SELECTING THE NUMBER OF CHANGE-POINTS IN SEGMENTED LINE REGRESSION

Hyune-Ju Kim ${ }^{1,}$, Binbing Yu^{2}, and Eric J. Feuer ${ }^{3}$
${ }^{1}$ Syracuse University, ${ }^{2}$ National Institute of Aging, and ${ }^{3}$ National Cancer Institute

Supplementary Material

This note contains proofs for Theorems 3.2.1 and 3.2.2.

Appendix A: Proof of Theorem 3.2.1

Lemma A.1. Suppose that conditions (A1) and (A2) in Assumption 3.2.1 are satisfied and that $k^{*} \leq M$ for a positive fixed constant M. Then $0<c=c_{n}(i, j ; \alpha)=O(1 / \sqrt{n})$ when $j-i=O(1)$.

Lemma A.2. Suppose that the assumptions in Lemma A. 1 are satisfied. Then, for $i<k^{*}, P\left(A_{i, k * ; \alpha} \mid \kappa=k^{*}\right)$ converges to zero as $n \rightarrow \infty$.

Lemma A.3. Suppose that the assumptions in Lemma A. 1 are satisfied. Then, for $j>k^{*}, P\left(R_{k *, j ; \alpha} \mid \kappa=k^{*}\right)$ converges to zero as $n \rightarrow \infty$.

Proof of Theorem 3.2.1. First, note from (2) that

$$
\begin{aligned}
P\left(\hat{\kappa}<k^{*} \mid \kappa=k^{*}\right) & =\sum_{j=0}^{k^{*}-1} P\left(\hat{\kappa}=j \mid \kappa=k^{*}\right) \\
& \leq \sum_{j=0}^{k^{*}-1} \sum_{k_{0}=0}^{j} d_{k_{0}} P\left(A_{k_{0}, k * ; \alpha} \mid \kappa=k^{*}\right) \\
& \leq\left(\sum_{j=0}^{k^{*}-1} \sum_{k_{0}=0}^{j} d_{k_{0}}\right) \max _{i=0, \ldots, k^{*}-1} P\left(A_{i, k * ; \alpha} \mid \kappa=k^{*}\right) \\
& =g_{1}\left(k^{*}, M\right) \max _{i=0, \ldots, k^{*}-1} P\left(A_{i, k * ; \alpha} \mid \kappa=k^{*}\right),
\end{aligned}
$$

where $g_{1}\left(k^{*}, M\right)$ is a positive function of k^{*} and M. Lemma A. 2 then provides the result that the under-fitting probability converges to zero $n \rightarrow \infty$..

Now, based on (3), we see that

$$
\begin{aligned}
P\left(\hat{\kappa}>k^{*} \mid \kappa=k^{*}\right) & =\sum_{j=k^{*}+1}^{M} P\left(\hat{\kappa}=j \mid \kappa=k^{*}\right) \\
& \leq \sum_{j=k^{*}+1}^{M} \sum_{k_{1}=j}^{M} d_{k_{1}} P\left(R_{k *, k_{1} ; \alpha} \mid \kappa=k^{*}\right) \\
& \leq\left(\sum_{j=k^{*}+1}^{M} \sum_{k_{1}=j}^{M} d_{k_{1}}\right) \max _{j=k^{*}+1, \ldots, M} P\left(R_{k *, k_{1} ; \alpha} \mid \kappa=k^{*}\right) \\
& =g_{2}\left(k^{*}, M\right) \max _{j=k^{*}+1, \ldots, M} P\left(R_{k *, k_{1} ; \alpha} \mid \kappa=k^{*}\right),
\end{aligned}
$$

where $g_{2}\left(k^{*}, M\right)$ is a positive function of k^{*} and M. Lemma A. 3 then provides the result that the over-fitting probability also converges to zero as $n \rightarrow \infty$.

