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Abstract: The cumulative incidence function provides intuitive summary informa-

tion about competing risks data. Via a mixture decomposition of this function,

we study how covariates affect the cumulative incidence probability of a particular

failure type at a chosen time point. Without specifying the corresponding failure

time distribution, several inference methods are constructed based on imputation

and weighting approaches. Large sample properties of the proposed estimators are

derived, and their finite sample performances are examined via simulations. For

illustrative purposes, the proposed methods are applied to well-known heart trans-

plant data and compared with the analysis of Larson and Dinse (1985). In the

on-line Supplement, we also apply our methods to analyze the Taiwan nationwide

laboratory-confirmed severe acute respiratory syndrome (SARS) database.
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1. Introduction

Multiple events data are commonly seen in biomedical studies. Under the
framework of competing risks, subjects may fail from one of several different
causes. Let T be the failure time, and B̃ be the corresponding cause of failure
taking values from the set {1, . . . , J}. Competing risks data are usually summa-
rized by the following two quantities. One is the cause-specific hazard function

λj(t) = lim
∆t→0

Pr(T ∈ [t, t + ∆t), B̃ = j|T ≥ t)
∆t

,

which is the rate of occurrence for type-j failure in presence of all causes of failure.
The other is the cumulative incidence function, or the crude failure probability,

Fj(t) = Pr(T ≤ t, B̃ = j),

which measures the cumulative probability of developing type-j failure by time t.
Note that both quantities make no assumption (such as independence) about the
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relationship between the competing risks events. There is a relationship between
the two functions:

Fj(t) =
∫ t

0
S(u−)λj(u)du, (1.1)

where S(t) = Pr(T > t) = exp(−
∫ t
0

∑J
j=1 λj(u)du) and S(t−) = Pr(T ≥ t).

Since Fj(t) provides more direct information about the cumulative risk of the
failure type of interest, it is more easily explained to clinicians.

This paper considers regression analysis of the cumulative incidence function.
Different decompositions of Fj(t) lead to different regression models. Equation
(1.1) has been utilized by Cheng, Fine and Wei (1998) so that separate regres-
sion models for all causes of hazards are combined to make inference on Fj(t).
However, since the effect of a covariate on λj(t) can be very different from its
effect on Fj(t), such an indirect approach can be misleading if the interest is in
Fj(t). Also, the parameters in the models for the cause-specific hazards may lack
simple interpretation in terms of the cumulative incidence probabilities.

Another alternative is to model the whole cumulative incidence function for
a particular cause. Suppose that the first type of failure is of main interest. Fine
and Gray (1999) and Fine (2001) considered semi-parametric regression models
of the form

g(F1(t|z)) = h(t) + zT θ, (1.2)

where z is a p×1 vector of covariates, g(·) is a known link function mapping from
(0, 1) to (−∞,∞), and h(t) is an unknown monotone function. Model (1.2) can
also be explained in terms of a cure model based on the improper failure time

T1 = T · I(B̃ = 1) + ∞ · I(B̃ 6= 1).

Here a subject is said to be “cured” if one of the other competing events with
B̃ 6= 1 occurs earlier. For the choice of g(·), Fine and Gray (1999) considered
the complementary log-log transformation with g(u) = log{− log(1 − u)} that
corresponds to the proportional hazards assumption on T1. Fine (2001) sug-
gested the logit transformation g(u) = log{u/(1 − u)} that corresponds to the
proportional odds model on T1. The model formulation in (1.2), however, seems
somewhat restrictive. Specifically, when the model assumption holds, it follows
that g{F1(t|z1)} − g{F1(t|z2)} = (z1 − z2)T θ for all t, which means that the
cumulative incidence functions for subjects with different covariate values are
“parallel” over the entire time span after the transformation of g(·). Although
this drawback may be fixed by introducing time-varying covariates, the cure-
model representation still lacks interpretability. Based on the improper failure
time T1, one can defined its “hazard” as

λ̃1(t|z) = −d ln{1 − F1(t|z)}/ dt =
dF1(t|z)/dt

1 − F1(t − |z)
,
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where F1(t − |z) = Pr(T < t, B̃ = 1|z). Notice that the denominator in the last
identity, which indicates the at-risk probability for the first type of failure at time
t, can be expressed as Pr(T ≥ t, B̃ = 1|z) + Pr(B̃ 6= 1|z). That is, those subjects
who have failed from other causes will always be treated as “at-risk” later on,
which violates the common interpretation about the meaning of being “at-risk”
for the event with B̃ = 1.

