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This note contains proofs for Theorems 3.2.1 and 3.2.2.

Appendix A: Proof of Theorem 3.2.1

Lemma A.1. Suppose that conditions (A1) and (A2) in Assumption 3.2.1 are satisfied

and that k∗ ≤ M for a positive fixed constant M . Then 0 < c = cn(i, j; α) = O(1/
√

n)

when j − i = O(1).

Lemma A.2. Suppose that the assumptions in Lemma A.1 are satisfied. Then, for

i < k∗, P (Ai,k∗;α|κ = k∗) converges to zero as n →∞.

Lemma A.3. Suppose that the assumptions in Lemma A.1 are satisfied. Then, for

j > k∗, P (Rk∗,j;α|κ = k∗) converges to zero as n →∞.

Proof of Theorem 3.2.1. First, note from (2) that

P (κ̂ < k∗ | κ = k∗) =
k∗−1∑

j=0

P (κ̂ = j | κ = k∗)

≤
k∗−1∑

j=0

j∑

k0=0

dk0P (Ak0,k∗;α |κ = k∗)

≤



k∗−1∑

j=0

j∑

k0=0

dk0


 max

i=0,...,k∗−1
P (Ai,k∗;α|κ = k∗)

= g1(k
∗,M) max

i=0,...,k∗−1
P (Ai,k∗;α|κ = k∗),
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where g1(k
∗,M) is a positive function of k∗ and M . Lemma A.2 then provides the result

that the under-fitting probability converges to zero n →∞..

Now, based on (3), we see that

P (κ̂ > k∗ | κ = k∗) =
M∑

j=k∗+1

P (κ̂ = j | κ = k∗)

≤
M∑

j=k∗+1

M∑

k1=j

dk1P (Rk∗,k1;α |κ = k∗)

≤



M∑

j=k∗+1

M∑

k1=j

dk1


 max

j=k∗+1,...,M
P (Rk∗,k1;α|κ = k∗)

= g2(k
∗,M) max

j=k∗+1,...,M
P (Rk∗,k1;α|κ = k∗),

where g2(k
∗,M) is a positive function of k∗ and M . Lemma A.3 then provides the result

that the over-fitting probability also converges to zero as n →∞.

Proof of Lemma A.1. Note that in testing H0 : κ = i against H1 : κ = j for i < j,

α = P (RSS(i) ≥ (1 + c)RSS(j) |κ = i)

= Pi


Z1,n + Z2,n + Rn

σ̂2
j /σ

2
0

≥ n− 2− 2j√
2(n− 2− 2i)

c


 ,

where Z1,n =
RSS(i)/σ2

0−(n−2−2i)√
2(n−2−2i)

, Z2,n =
∑n

l=1
(ε2l−σ2

0)

nσ2
0

n−2−2j√
2(n−2−2i)

, and

Rn =

√
n− 2− 2i

2

(
1− n− 2− 2j

n− 2− 2i

σ̂2
j −

∑n
l=1 ε2

l /n− σ2
0

σ2
0

)
.

Since σ̂2
j −

∑n
l=1 ε2

l /n = Op ((ln n)2/n) for j > i from Lemma 5.4 of Liu et al., Rn =

Op ((ln n)2/
√

n)) . Since the τ̂ ’s are consistent under the null model of κ = i by Proposition

5.1 of Liu et al. and σ̂2
j converges to σ2

0 in probability, we see that (Z1,n+Z2,n+Rn)/(σ̂2
j /σ

2
0)

converges in distribution to a normal distribution with mean zero and finite variance. Thus

for α fixed and i and j fixed, c = O(1/
√

n).

Proof of Lemma A.2. Note that for σ̂2
i = RSS(i)/(n−2−2i) and 0 < bn = (1+ c)(n−

2− 2k∗)/(n− 2− 2i)− 1 = O(1/
√

n),

P (Ai,k∗;α|κ = k∗) = P (σ̂2
i ≤ (1 + bn) σ̂2

k∗ |κ = k∗)
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= Pk∗(σ̂
2
i > σ2

0 + C, σ̂2
i ≤ (1 + bn) σ̂2

k∗) + Pk∗(σ̂
2
i ≤ σ2

0 + C, σ̂2
i ≤ (1 + bn) σ̂2

k∗)

= P1 + P2,

where C is a positive constant in Lemma 5.4 of Liu et al. (1997) for which Pk∗(σ̂
2
i >