Proof of Lemma A.1. Note that in testing $H_{0}: \kappa=i$ against $H_{1}: \kappa=j$ for $i<j$,

$$
\begin{aligned}
\alpha & =P(R S S(i) \geq(1+c) R S S(j) \mid \kappa=i) \\
& =P_{i}\left(\frac{Z_{1, n}+Z_{2, n}+R_{n}}{\hat{\sigma}_{j}^{2} / \sigma_{0}^{2}} \geq \frac{n-2-2 j}{\sqrt{2(n-2-2 i)}} c\right),
\end{aligned}
$$

where $Z_{1, n}=\frac{R S S(i) / \sigma_{0}^{2}-(n-2-2 i)}{\sqrt{2(n-2-2 i)}}, Z_{2, n}=\frac{\sum_{l=1}^{n}\left(\epsilon_{-}^{2}-\sigma_{0}^{2}\right)}{n \sigma_{0}^{2}} \frac{n-2-2 j}{\sqrt{2(n-2-2 i)}}$, and

$$
R_{n}=\sqrt{\frac{n-2-2 i}{2}}\left(1-\frac{n-2-2 j}{n-2-2 i} \frac{\hat{\sigma}_{j}^{2}-\sum_{l=1}^{n} \epsilon_{l}^{2} / n-\sigma_{0}^{2}}{\sigma_{0}^{2}}\right) .
$$

Since $\hat{\sigma}_{j}^{2}-\sum_{l=1}^{n} \epsilon_{l}^{2} / n=O_{p}\left((\ln n)^{2} / n\right)$ for $j>i$ from Lemma 5.4 of Liu et al., $R_{n}=$ $\left.O_{p}\left((\ln n)^{2} / \sqrt{n}\right)\right)$. Since the $\hat{\tau}$'s are consistent under the null model of $\kappa=i$ by Proposition 5.1 of Liu et al. and $\hat{\sigma}_{j}^{2}$ converges to σ_{0}^{2} in probability, we see that $\left(Z_{1, n}+Z_{2, n}+R_{n}\right) /\left(\hat{\sigma}_{j}^{2} / \sigma_{0}^{2}\right)$ converges in distribution to a normal distribution with mean zero and finite variance. Thus for α fixed and i and j fixed, $c=O(1 / \sqrt{n})$.

Proof of Lemma A.2. Note that for $\hat{\sigma}_{i}^{2}=R S S(i) /(n-2-2 i)$ and $0<b_{n}=(1+c)(n-$ $\left.2-2 k^{*}\right) /(n-2-2 i)-1=O(1 / \sqrt{n})$,

$$
P\left(A_{i, k * ; \alpha} \mid \kappa=k^{*}\right)=P\left(\hat{\sigma}_{i}^{2} \leq\left(1+b_{n}\right) \hat{\sigma}_{k^{*}}^{2} \mid \kappa=k^{*}\right)
$$

$$
\begin{aligned}
& =P_{k^{*}}\left(\hat{\sigma}_{i}^{2}>\sigma_{0}^{2}+C, \hat{\sigma}_{i}^{2} \leq\left(1+b_{n}\right) \hat{\sigma}_{k^{*}}^{2}\right)+P_{k^{*}}\left(\hat{\sigma}_{i}^{2} \leq \sigma_{0}^{2}+C, \hat{\sigma}_{i}^{2} \leq\left(1+b_{n}\right) \hat{\sigma}_{k^{*}}^{2}\right) \\
& =P_{1}+P_{2}
\end{aligned}
$$

where C is a positive constant in Lemma 5.4 of Liu et al. (1997) for which $P_{k^{*}}\left(\hat{\sigma}_{i}^{2}>\right.$ $\left.\sigma_{0}^{2}+C\right) \rightarrow 1$ as $n \rightarrow \infty$. Since $\hat{\sigma}_{k^{*}}^{2}-\sigma_{0}^{2}=o_{p}(1), b_{n}=O(1 / \sqrt{n})$ and $C>0$, we get for $\kappa=k^{*}$,

$$
P_{1}=P_{k^{*}}\left(\hat{\sigma}_{i}^{2}>\sigma_{0}^{2}+C, \hat{\sigma}_{i}^{2} \leq\left(1+b_{n}\right) \hat{\sigma}_{k^{*}}^{2}\right) \leq P_{k^{*}}\left(\hat{\sigma}_{k^{*}}^{2}-\sigma_{0}^{2}>C-b_{n} \hat{\sigma}_{k^{*}}^{2}\right)
$$