The cumulative incidence function has also been analyzed based on the mix-
ture decomposition

Fj(t) = π∗
j (1 − Q∗

j (t)) (j = 1, . . . , J), (1.3)

where π∗
j = limt→∞ Fj(t) = Pr(B̃ = j) measures the marginal probability of

type-j failure, and 1 − Q∗
j (t) = Pr(T ≤ t|B̃ = j) describes the corresponding

latency distribution for the sub-population with B̃ = j. In the presence of
covariates, both components of Fj(t) on the right side of (1.3) can be modeled.
For example, Larson and Dinse (1985) assumed a multinomial logit model for π∗

j

and a parametric proportional hazard model for Q∗
j (t). Kuk (1992) considered a

similar mixture model, in which the latency component follows a semi-parametric
proportional hazard model. However it was found that the two components in
(1.3) could not be distinguished if the follow-up period is not long enough to
completely recover the tail information of Fj(t).

To remedy the problem of non-identifiability, Fine (1999) considered the
representation

Fj(t ∧ τ) = Pr(T ≤ τ, B̃ = j) Pr(T ≤ t|T ≤ τ, B̃ = j)
= Fj(τ) · {1 − Qj(t|τ)},

where U∧V = min(U, V ), and τ is a pre-determined time point located inside the
support of the observed time variable. Statistical inference on Fj(τ) and Qj(t|τ)
are no longer subject to the potential problem of non-identifiability, as in (1.3),
if τ is chosen properly to be located within the data range. In this article, we
adopt this decomposition and consider the regression formulation

Fj(t ∧ τ |Z) = Pr(T ≤ τ, B̃ = j|Z)Pr(T ≤ t|T ≤ τ, B̃ = j,Z)
= π(ZT β(τ))(1 − Qj,Z(t|τ)), (1.4)

where Z = [1, zT ]T is the (p+1)×1 vector of covariates, π(·) is a known function
mapping from (−∞,∞) to (0, 1), β(τ) is a (p + 1)× 1 vector of parameters, and
τ lies within the data support. As in Fine (1999), we assume that π(ZT β(τ))
follows a binary regression model, such as the logistic regression model. In com-
parison, Fine (1999) imposed a transformation model on Qj,Z(t|τ), while we leave
this latency distribution unspecified. Our main objective is to estimate β(τ),
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Figure 1. Illustration of possible Cumulative Incidence Functions (CIF) for
a binary Z variable.

which measures the covariate effect on the cumulative probability of incidence
by time τ .

Comparing the two regression formulations in (1.2) and (1.4), we find that
setting t = τ and g−1(x) = π(x), the model at (1.2) coincides with the one at (1.4)
and β(τ) = [h(τ), θT ]

T
. In other words, (1.4) fits the data at a single time point

τ while (1.2) considers modeling the entire time span. If (1.2) is appropriate,
then the last p components of β(τ) derived from (1.4) will be similar for different
choices of τ . Therefore results obtained from (1.4) provide a way to verify the
assumption of (1.2) or help choosing time-dependent covariates in that model.
Figure 1 provides a graphical illustration to highlight the difference of the two
models with a binary covariate. Figure 1a corresponds to the model at (1.2);
in Figures 1b and 1c however, F1(t|0) and F1(t|1) have a crossing point, which
violates model (1.2). Our model at (1.4) can include all three situations. It turns
out that the dependency of β(τ) on τ is not a subjective restriction, but provides
the flexibility to detect possible change of covariate effect on the cumulative
incidence probability at different time points.