σ2
0 + C) → 1 as n → ∞. Since σ̂2

k∗ − σ2
0 = op(1), bn = O(1/

√
n) and C > 0, we get for

κ = k∗,

P1 = Pk∗(σ̂
2
i > σ2

0 + C, σ̂2
i ≤ (1 + bn) σ̂2

k∗) ≤ Pk∗(σ̂
2
k∗ − σ2

0 > C − bnσ̂
2
k∗)

which converges to zero. Also, for i < k∗,

P2 = Pk∗(σ̂
2
i < σ2

0 + C, σ̂2
i ≤ (1 + bn) σ̂2

k∗) ≤ Pk∗(σ̂
2
i < σ2

0 + C),

and thus P2 converges to zero by Lemma 5.4 of Liu et al.

Proof of Lemma A.3. Note that for bn as in the proof of Lemma A.2,

P (Rk∗,j;α|κ = k∗) = P (σ̂2
k∗ > (1 + bn) σ̂2

j |κ = k∗) = Pk∗(σ̂
2
k∗ − σ̂2

j > bn σ̂2
j ).

From Lemma 5.4 of Liu et al. (1997), for j > k∗, 0 < σ̂2
k∗ − σ̂2

j = Op((ln n)2/n) and

σ̂2
j = σ2

0 + op(1). Since 0 < bn = O(1/
√

n),

Pk∗(σ̂
2
k∗ − σ̂2

j > bn σ̂2
j ) → 0 as n → 0.

Appendix B: Proof of Theorem 3.2.2

Lemma B.1. Suppose that conditions (C1), (C2) and (C3) in Assumption 3.2.2 are

satisfied. Then the ηi = µ∗T (I −Hi(τ k∗))µ
∗ satisfy the followings:

(i) ηi is a decreasing function of i.

(ii) 1/ηk∗−1 = O(ln n/n).
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Lemma B.2. Suppose that the assumptions in Lemma B.1 are satisfied. Then c = cn can

be determined such that c = o(1),
√

ncn = O(
√

ln n) and α0/Mn = 1−Φ(
√

n c)+o(1/Mn),

where Φ is the standard normal distribution function.

Lemma B.3. Suppose that the assumptions in Lemma B.1 are satisfied. For i < k∗,

Hk∗(τ k∗)−Hi(τ k∗) is idempotent.

Lemma B.4. Suppose that the assumptions in Lemma B.1 are satisfied. For i < k∗,

P (Ai,k∗;α|κ = k∗) ≤ P

(
Zi +

yT (B1 + B2 + B3)y

2σ0
√

ηi

>

√
ηi

2σ0

)
,

where B1 = Hk∗(τ k∗)−Hk∗(τ̂ k∗), B2 = c(I −Hk∗(τ̂ k∗)), B3 = Hi(τ̂ i)−Hi(τ k∗), and

Zi =
−2µ∗T (I −Hi(τ k∗))ε

2σ0
√

ηi

,

for ε = y − E(y|x, κ = k∗).

Lemma B.5. Suppose that the assumptions in Lemma B.1 are satisfied. For i < k∗,

Vi,n = yT (B1 + B2 + B3)y/(2σ0
√

ηi) = Op(ln n)− di,n, where di,n is a positive constant.

Lemma B.6. For j > k∗,

P (Rk∗,j;α|κ = k∗) ≤ P

(
ZR

j +
yT (BR

1 + BR
2 + BR

3 )y

2σ0
√

ηj

>

√
ηj

2σ0

)
,

where BR
1 = Hk∗(τ k∗)−Hk∗(τ̂ k∗), BR

2 = −c(I −Hk∗(τ̂ k∗)), BR
3 = Hj(τ̂ j)−Hj(τ k∗), and

ZR
j =

−2µ∗T (I −Hj(τ k∗))ε

2σ0
√

ηj

,

for ε = y−E(y|x, κ = k∗). Also V R
j,n = yT (BR

1 + BR
2 + BR

3 )y/(2σ0
√

ηj) = Op(ln n)− dR
j,n,

where dR
j,n is a positive constant.

Proof of Theorem 3.2.2.