which converges to zero. Also, for $i<k^{*}$,

$$
P_{2}=P_{k^{*}}\left(\hat{\sigma}_{i}^{2}<\sigma_{0}^{2}+C, \hat{\sigma}_{i}^{2} \leq\left(1+b_{n}\right) \hat{\sigma}_{k^{*}}^{2}\right) \leq P_{k^{*}}\left(\hat{\sigma}_{i}^{2}<\sigma_{0}^{2}+C\right),
$$

and thus P_{2} converges to zero by Lemma 5.4 of Liu et al.
Proof of Lemma A.3. Note that for b_{n} as in the proof of Lemma A.2,

$$
P\left(R_{k *, j ; \alpha} \mid \kappa=k^{*}\right)=P\left(\hat{\sigma}_{k^{*}}^{2}>\left(1+b_{n}\right) \hat{\sigma}_{j}^{2} \mid \kappa=k^{*}\right)=P_{k^{*}}\left(\hat{\sigma}_{k^{*}}^{2}-\hat{\sigma}_{j}^{2}>b_{n} \hat{\sigma}_{j}^{2}\right) .
$$

From Lemma 5.4 of Liu et al. (1997), for $j>k^{*}, 0<\hat{\sigma}_{k^{*}}^{2}-\hat{\sigma}_{j}^{2}=O_{p}\left((\ln n)^{2} / n\right)$ and $\hat{\sigma}_{j}^{2}=\sigma_{0}^{2}+o_{p}(1)$. Since $0<b_{n}=O(1 / \sqrt{n})$,

$$
P_{k^{*}}\left(\hat{\sigma}_{k^{*}}^{2}-\hat{\sigma}_{j}^{2}>b_{n} \hat{\sigma}_{j}^{2}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow 0
$$

Appendix B: Proof of Theorem 3.2.2

Lemma B.1. Suppose that conditions (C1), (C2) and (C3) in Assumption 3.2.2 are satisfied. Then the $\eta_{i}=\boldsymbol{\mu}^{* T}\left(I-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\mu}^{*}$ satisfy the followings:
(i) η_{i} is a decreasing function of i.
(ii) $1 / \eta_{k^{*}-1}=O(\ln n / n)$.

Lemma B.2. Suppose that the assumptions in Lemma B. 1 are satisfied. Then $c=c_{n}$ can be determined such that $c=o(1), \sqrt{n} c_{n}=O(\sqrt{\ln n})$ and $\alpha_{0} / M_{n}=1-\Phi(\sqrt{n} c)+o\left(1 / M_{n}\right)$, where Φ is the standard normal distribution function.

Lemma B.3. Suppose that the assumptions in Lemma B. 1 are satisfied. For $i<k^{*}$, $H_{k^{*}}\left(\boldsymbol{\tau}_{k^{*}}\right)-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)$ is idempotent.

Lemma B.4. Suppose that the assumptions in Lemma B. 1 are satisfied. For $i<k^{*}$,

$$
P\left(A_{i, k * ; \alpha} \mid \kappa=k^{*}\right) \leq P\left(Z_{i}+\frac{\mathbf{y}^{T}\left(B_{1}+B_{2}+B_{3}\right) \mathbf{y}}{2 \sigma_{0} \sqrt{\eta_{i}}}>\frac{\sqrt{\eta_{i}}}{2 \sigma_{0}}\right),
$$

where $B_{1}=H_{k^{*}}\left(\boldsymbol{\tau}_{k^{*}}\right)-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right), B_{2}=c\left(I-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right)\right), B_{3}=H_{i}\left(\hat{\boldsymbol{\tau}}_{i}\right)-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)$, and

$$
Z_{i}=\frac{-2 \boldsymbol{\mu}^{* T}\left(I-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\epsilon}}{2 \sigma_{0} \sqrt{\eta_{i}}}
$$

for $\boldsymbol{\epsilon}=\boldsymbol{y}-E\left(\boldsymbol{y} \mid \boldsymbol{x}, \kappa=k^{*}\right)$.
Lemma B.5. Suppose that the assumptions in Lemma B. 1 are satisfied. For $i<k^{*}$, $V_{i, n}=\mathbf{y}^{T}\left(B_{1}+B_{2}+B_{3}\right) \mathbf{y} /\left(2 \sigma_{0} \sqrt{\eta_{i}}\right)=O_{p}(\ln n)-d_{i, n}$, where $d_{i, n}$ is a positive constant.