The severe acute respiratory syndrome (SARS) provides an example that mo-
tivates model (1.4). SARS is an epidemic and life-threatening acute disease that
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resulted in a global outbreak in 2003. During the epidemic period, clinicians and
the general public were more concerned with finding out the characteristics of a
patient that would affect his/her probability of being discharged from the hospital
and alive at a target time point. In the Taiwan nationwide laboratory-confirmed
severe acute respiratory syndrome (SARS) database, an infected patient might
be discharged and alive (B̃ = 1) or have died in the hospital (B̃ = 2). The
original dataset contains complete information about the two outcomes and the
corresponding failure time. There were 258 infected patients, of whom 58 were
dead during the isolation period, and 200 were discharged from the hospital. In
the Supplementary report, Figures S.1-S.5 provide the nonparametric estimators
of F1(t) based on different levels of selected covariates. Notice that Figures S.4
and S.5, which show the estimated curves based on the covariates, Polymerase
Chain Reaction (PCR) test and SARS viral load, respectively, match Figure 1c.
The presence of crossing curves also suggests that the more general model at
(1.4) is more suitable for the SARS data than the one at (1.2). Detailed analyses
are presented in the on-line Supplement.

The major goal of this paper is to develop inference methods for estimating
β(τ) in the model at (1.4) in presence of censoring. In the SARS example,
interim analysis based on incomplete data would provide timely information and
hence would be helpful for decision making when the life-threatening disease was
still epidemic. To estimate β(τ), Fine (1999) proposed an estimating function,
which is robust in the sense that model mis-specification of Qj,Z(t|τ) does not
affect the estimation of β(τ). In contrast, the likelihood approach often involves
joint estimation and hence may lack of robustness if the other component of less
interest is mis-specified (Larson and Dinse (1985)). The proposed methods also
share the spirit of robustness as in Fine (1999), but we further consider efficiency
improvement. In Section 2, we apply two principles for handling missing data to
estimate β(τ). The first approach utilizes the technique of weighting to adjust
for the censoring bias, and can be considered as an extension of Fine’s method
(1999). The second uses imputation and extends the idea of Wang (2003) from
a nonparametric setting to the current regression framework. Technical results
are summarized in Section S4 of the on-line Supplement. Section 3 contains
simulation studies and data analysis. In Section 4, we give some concluding
remarks.

2. The Proposed Methods

2.1. Preliminary

Without loss of generality, we consider only two causes of failures, namely
B̃ = j (j = 1, 2). Suppose that the first type of failure is of main interest. Let
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{(Ti, B̃i,Zi) (i = 1, . . . , n)} be a random sample of (T, B̃,Z), with ∆ji = I(Ti ≤
τ, B̃i = j) (j = 1, 2). We assume the model at (1.4) such that

E[∆1i|Zi] = π(ZT
i β) =

exp(ZT
i β)

1 + exp(ZT
i β)

,

where β = β(τ) is the parameter of interest. With the complete data, the
likelihood function of β is given by

L̃(β) =
n∏

i=1

{
π(ZT

i β)
}∆1i {π̄(ZT

i β)}1−∆1i ,

where π̄(t) = 1 − π(t), and the resulting score function is

Ũ(β) =
n∑

i=1

{
∆1i − π(ZT

i β)
} πφ(ZT

i β)
π(ZT

i β)π̄(ZT
i β)

Zi, (2.1)

where πφ(t) = ∂π(t)/∂t.
Given right censoring, let C be the censoring time. Observed variables are

written as {(Xi, Bi,Zi) (i = 1, . . . , n)}, i.i.d. replications of (X,B,Z), where
X = T ∧ C and B = B̃ · I(T ≤ C). Note that the value of ∆1i may be unknown
due to censoring. It turns out that the likelihood function of β is very complicated
and involves specification of several nuisance functions such as Qj,Z(t|τ) defined
in (1.4), and Pr(T > t|B̃ = j, T > τ,Z) for j = 1, 2.

We modify the score function Ũ(β) by using two methods for handling miss-
ing data. The first approach utilizes observable proxies for ∆1i by applying a
weighting technique to adjust for their biases. The second approach imputes ∆1i

by an estimator of E(∆1i|Xi, Bi,Zi). We assume that, given Z, C is independent
of (T, B̃). To simplify the analysis, T and C are both continuous variables.

