume as in (3.7) that φij ∼ Gj with Gj ∼ DP (βjG

∗
j )

and G∗
j = GP (0, Cj) for j ∈ {0, 1}. Therefore, the function φij evaluated at

points τ is a random variable φij(τ ) ∼ Gj(τ ) with Gj(τ ) ∼ DP (βjG
∗
j (τ )) and

G∗
j (τ ) ≡ NJ(0, Cj(τ )). For posterior computation, consider that:

yi ∼ Nni(ηi(xi),Σi),

ηi(xi) = Ki{(IJ − Si)φi0(τ ) + (Si)φi1(τ )},
zij ∼ Bernoulli(πij),

φi0(τ ) ∼ G0(τ ), φi1(τ ) ∼ G1(τ ), (4.1)
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G0(τ ) ∼ DP (β0G
∗
0(τ )), G1(τ ) ∼ DP (β1G

∗
1(τ )),

G∗
0(τ ) ≡ NJ(0, C0(τ )), G∗

1(τ ) ≡ NJ(0, C1(τ )),

πi ∼ DirichletJ(απ0), π0 ∼ DirichletJ(
κ

J
),

where Ki is an ni × J matrix with elements K(xi, τj), IJ is a J × J identity
matrix, zij is a latent indicator for whether the jth basis coefficient for the ith

curve comes from the GP spike (zij = 0) or from the GP slab (zij = 1), Si is a
J ×J matrix with diagonal elements zi = (zi1 . . . ziJ), Σi = σ2Ini and the vector
πi = (πi1 . . . πiJ).

The likelihood contribution for individual i is Li = Nni(yi | ηi(xi),Σi). Given
the observed data, our sampling algorithm proceeds by first allocating individual
curves to clusters and then sampling those cluster-specific functions from their
full conditional posterior using the methods of Escobar and West (1995) and
MacEachern and Müller (1998). The conditional prior distributions for φi0(τ )
and φi1(τ ) are

φi0(τ ) |Ψ(i)
j0 (τ ) ∼ β0

β0 + n − 1
NJ(φi0(τ ) |0, C0(τ )) +

∑
j

p
(i)
j0

β0 + n − 1
δΨj0(τ ), (4.2)

φi1(τ ) |Ψ(i)
j1 (τ ) ∼ β1

β1 + n − 1
NJ(φi1(τ ) |0, C1(τ )) +

∑
j

p
(i)
j1

β1 + n − 1
δΨj1(τ ), (4.3)

where Ψj0(τ ) and Ψj1(τ ) are the common basis coefficients for all curves falling
in the jth cluster for the spike and slab curves, respectively. Take pj0 and pj1 to be
the number of curves that fall in the jth cluster for the spike and slab components,
respectively. The superscript (i) signifies the vector obtained without the ith
observation. To update (4.2) and (4.3) with Li, we define yi0 = yi −KiSiφi1(τ )
and yi1 = yi − Ki(I − Si)φi0(τ ). Then we have

φi0(τ )|yi, Ψ
(i)
j0 (τ ) ∼ qi0N(φi0(τ ) |Ei0, Vi0) +

∑
j

qijδΨ
(i)
j0 (τ )

,

φi1(τ )|yi, Ψ
(i)
j1 (τ ) ∼ wi0N(φi1(τ )|Ei1, Vi1) +

∑
j

wijδΨ
(i)
j1 (τ )

,

where Vi0 ={(IJ−Si)′K′
iΣ

−1
i Ki(IJ−Si)+C0(τ )−1}−1, Ei0 =Vi0(IJ−Si)′K′

iΣ
−1
i yi0,

Vi1 ={S′
iK

′
iΣ

−1
i KiSi + C1(τ )−1}−1, and Ei1 = Vi1S′

iK
′
iΣ

−1
i yi1. The weights are

qi0 ∝ β0

∫
N(yi0|Ki(IJ − Si)φi0(τ ),Σi)dN(φi0(τ )|0, C0(τ ))

= β0
N(yi0|0,Σi)N(0 |0, C0(τ ))

N(Ei0|0, Vi0)
,
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qij ∝ p
(i)
0j N(yi0|Ki(IJ − Si)Ψ

(i)
j0 (τ ),Σi),

wi0 ∝ β1

∫
N(yi1|KiSiφi1(τ ),Σi)dN(φi1(τ )|0, C1(τ ))

= β1
N(yi1|0,Σi)N(0 |0, C1(τ ))

N(Ei1|0, Vi1)
,

wij ∝ p
(i)
1j N(yi1|KiSiΨ

(i)
j1 (τ ),Σi).