We first show that P (κ̂ < k∗|κ = k∗) → 0 as n → ∞. Note that for Vi,n = yT (B1 +

B2 + B3)y/(2σ0
√

ηi) (i < k∗),

P (Ai,k∗;α |κ = k∗) ≤ P (Zi + Vi,n + di,n ≥ √
ηi/(2σ0) + di,n)
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= P (eZ̃i+Ṽi,n ≥ e
√

η̃i/(2σ0))

≤ E(eZ̃i+Ṽi,n)/e
√

η̃i/(2σ0),

where Z̃i = Zi/ ln n, Ṽi,n = (Vi,n + di,n)/ ln n, and
√

η̃i =
√

ηi/ ln n, and the last inequality

is obtained by Markov’s inequality. Then,

P (κ̂ < k∗ | κ = k∗) =
k∗−1∑

j=0

P (κ̂ = j | κ = k∗)

≤
k∗−1∑

j=0

j∑

k0=0

dk0P (Ak0,k∗;α |κ = k∗)

≤



k∗−1∑

j=0

j∑

k0=0

dk0





 max

i=0,...,k∗−1

E(eZ̃i+Ṽi,n)

e
√

η̃i/(2σ0)




≤ k∗k
∗

(
max

j=0,...,k∗−1

(
M

j

)) 
 max

i=0,...,k∗−1

E(eZ̃i+Ṽi,n)

e
√

η̃i/(2σ0)




≤ k∗k
∗

Mk∗−1 maxi=0,...,k∗−1 E(eZ̃i+Ṽi,n)

mini=0,...,k∗−1 e
√

η̃i/(2σ0)

≤ k∗k
∗ Mk∗−1

e
√

η̃∗/(2σ0)
max

i=0,...,k∗−1
E(eZ̃i+Ṽi,n)

≤ g(k∗)

(
M√
η∗

)k∗−1 (
(ln n)2

√
η∗

)k∗−1

max
i=0,...,k∗−1

E(eZ̃i+Ṽi,n),

where g(k∗) is a positive function of k∗. Since Zi converges to a standard normal distri-

bution and Ṽi,n = Op(1), and (ln n)2√
η∗ = o(1), the upper bound will converge to zero under

a mild condition on M such as the one described in Assumption 3.2.2 (C3).

Then, using Lemma B.6, we can show that the over-fitting probability also converges

to zero as n →∞.

Proof of Lemma B.1. Let Xi+1(t) = (Xi(t) xi+1(t)), where xi+1(t) = ((x1−ti+1)
+, . . . , (xn−

ti+1)
+)T . Note that ηi = µ∗T (I −Hi(τ k∗))µ

∗ is a decreasing function of i, which can be

proved by showing that

(I −Hi(t))− (I −Hi+1(t)) = (I −Hi(t))

[
xi+1(t)x

T
i+1(t)

a22
i+1

]
(I −Hi(t)) > 0,

where a22
i+1 = xT

i+1(t)(I −Hi(t))xi+1(t).
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Thus, for Xk∗−1 = Xk∗−1(τ k∗), xk∗ = xk∗(τ k∗), µ∗ = µ(τ k∗) and Hi = Hi(τ k∗),

η∗ = min
i<k∗

ηi = ηk∗−1 = (µ∗)T (I −Hk∗−1)µ
∗

= (µ∗)T

(
I −Hk∗ + (I −Hk∗−1)

[
xk∗x

T
k∗

a22
k∗

]
(I −Hk∗−1)

)
µ∗

= βT (Xk∗−1 xk∗)
T (I −Hk∗−1)

[
xk∗x

T
k∗

a22
k∗

]
(I −Hk∗−1) (Xk∗−1 xk∗) β

= δk∗a
22
k∗δk∗

= δ2
k∗

[
xT

k∗(I −Hk∗−1)xk∗
]

= δ2
k∗

n∑

m=lk∗+1





n∑

j=lk∗+1

(xj − τk∗)bmj



 (xm − τk∗),

where (xlk∗+1, . . . , xn) are the observations in [τk∗ , 1] and I−Hk∗−1 = (bmj) . If we assume

that there are at least n/ ln n many observations in each segment of [τi, τi+1) for i =

0, . . . , k∗, which was motivated by Corollary 3.22 of Feder (1975), then we see that η∗ ≥
D1n/ ln n, for some positive constant D1 > 1.