Lemma B.6. For $j>k^{*}$,

$$
P\left(R_{k *, j ; \alpha} \mid \kappa=k^{*}\right) \leq P\left(Z_{j}^{R}+\frac{\mathbf{y}^{T}\left(B_{1}^{R}+B_{2}^{R}+B_{3}^{R}\right) \mathbf{y}}{2 \sigma_{0} \sqrt{\eta_{j}}}>\frac{\sqrt{\eta_{j}}}{2 \sigma_{0}}\right)
$$

where $B_{1}^{R}=H_{k^{*}}\left(\boldsymbol{\tau}_{k^{*}}\right)-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right), B_{2}^{R}=-c\left(I-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right)\right), B_{3}^{R}=H_{j}\left(\hat{\boldsymbol{\tau}}_{j}\right)-H_{j}\left(\boldsymbol{\tau}_{k^{*}}\right)$, and

$$
Z_{j}^{R}=\frac{-2 \boldsymbol{\mu}^{* T}\left(I-H_{j}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\epsilon}}{2 \sigma_{0} \sqrt{\eta_{j}}}
$$

for $\boldsymbol{\epsilon}=\boldsymbol{y}-E\left(\boldsymbol{y} \mid \boldsymbol{x}, \kappa=k^{*}\right)$. Also $V_{j, n}^{R}=\mathbf{y}^{T}\left(B_{1}^{R}+B_{2}^{R}+B_{3}^{R}\right) \mathbf{y} /\left(2 \sigma_{0} \sqrt{\eta_{j}}\right)=O_{p}(\ln n)-d_{j, n}^{R}$, where $d_{j, n}^{R}$ is a positive constant.

Proof of Theorem 3.2.2.

We first show that $P\left(\hat{\kappa}<k^{*} \mid \kappa=k^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$. Note that for $V_{i, n}=\mathbf{y}^{T}\left(B_{1}+\right.$ $\left.B_{2}+B_{3}\right) \mathbf{y} /\left(2 \sigma_{0} \sqrt{\eta_{i}}\right)\left(i<k^{*}\right)$,

$$
P\left(A_{i, k * ; \alpha} \mid \kappa=k^{*}\right) \leq P\left(Z_{i}+V_{i, n}+d_{i, n} \geq \sqrt{\eta_{i}} /\left(2 \sigma_{0}\right)+d_{i, n}\right)
$$

$$
\begin{aligned}
& =P\left(e^{\tilde{Z}_{i}+\tilde{V}_{i, n}} \geq e^{\sqrt{\tilde{\eta}_{i}} /\left(2 \sigma_{0}\right)}\right) \\
& \leq E\left(e^{\tilde{Z}_{i}+\tilde{\tilde{V}}_{i, n}}\right) / e^{\sqrt{\tilde{\eta}_{i}} /\left(2 \sigma_{0}\right)}
\end{aligned}
$$

where $\tilde{Z}_{i}=Z_{i} / \ln n, \tilde{V}_{i, n}=\left(V_{i, n}+d_{i, n}\right) / \ln n$, and $\sqrt{\tilde{\eta}_{i}}=\sqrt{\eta_{i}} / \ln n$, and the last inequality is obtained by Markov's inequality. Then,