The Gibbs sampling proceeds by allocating basis coefficients from the spike
and the slab. Basis coefficients from the GP spike are clustered with other coef-
ficients with probability qij or are sampled from the posterior base distribution
with probability qi0. Similarly GP slab coefficients are clustered with other coef-
ficients with probability wij , or sampled from the posterior base with probability
wi0. The vector g0 = (g01 . . . g0n)′ indicates which cluster each of the spike
functions falls into, and the vector g1 = (g11 . . . g1n)′ indicates which cluster
each of the slab functions falls into. To improve mixing, we update the cluster-
specific coefficients using the approach of Bush and MacEachern (1996): Ψj0 ∼
NJ(E∗

j0, V
∗
j0) and Ψj1 ∼ NJ(E∗

j1, V
∗
j1), where V ∗

j0 = {C0(τ )−1 +
∑

h:g0h=j(IJ −
Sh)′K′

hΣ−1
h Kh(IJ − Sh)}−1, E∗

j0 = V ∗
j0

∑
h:g0h=j(IJ − Sh)′K′

hΣ−1
h y0h, V ∗

j1 =
{C1(τ )−1 +

∑
h:g1h=j S′

hK
′
hΣ−1

h KhSh}−1, E∗
j1 = V ∗

j1

∑
h:g1h=j S′

hK
′
hΣ−1

h y1h. We
update the precision parameters, β0 and β1, using the data augmentation ap-
proach of Escobar and West (1995).

The J-dimensional Dirichlet prior for πi is not conjugate with Bernoulli zij ,
so we introduce a Metropolis-Hastings step in which we draw a proposal value,
π∗

i , from the density:

q(π∗
i |π0, Zi = 1) = DirichletJ

(
π∗

i |απ01 + I(zi1 = 1), . . . , απ0J + I(ziJ = 1)
)
,

where I(·) is an indicator function equal to one if the statement · is true. We
accept π∗

i with probability r1; otherwise, we keep the value from the current (gth)
iteration, πg

i . The acceptance probability is:

r1 = min

(
1,

p(π∗
i |π0, Zi)q(π

g
i |π0, Zi = 1)

p(πg
i |π0, Zi)q(π∗

i |π0, Zi = 1)

)
,

where p(πi |π0, Zi) = Dirichlet(πi |απ0)
∏J

j=1 Bernoulli(zij |πij).
The indicator variable, zij , determining whether the jth basis coefficient for

function i falls in the spike or slab is sampled from a Bernoulli distribution with
parameter π̂ij = a/(a + b), where

a = πijN(yi |Ki{(IJ − S∗
i )φi0(τ ) + (S∗

i )φi1(τ )}, Σi)

b = (1 − πij)N(yi |Ki{(IJ − S∗∗
i )φi0(τ ) + (S∗∗

i )φi1(τ )}, Σi),
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where S∗
i = diag(z∗i ), z∗i = (zi1, . . . , zij−1, 1, zij+1, . . . , zJ), S∗∗

i = diag(z∗∗i ), and
z∗∗i = (zi1, . . . , zij−1, 0, zij+1, . . . , zJ).

A Gibbs step is not possible for updating π0 and instead we propose another
Metropolis-Hastings step. We sample the proposal values λ∗ = (λ∗

1 . . . λ∗
J−1)

′

from the proposal density NJ−1(λg, Σ∗), where λg are the values of λ from the
previous Gibbs iteration, Σ∗ = sIJ−1 and IJ−1 is an identity matrix. Sam-
pled parameters are transformed to π∗

0 through the function π∗
0j = hj(λ∗

j ) =
exp(λ∗

j )/(1+exp(λ∗
j ))(1−

∑j−1
h=1 π∗

0h), and q(π∗
0 |λg, Σ∗) is a modified logit-normal

distribution.
The acceptance probability for this Metropolis-Hastings step is given by:

r2 = min
(

1,
p(π∗

0 |πi)q(π
g
0 |λ

∗, Σ∗)
p(πg

0 |πi)q(π∗
0 |λ

g, Σ∗)

)
,

where p(π0 |πi) = Dirichlet(π0 |κ/J)
∏n

i=1 Dirichlet(πi |απ0). In implementing
the Metropolis step, we run the Gibbs-Metropolis algorithm for a period during
which we allow the proposal density variance, s, to vary in order to obtain an
acceptance probability of approximately 0.20. After this period, we fix the value
of s and implement our Metropolis within Gibbs algorithm.