2.2. Inverse probability of weighting

Assume temporarily that the distribution of C does not depend on Z. We will
discuss possible modifications when this assumption does not hold. In presence
of censoring, we can find observable proxies for ∆1i and then apply the technique
of inverse probability of censoring weighting (IPCW) to correct their biases.
Specifically one has

E

(
I(X ≤ τ,B = 1)

G(X−)

∣∣∣∣Z)
= E

[
I(T ≤ τ, B̃ = 1)E

(
I(T ≤ C)
G(T−)

∣∣∣∣ T, B̃,Z
)∣∣∣∣Z]

= E
[
I(T ≤ τ, B̃ = 1)

∣∣∣Z]
= π(ZT β),
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E

[
I(X > τ)

G(τ)
+

I(X ≤ τ,B = 2)
G(X−)

∣∣∣∣Z]
= 1 − π(ZT β) = π̄(ZT β),

where G(t) = Pr(C > t) and G(t−) = Pr(C ≥ t). These moment conditions can
be utilized for construction of estimating functions of β. Let

H1i =
I(Xi ≤ τ,Bi = 1)

G(Xi−)
− π(ZT

i β),

H2i =
I(Xi > τ)

G(τ)
+

I(Xi ≤ τ,Bi = 2)
G(Xi−)

− π̄(ZT
i β),

for i = 1, . . . , n. Replacing G(t) with the Kaplan-Meier estimator

Ĝ(t) =
∏
u≤t

{
1 −

∑n
k=1 I(Xk = u,Bk = 0)∑n

k=1 I(Xk ≥ u)

}
, (2.2)

the resulting estimating functions are

Uw1(β) =
n∑

i=1

Ĥ1i
πφ(ZT

i β)
V1i

Zi, (2.3)

Uw2(β) =
n∑

i=1

Ĥ2i
πφ(ZT

i β)
V2i

Zi, (2.4)

where Ĥji are Hji (j = 1, 2) with G replaced by Ĝ, and Vji a weight function
that measures the variation of Ĥji. A natural choice for Vji is

Var(H1i) = E

(
I(Xi ≤ τ,Bi = 1)

G2(Xi−)

∣∣∣∣Zi

)
− π2(ZT

i β), (2.5)

but this involves unknown quantities and does not have an analytic expression.
Based on a first-order Taylor expansion, the first term in (2.5) can be approxi-
mated by

E

(
1

G(Xi−)

∣∣∣∣Zi

)
E

(
I(Xi ≤ τ,Bi = 1)

G(Xi−)

∣∣∣∣Zi

)
≈ E

(
1

G(Xi−)

)
π(ZT

i β). (2.6)

Although E (1/G(X−)) can be estimated by its moment estimator, this is sen-
sitive to the tail behavior of Ĝ and may be unstable. Hence we suggest using a
more robust quantity such as the sample median of {1/Ĝ(Xi−) : i = 1, . . . , n},
denoted as MG. Accordingly we use V1i = π(ZT

i β)(MG − π(ZT
i β)) and, by the

same argument, we take V2i = π̄(ZT
i β)(MG − π̄(ZT

i β)).
The estimating functions may be combined by constructing optimal esti-

mating functions as discussed in Heyde (1997, Chap. 2). If Hi = [H1i,H2i]T for
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i = 1, . . . , n, the optimal estimating function of β based on H = [HT
1 , . . . ,HT

n ]T

is

−E

(
∂HT

∂β

)
Σ−1

H
H =

n∑
i=1

[
−E

(
∂HT

i

∂β

)]
Σ−1

Hi
Hi,

where ΣH = E(HHT ) and

ΣHi = E(HiHT
i ) =

[
Var (H1i) −π(ZT

i β)π̄(ZT
i β)

Var (H2i)

]
.

Replacing Var (Hji) by Vji (j = 1, 2) whose forms have been suggested earlier,
we obtain the estimating function

Uw∗(β) =
n∑

i=1

[
(V2i − V3i)Ĥ1i − (V1i − V3i)Ĥ2i

] πφ(ZT
i β)

V1iV2i − V 2
3i

Zi, (2.7)

where V3i = π(ZT
i β)π̄(ZT

i β).
The estimating functions in (2.3), (2.4) and (2.7) all reduce to Ũ(β) in the

absence of censoring. With censored data, it is reasonable to suspect that Uw∗(β)
is the most efficient one since it utilizes more information. It is interesting to
note that the estimating function proposed by Fine (1999) actually has the form
of Uw1(β) with a different weight V1i = π(ZT

i β)π̄(ZT
i β) that does not account for

the effect of censoring. Via simulations, we will see how these different weight
assignments affect the resulting estimators of β.