$$
\begin{aligned}
P\left(\hat{\kappa}<k^{*} \mid \kappa=k^{*}\right) & =\sum_{j=0}^{k^{*}-1} P\left(\hat{\kappa}=j \mid \kappa=k^{*}\right) \\
& \leq \sum_{j=0}^{k^{*}-1} \sum_{k_{0}=0}^{j} d_{k_{0}} P\left(A_{k_{0}, k * ; \alpha} \mid \kappa=k^{*}\right) \\
& \leq\left(\sum_{j=0}^{k^{*}-1} \sum_{k_{0}=0}^{j} d_{k_{0}}\right)\left(\max _{i=0, \ldots, k^{*}-1} \frac{E\left(e^{\tilde{Z}_{i}+\tilde{V}_{i, n}}\right)}{\left.e^{\sqrt{\eta_{i} /\left(2 \sigma_{0}\right)}}\right)}\right. \\
& \leq k^{* k^{*}}\left(\max _{j=0, \ldots, k^{*}-1}\binom{M}{j}\right)\left(\max _{i=0, \ldots, k^{*}-1} \frac{E\left(e^{\tilde{Z}_{i}+\tilde{V}_{i, n}}\right.}{e^{\sqrt{\tilde{\eta}_{i} /\left(2 \sigma_{0}\right)}}}\right) \\
& \leq k^{* k^{*}} M^{k^{*}-1} \frac{\max _{i=0, \ldots, k^{*}-1} E\left(e^{\tilde{Z}_{i}+\tilde{V}_{i, n}}\right)}{\min _{i=0, \ldots, k^{*}-1} e^{\sqrt{\tilde{\eta}_{i} /\left(2 \sigma_{0}\right)}}} \\
& \leq k^{* k^{*}} \frac{M^{k^{*}-1}}{e^{\sqrt{\tilde{\eta}^{*} /\left(2 \sigma_{0}\right)}}} \max _{i=0, \ldots, k^{*}-1} E\left(e^{\tilde{Z}_{i}+\tilde{V}_{i, n}}\right) \\
& \leq g\left(k^{*}\right)\left(\frac{M}{\sqrt{\eta^{*}}}\right)^{k^{*}-1}\left(\frac{(\ln n)^{2}}{\sqrt{\eta^{*}}}\right)^{k^{*}-1} \max _{i=0, \ldots, k^{*}-1} E\left(e^{\tilde{Z}_{i}+\tilde{V}_{i, n}}\right),
\end{aligned}
$$

where $g\left(k^{*}\right)$ is a positive function of k^{*}. Since Z_{i} converges to a standard normal distribution and $\tilde{V}_{i, n}=O_{p}(1)$, and $\frac{(\ln n)^{2}}{\sqrt{\eta^{*}}}=o(1)$, the upper bound will converge to zero under a mild condition on M such as the one described in Assumption 3.2.2 (C3).

Then, using Lemma B.6, we can show that the over-fitting probability also converges to zero as $n \rightarrow \infty$.

Proof of Lemma B.1. Let $X_{i+1}(\boldsymbol{t})=\left(X_{i}(\boldsymbol{t}) \boldsymbol{x}_{i+1}(\boldsymbol{t})\right)$, where $\boldsymbol{x}_{i+1}(\boldsymbol{t})=\left(\left(x_{1}-t_{i+1}\right)^{+}, \ldots,\left(x_{n}-\right.\right.$ $\left.\left.t_{i+1}\right)^{+}\right)^{T}$. Note that $\eta_{i}=\boldsymbol{\mu}^{* T}\left(I-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\mu}^{*}$ is a decreasing function of i, which can be proved by showing that

$$
\left(I-H_{i}(\boldsymbol{t})\right)-\left(I-H_{i+1}(\boldsymbol{t})\right)=\left(I-H_{i}(\boldsymbol{t})\right)\left[\frac{\boldsymbol{x}_{i+1}(\boldsymbol{t}) \boldsymbol{x}_{i+1}^{T}(\boldsymbol{t})}{a_{i+1}^{22}}\right]\left(I-H_{i}(\boldsymbol{t})\right)>0
$$

where $a_{i+1}^{22}=\boldsymbol{x}_{i+1}^{T}(\boldsymbol{t})\left(I-H_{i}(\boldsymbol{t})\right) \boldsymbol{x}_{i+1}(\boldsymbol{t})$.