Proof of Lemma B.2. Recall that the test proposed in Kim et al. (2000) rejects

H0 : κ = i in favor of H1 : κ = k∗ at level α if T = RSS(i)/RSS(k∗) ≥ (1 + c)

for some c = cn(i, k∗; α(i, k∗)) > 0, where RSS(i) = yT (I − Hi(τ̂ i))y and RSS(k∗) =

yT (I −Hk∗(τ̂ k∗))y. Also, recall that Ai,k∗;α is the event that H0 : κ = i is not rejected at

level α. Following the argument in the proof of Lemma A.1 and that σ̂2
k∗−σ2

0 = Op(1/
√

n)

in Feder (1975), we see that

α0

Mn

= P (RSS(i) ≥ (1 + c)RSS(k∗)|κ = i) = P
(
Z + op(1) >

√
nc

)

for a stable distribution Z. If
√

n c = D2

√
ln n for some positive constant D2, 0 < D2 < 1,

we obtain that d
dn

1
Mn

is proportional to −1/(n1+D2
2/2
√

ln n). If we let η∗ = D1 (n/ ln n) for

some constant D1 > 1, then we see that d
dn

1√
η∗ is proportional to −√ln n/(n

√
n). This

implies that such a choice of c satisfies the condition of M = Mn such that M/
√

η∗ → 0

as n →∞.
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The proof of Lemma B.3, which is based on lengthy and straightforward matrix alge-

bra, is omitted.

Proof of Lemma B.4.

P (Ai,k∗;α|κ = k∗) = Pk∗
[
yT (I −Hi(τ̂ i))y < (1 + c) yT (I −Hk∗(τ̂ k∗))y

]

= Pk∗
[
yT (I −Hi(τ k∗))y + yT (Hi(τ k∗)−Hi(τ̂ i))y

< (1 + c)
{
yT (I −Hk∗(τ̂ k∗))y)

}]
.

Noting that y = µ∗ + ε when κ = k∗ and (I − Hk∗(τ k∗))µ
∗ = 0, the right hand side is

equivalent to

Pk∗
[

2µ∗T (I −Hi(τ k∗))ε < −µ∗T (I −Hi(τ k∗))µ
∗ − εT (Hk∗(τ k∗)−Hi(τ k∗))ε

yT (Hk∗(τ k∗)−Hk∗(τ̂ k∗))y + c yT (I −Hk∗(τ̂ k∗))y + yT (Hi(τ̂ i)−Hi(τ k∗))y
]
.

Since εT (Hk∗(τ k∗)−Hi(τ k∗))ε > 0 by Lemma A.3,

P (Ai,k∗;α|κ = k∗) ≤ P
(
−2µ∗T (I −Hi(τ k∗))ε + yT (B1 + B2 + B3)y > µ∗T (I −Hi(τ k∗))µ

∗)

= P

(
Zi +

yT (B1 + B2 + B3)y

2σ0
√

ηi

>

√
ηi

2σ0

)
.

Proof of Lemma B.5.

(i) yT B1y/(2σ0
√

ηi) = yT (Hk∗(τ k∗)−Hk∗(τ̂ k∗))y/(2σ0
√

ηi) = Op(
√

ln n). This can be

obtained by using σ̂2
k∗ − σ2

0 = Op(1/
√

n) and 1/
√

ηi ≤ 1/
√

η∗ = O(
√

ln n/n).

(ii) yT B2y/(2σ0
√

ηi) = c yT (I − Hk∗(τ̂ k∗))y/(2σ0
√

ηi) = Op(ln n) for a choice of c in

Lemma B.2. This can be shown because c
√

n = O(
√

ln n),
√

n/ηi = O(
√

ln n), and

σ̂2
k∗ is a consistent estimator of σ2

0.

(iii)

yT B3y/(2σ0
√

ηi) =
yT (I −Hi(τ k∗))y

2σ0
√

ηi

− yT (I −Hi(τ̂ i))y

2σ0
√

ηi

=

√√√√nσ2
0

2ηi

(Z1,n + Z2,n)− Ek∗ [Q2]− Ek∗ [Q1]

2
√

ηi/σ0

,
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where Q1 = yT (I − Hi(τ k∗))y/σ2
0, Q2 = yT (I − Hi(τ̂ i))y/σ2

0, Z1,n = (Q1 −
Ek∗ [Q1])/

√
2n, and Z2,n = (Q2−Ek∗ [Q2])/

√
2n. Matrix algebra shows that (Ek∗ [Q2]−

Ek∗ [Q1])/(2
√

ηi/σ0) = di,n +O(
√

ln n/n), where di,n > 0. Since each of Z1,n and Z2,n

converges to a standard normal distribution and
√

n/ηi = O(
√

ln n), yT B3y/(2σ0
√

ηi) =

Op(
√

ln n)− di,n.

Combining (i), (ii) and (iii), we obtain that Vi,n = Op(ln n)− di,n, where di,n > 0.

Similar arguments used in the proofs of Lemma B.4 and Lemma B.5 would lead to

Lemma B.6.