5. Simulation Examples

We evaluated the approach using two small simulation studies. For the first
simulation, we generated curves for 50 individuals with half of the curves following
the function f(x) = 0 and half following the function f(x) = exp(0.38x)/1000.
The second simulation generated 15 curves from each of the three true mean
functions:

f1(x) = 0, f2(x) = − cos
( 5x

n + 1

)
, f3(x) = 10

(x − 10
n + 1

)2

The outcome was simulated at the locations x = 1, . . . , 20 with Gaussian random
noise added to the functions at each of the points. We let α = 1, β0 = 1, β1 = 1,
and κ = 1. The covariance functions were taken to be squared exponential:
C1(t, t′) = exp(−ψc(t− t′)2), C0(t, t′) = 0.01∗C1(t, t′), and K(t, t′) = exp(−ψk(t−
t′)2). We took ψc = 0.1 and ψk = 0.05 to allow the coefficient functions, φi0(τ )
and φi1(τ ), to vary considerably with location, while producing a smooth ηi. We
tuned the variance parameter for the Metropolis step for 1,000 iterations. We
then ran the algorithm for an additional 50,000 iterations, retaining every 50th

iteration for inference and discarding the initial 200 iterations as a burn-in period.
The MCMC algorithm converged rapidly after the tuning parameter was fixed.
However, we note that some label shifting did occur. Coefficients for points τs

and τs+h may have nearly equal ability to define a curve when h is small and,
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Figure 2. Simulated data (+’s) and posterior mean curves for the first sim-
ulation.

in this case, τs may be sampled from the GP slab for a period before τs+h is
sampled from the slab. This did not affect the convergence of η(τ ). Figure 2
shows the mean of each of the estimated functions for the first simulation, and
Figure 3 shows the estimated functions for the second. In both simulations, the
true trajectories were accurately characterized.

6. Application: Progesterone Trajectories

We applied our approach to a study of progesterone data previously analyzed
by Brumback and Rice (1998). The data consist of progesterone levels ascertained
through daily urine samples during the menstrual cycle. Fifty-one women pro-
vided samples over a total of 91 cycles, 22 of which were conceptive and 69 were
non-conceptive. Measurements were not complete and progesterone values were
missing for some days. Brumback and Rice (1998) use a mixed-effects model
to fit flexible smoothing splines to these data. We allowed progesterone curves
in conceptive and non-conceptive cycles to have separate nonparametric kernel
priors, by fitting the model in (4.1) separately for conceptive and non-conceptive
cycles.
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Figure 3. Simulated data (+’s) and posterior mean curves for the second
simulation.

The analysis was implemented as in the simulation examples of Section 4,
with τ chosen to include each day of the menstrual cycle relative to the day
of ovulation (days -8 to 15) and 10 additional equally space points over the
range [-7, 16]. We note that by borrowing information between functions, our
method is very useful for imputing functional form in the presence of missing
data. Figure 4 plots posterior mean functions for all 91 cycles and Figure 5
shows the posterior mean functions and 95% credible intervals for conceptive
and non-conceptive cycles alone. We demonstrate the plausibility of borrowing
information between curves while allowing local deviations in Figure 6, which
shows the posterior mean curve and observed data for four individuals. The data
for the four observations show little deviation between days -8 and -2, so the three
curves are locally clustered with high probability during these days. However,
between days 6 and 15 two of the curves exhibit local deviation from the other
two curves, in order to follow the observed data more closely.

Scientific inference often centers on assessing differences between posterior
functions during some duration. Such inference is difficult in Brumback and
Rice’s approach, relying on bootstrap re-sampling. The method proposed in this
paper is much more straightforward, and consists of comparing the proportion of
MCMC samples for one function that fall above or below the other function. We
compare the mean conceptive and non-conceptive curves at the beginning of the
cycle by comparing the functional value of these curves at days in the interval
[-8,0] and find the conceptive curve is uniformly higher than the non-conceptive
curve with posterior probability of 89.3%. Not surprisingly, at the end of the
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Figure 4. Individual posterior mean progesterone curves for conceptive (red)
and non-conceptive (black) cycles.

cycle in the interval [10, 15] the mean conceptive curve is higher with probability
94.4%.

7. Discussion

This article has proposed nonparametric Bayes methods for modeling ran-
dom functions, allowing individual curves to vary flexibly while adaptively bor-
rowing information between functions. We have implemented this method in
simulated data and to predict progesterone levels during the menstrual cycle.
However, it should prove useful in many applications involving functional data
on multiple individuals, a common problem in reproductive and environmental
research.

The proposed kernel-based nonparametric approach extends earlier approaches
that allowed only global clustering of curves. By incorporating an HDP for ba-
sis function selection, we allow global clustering of curves while retaining the
flexibility for local deviations between clustered curves. Further, by specifying
functions as a kernel mixture of the latent GP spike and slab functions, we lessen
our dependence on the covariance specification and diminish the tendency of the
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Figure 5. Posterior mean progesterone curve (solid line) and 95% credible
intervals (dashed lines) during conceptive cycles (black) and non-conceptive
cycles (red).

Figure 6. Posterior mean progesterone curves (solid lines) and observed
progesterone levels for four selected non-conceptive cycles. Estimated pro-
gesterone curves and observed data are linked by color.
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GPs to ‘chase’ data points. In future research it would be interesting to extend
the method to allow joint nonparametric modeling of functional predictors with
an outcome variable.
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