Thus, for $X_{k^{*}-1}=X_{k^{*}-1}\left(\boldsymbol{\tau}_{k^{*}}\right), \boldsymbol{x}_{k^{*}}=\boldsymbol{x}_{k^{*}}\left(\boldsymbol{\tau}_{k^{*}}\right), \boldsymbol{\mu}^{*}=\boldsymbol{\mu}\left(\boldsymbol{\tau}_{k^{*}}\right)$ and $H_{i}=H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)$,

$$
\begin{aligned}
\eta^{*} & =\min _{i<k^{*}} \eta_{i}=\eta_{k^{*}-1}=\left(\boldsymbol{\mu}^{*}\right)^{T}\left(I-H_{k^{*}-1}\right) \boldsymbol{\mu}^{*} \\
& =\left(\boldsymbol{\mu}^{*}\right)^{T}\left(I-H_{k^{*}}+\left(I-H_{k^{*}-1}\right)\left[\frac{\boldsymbol{x}_{k^{*}} \boldsymbol{x}_{k^{*}}^{T}}{a_{k^{*}}^{22}}\right]\left(I-H_{k^{*}-1}\right)\right) \boldsymbol{\mu}^{*} \\
& =\boldsymbol{\beta}^{T}\left(X_{k^{*}-1} \boldsymbol{x}_{k^{*}}\right)^{T}\left(I-H_{k^{*}-1}\right)\left[\frac{\boldsymbol{x}_{k^{*}} \boldsymbol{x}_{k^{*}}^{T}}{a_{k^{*}}^{22}}\right]\left(I-H_{k^{*}-1}\right)\left(X_{k^{*}-1} \boldsymbol{x}_{k^{*}}\right) \boldsymbol{\beta} \\
& =\delta_{k^{*}} a_{k^{*}}^{22} \delta_{k^{*}} \\
& =\delta_{k^{*}}^{2}\left[\boldsymbol{x}_{k^{*}}^{T}\left(I-H_{k^{*}-1}\right) \boldsymbol{x}_{k^{*}}\right] \\
& =\delta_{k^{*}}^{2} \sum_{m=l_{k^{*}+1}}^{n}\left\{\sum_{j=l_{k^{*}+1}}^{n}\left(x_{j}-\tau_{k^{*}}\right) b_{m j}\right\}\left(x_{m}-\tau_{k^{*}}\right),
\end{aligned}
$$

where $\left(x_{l_{k^{*}+1}}, \ldots, x_{n}\right)$ are the observations in $\left[\tau_{k^{*}}, 1\right]$ and $I-H_{k^{*}-1}=\left(b_{m j}\right)$. If we assume that there are at least $n / \ln n$ many observations in each segment of $\left[\tau_{i}, \tau_{i+1}\right)$ for $i=$ $0, \ldots, k^{*}$, which was motivated by Corollary 3.22 of Feder (1975), then we see that $\eta^{*} \geq$ $D_{1} n / \ln n$, for some positive constant $D_{1}>1$.

Proof of Lemma B.2. Recall that the test proposed in Kim et al. (2000) rejects $H_{0}: \kappa=i$ in favor of $H_{1}: \kappa=k^{*}$ at level α if $T=\operatorname{RSS}(i) / \operatorname{RSS}\left(k^{*}\right) \geq(1+c)$ for some $c=c_{n}\left(i, k^{*} ; \alpha\left(i, k^{*}\right)\right)>0$, where $R S S(i)=\mathbf{y}^{T}\left(I-H_{i}\left(\hat{\boldsymbol{\tau}}_{i}\right)\right) \mathbf{y}$ and $R S S\left(k^{*}\right)=$ $\mathbf{y}^{T}\left(I-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right)\right) \mathbf{y}$. Also, recall that $A_{i, k^{*} ; \alpha}$ is the event that $H_{0}: \kappa=i$ is not rejected at level α. Following the argument in the proof of Lemma A. 1 and that $\hat{\sigma}_{k^{*}}^{2}-\sigma_{0}^{2}=O_{p}(1 / \sqrt{n})$ in Feder (1975), we see that

$$
\frac{\alpha_{0}}{M_{n}}=P\left(R S S(i) \geq(1+c) R S S\left(k^{*}\right) \mid \kappa=i\right)=P\left(Z+o_{p}(1)>\sqrt{n} c\right)
$$