Denote the solution to Uw∗(β) = 0 as β̂w∗ , and β̂wj as the solution to
Uwj(β) = 0 (j = 1, 2). In Sections S4.1 and S4.2 of the on-line Supplement, we
prove the asymptotic normality of Uw∗(β0) and β̂w∗ , where β0 is the true value
of β. Note that

n
1
2 (β̂w∗ − β0) = [Aw∗(β0)]

−1 n− 1
2 Uw∗(β0) + op(1),

where Aw∗(β0) = − limn→∞ (1/n)∂Uw∗ (β)

∂βT

∣∣∣
β=β0

. Hence n1/2(β̂w∗ − β0) has an

asymptotically normal distribution with mean 0 and covariance matrix

Vw∗ = [Aw∗(β0)]
−1 Γw∗ [Aw∗(β0)]

−1 , (2.8)

where Γw∗ is the asymptotic covariance matrix of n−1/2Uw∗(β0).
If the censoring variable C depends on discrete covariates, the Kaplan-Meier

estimator Ĝ(t) can be evaluated for each covariate group. If the related covariate
is continuous, we suggest two modification. In Section 2.3, we illustrate the
use of the kernel method to estimate Pr(C > t|Z = z). The other approach,
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which can avoid the curse of dimensionality, is to impose some parametric or
semi-parametric models that describe the covariate effect on C.

2.3. Imputation by conditional mean

Alternatively, to handle possible incompleteness of ∆1 = I(T ≤ τ, B̃ = 1)
due to censoring, one may impute its value by an estimate of the conditional
mean given the data. Specifically E[I(T ≤ τ, B̃ = 1)|X,B,Z] equals

I(X ≤ τ,B = 1) + I(X ≤ τ,B = 0)pz(X),

where pz(x) = Pr(T ≤ τ, B̃ = 1|T > x,Z = z). Two estimators of pz(x), denoted
p̂
(j)
z (x) (j = 1, 2), are proposed with specific forms given below. Replacing ∆1i

by

∆̂(j)
1i = I(Xi ≤ τ,Bi = 1) + I(Xi ≤ τ,Bi = 0)p̂(j)

z (Xi),

the score function (2.1) becomes

UIj(β) =
n∑

i=1

{
∆̂(j)

1i − π(ZT
i β)

} πφ(ZT
i β)

π(ZT
i β)π̄(ZT

i β)
Zi (2.9)

for j = 1, 2.
The proposed estimator p̂

(1)
z (x) is derived under a purely nonparametric

setting that generalizes the nonparametric results in Wang (2003) and Satten
and Datta (2001). Their ideas are roughly summarized in Section S4.3 of the
on-line Supplement. With covariates, it follows that

pz(x) = Pr(T ≤ τ, B̃ = 1|T > x,Z = z) =
Pr(x < T ≤ τ, B̃ = 1|Z = z)

Sz(x)
, (2.10)

where Sz(t) = Pr(T > t|Z = z) and Pr(x < T ≤ τ, B̃ = 1|Z = z) can be
estimated nonparametrically. When Z takes only discrete values, a model-free
estimator of pz(x) is given by

p̂(1)
z (x) =

1
Ŝz(x)

∑n
i=1 I(x < Xi ≤ τ,Bi = 1,Zi = z)/ Ĝ(Xi−)∑n

i=1 I(Zi = z)
, (2.11)

where Ĝ is obtained in (2.2) and

Ŝz(t) =
∏
u≤t

{
1 −

∑n
i=1 I(Xi = u,Bi 6= 0,Zi = z)∑n

i=1 I(Xi ≥ u,Zi = z)

}
. (2.12)
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A nonparametric way of handling continuous Z is to apply some smoothing tech-
niques. Using the idea of Dabrowska (1987), we obtain

p̂(1)
z (x)=

1∑n
i=1

[
I(Xi>x,Bi6=0)

Ĝ(Xi−)
+ I(Xi>X(m))

Ĝ(X(m))

]
Bn,i(z)

n∑
i=1

I(x<Xi≤τ,Bi =1)
Ĝ(Xi−)

Bn,i(z),

(2.13)
where X(m) is the largest observed failure time and Bn,i(z) is a random set of
non-negative weights. Candidates for Bn,i(z) include kernel-type weights, nearest
neighbors, and local linear weights. For example one can use the kernel type
weight