for a stable distribution Z. If $\sqrt{n} c=D_{2} \sqrt{\ln n}$ for some positive constant $D_{2}, 0<D_{2}<1$, we obtain that $\frac{d}{d n} \frac{1}{M_{n}}$ is proportional to $-1 /\left(n^{1+D_{2}^{2} / 2} \sqrt{\ln n}\right)$. If we let $\eta^{*}=D_{1}(n / \ln n)$ for some constant $D_{1}>1$, then we see that $\frac{d}{d n} \frac{1}{\sqrt{\eta^{*}}}$ is proportional to $-\sqrt{\ln n} /(n \sqrt{n})$. This implies that such a choice of c satisfies the condition of $M=M_{n}$ such that $M / \sqrt{\eta^{*}} \rightarrow 0$ as $n \rightarrow \infty$.

The proof of Lemma B.3, which is based on lengthy and straightforward matrix algebra, is omitted.

Proof of Lemma B.4.

$$
\begin{gathered}
P\left(A_{i, k * ; \alpha} \mid \kappa=k^{*}\right)=P_{k^{*}}\left[\mathbf{y}^{T}\left(I-H_{i}\left(\hat{\boldsymbol{\tau}}_{i}\right)\right) \mathbf{y}<(1+c) \mathbf{y}^{T}\left(I-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right)\right) \mathbf{y}\right] \\
=P_{k^{*}}\left[\mathbf{y}^{T}\left(I-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \mathbf{y}+\mathbf{y}^{T}\left(H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)-H_{i}\left(\hat{\boldsymbol{\tau}}_{i}\right)\right) \mathbf{y}\right. \\
\left.\left.<(1+c)\left\{\mathbf{y}^{T}\left(I-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right)\right) \mathbf{y}\right)\right\}\right] .
\end{gathered}
$$

Noting that $\mathbf{y}=\boldsymbol{\mu}^{*}+\boldsymbol{\epsilon}$ when $\kappa=k^{*}$ and $\left(I-H_{k^{*}}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\mu}^{*}=0$, the right hand side is equivalent to

$$
\begin{aligned}
& P_{k^{*}} {\left[2 \boldsymbol{\mu}^{* T}\left(I-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\epsilon}<-\boldsymbol{\mu}^{* T}\left(I-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\mu}^{*}-\boldsymbol{\epsilon}^{T}\left(H_{k^{*}}\left(\boldsymbol{\tau}_{k^{*}}\right)-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\epsilon}\right.} \\
&\left.\mathbf{y}^{T}\left(H_{k^{*}}\left(\boldsymbol{\tau}_{k^{*}}\right)-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right)\right) \mathbf{y}+c \mathbf{y}^{T}\left(I-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right)\right) \mathbf{y}+\mathbf{y}^{T}\left(H_{i}\left(\hat{\boldsymbol{\tau}}_{i}\right)-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \mathbf{y}\right] .
\end{aligned}
$$

Since $\boldsymbol{\epsilon}^{T}\left(H_{k^{*}}\left(\boldsymbol{\tau}_{k^{*}}\right)-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\epsilon}>0$ by Lemma A.3,

$$
\begin{aligned}
P\left(A_{i, k * ; \alpha} \mid \kappa=k^{*}\right) & \leq P\left(-2 \boldsymbol{\mu}^{* T}\left(I-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\epsilon}+\mathbf{y}^{T}\left(B_{1}+B_{2}+B_{3}\right) \mathbf{y}>\boldsymbol{\mu}^{* T}\left(I-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \boldsymbol{\mu}^{*}\right) \\
& =P\left(Z_{i}+\frac{\mathbf{y}^{T}\left(B_{1}+B_{2}+B_{3}\right) \mathbf{y}}{2 \sigma_{0} \sqrt{\eta_{i}}}>\frac{\sqrt{\eta_{i}}}{2 \sigma_{0}}\right)
\end{aligned}
$$

Proof of Lemma B.5.

(i) $\mathbf{y}^{T} B_{1} \mathbf{y} /\left(2 \sigma_{0} \sqrt{\eta_{i}}\right)=\mathbf{y}^{T}\left(H_{k^{*}}\left(\boldsymbol{\tau}_{k^{*}}\right)-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right)\right) \mathbf{y} /\left(2 \sigma_{0} \sqrt{\eta_{i}}\right)=O_{p}(\sqrt{\ln n})$. This can be obtained by using $\hat{\sigma}_{k^{*}}^{2}-\sigma_{0}^{2}=O_{p}(1 / \sqrt{n})$ and $1 / \sqrt{\eta_{i}} \leq 1 / \sqrt{\eta^{*}}=O(\sqrt{\ln n / n})$.
(ii) $\mathbf{y}^{T} B_{2} \mathbf{y} /\left(2 \sigma_{0} \sqrt{\eta_{i}}\right)=c \mathbf{y}^{T}\left(I-H_{k^{*}}\left(\hat{\boldsymbol{\tau}}_{k^{*}}\right)\right) \mathbf{y} /\left(2 \sigma_{0} \sqrt{\eta_{i}}\right)=O_{p}(\ln n)$ for a choice of c in Lemma B.2. This can be shown because $c \sqrt{n}=O(\sqrt{\ln n}), \sqrt{n / \eta_{i}}=O(\sqrt{\ln n})$, and $\hat{\sigma}_{k^{*}}^{2}$ is a consistent estimator of σ_{0}^{2}.
(iii)

$$
\begin{aligned}
\mathbf{y}^{T} B_{3} \mathbf{y} /\left(2 \sigma_{0} \sqrt{\eta_{i}}\right) & =\frac{\mathbf{y}^{T}\left(I-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \mathbf{y}}{2 \sigma_{0} \sqrt{\eta_{i}}}-\frac{\mathbf{y}^{T}\left(I-H_{i}\left(\hat{\boldsymbol{\tau}}_{i}\right)\right) \mathbf{y}}{2 \sigma_{0} \sqrt{\eta_{i}}} \\
& =\sqrt{\frac{n \sigma_{0}^{2}}{2 \eta_{i}}}\left(Z_{1, n}+Z_{2, n}\right)-\frac{E_{k^{*}}\left[Q_{2}\right]-E_{k^{*}}\left[Q_{1}\right]}{2 \sqrt{\eta_{i}} / \sigma_{0}}
\end{aligned}
$$

where $Q_{1}=\mathbf{y}^{T}\left(I-H_{i}\left(\boldsymbol{\tau}_{k^{*}}\right)\right) \mathbf{y} / \sigma_{0}^{2}, Q_{2}=\mathbf{y}^{T}\left(I-H_{i}\left(\hat{\boldsymbol{\tau}}_{i}\right)\right) \mathbf{y} / \sigma_{0}^{2}, Z_{1, n}=\left(Q_{1}-\right.$ $\left.E_{k^{*}}\left[Q_{1}\right]\right) / \sqrt{2 n}$, and $Z_{2, n}=\left(Q_{2}-E_{k^{*}}\left[Q_{2}\right]\right) / \sqrt{2 n}$. Matrix algebra shows that $\left(E_{k^{*}}\left[Q_{2}\right]-\right.$ $\left.E_{k^{*}}\left[Q_{1}\right]\right) /\left(2 \sqrt{\eta_{i}} / \sigma_{0}\right)=d_{i, n}+O(\sqrt{\ln n / n})$, where $d_{i, n}>0$. Since each of $Z_{1, n}$ and $Z_{2, n}$ converges to a standard normal distribution and $\sqrt{n / \eta_{i}}=O(\sqrt{\ln n}), \mathbf{y}^{T} B_{3} \mathbf{y} /\left(2 \sigma_{0} \sqrt{\eta_{i}}\right)=$ $O_{p}(\sqrt{\ln n})-d_{i, n}$.

Combining (i), (ii) and (iii), we obtain that $V_{i, n}=O_{p}(\ln n)-d_{i, n}$, where $d_{i, n}>0$.
Similar arguments used in the proofs of Lemma B. 4 and Lemma B. 5 would lead to Lemma B.6.