Bn,i(z) =
K(a−1

n (z − Zi))∑n
`=1 K(a−1

n (z − Z`))
, (2.14)

where K(·) is an appropriate kernel function and an is a sequence of bandwidths.
The proposed estimator p̂

(2)
z (x) utilizes the model assumption in (1.4). Specif-

ically equation (2.10) can be further expressed as pz(x;β, Q1,z(·|τ), Q2,z(·|τ), Sz(τ))
equal to

Q1,z(x|τ)π(zT β)
Q1,z(x|τ)π(zT β) + Q2,z(x|τ){1 − Sz(τ) − π(zT β)} + Sz(τ)

. (2.15)

This still involves nuisance functions, namely Qj,z(x|τ) (j = 1, 2) and Sz(τ).
Here we estimate these quantities in a nonparametric way. To simplify the pre-
sentation, we give the formula which includes both types of covariates by setting
Bn,i(z) = I(Zi = z) for discrete covariates, and use (2.14) for continuous covari-
ates. The proposed estimator Q̂1,z(t|τ) can be written as

∏
u≤t

1−
∑n

i=1 I(u = Xi ≤ τ,Bi = 1)Bn,i(z)∑n
i=1

[
I(u≤Xi≤τ,Bi =1)+I(u≤Xi≤τ,Bi =0)p̂(1)

Zi
(Xi)

]
Bn,i(z)

 ,

(2.16)
where the formula of p̂

(1)
Z (x) is given in (2.11) or (2.13) for discrete and continuous

Z, respectively. The estimator of Q2,z(t|τ), denoted as Q̂2,z(t|τ), has a similar
expression as Q̂1,z(t|τ) with Bi = 1 being replaced by Bi = 2 as appropriate.
The proposed estimator of Sz(τ) is∏

u≤τ

{
1 −

∑n
i=1 I(Xi = u,Bi 6= 0)Bn,i(z)∑n

i=1 I(Xi ≥ u)Bn,i(z)

}
. (2.17)

The solution to UIj(β) = 0 is denoted as β̂Ij (j = 1, 2). These two es-
timating functions differ in the way they estimate pz(x). Via simulations, we
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examine whether the second proposal, which utilizes model information, has bet-
ter performance. Since UI2(β) is a more complicated function of β, to simplify
the root-finding procedure we treat ∆̂(2)

1i as a fixed number in the mth itera-

tion by using pz(x; β̂
(m−1)

, Q̂1,z(·|τ), Q̂2,z(·|τ), Ŝz(τ)) instead, where β̂
(m−1)

is
the solution in the previous step. The final solution is obtained via an iterative
procedure with m = 1, 2, . . ., etc. The modified equation is a simpler function of
β and convergence can be achieved by only few steps of iterations.

In Section S4.4 of the on-line Supplement, we prove the asymptotic normality
of n−1/2UI1(β0) and that of n1/2(β̂I1 − β0), when Z is discrete. Similar argu-
ments can be applied to establish asymptotic properties of UI2(β0) and β̂I2. For
continuous covariates, asymptotic analysis is not provided since the method in-
volves kernel smoothing, a technical issue and not our main focus. However, due
to the complexity of the plugged-in nonparametric estimators for both types of
covariates, we suggest applying the bootstrap re-sampling technique for variance
estimation.

3. Numerical Studies

3.1. Simulation analysis

Finite-sample performance of the proposed estimators was evaluated via sim-
ulations. The covariate Z was generated first. Given Z, we generated ∆1 ∼
Bernoulli(π(β0 + β1Z)). Then, given the value of ∆1 we generated ∆2, and then
the failure time T given the values of (∆1, ∆2). Finally, we generated the cen-
soring time C which might censor the value of T and make (∆1, ∆2) missing.
The detailed data generation scheme is described in Section S3.1 of the on-line
Supplement. Here we set the value of τ to be 2.5 and the sample size n to be
100 or 300. The parameters of interest are (β0, β1). Besides the three proposed
estimators β̂w∗ , β̂I1 and β̂I2, for comparison we also evaluated the estimator pro-
posed by Fine (1999), denoted as β̂F , that solves UF (β) = 0. Recall that UF (β)
has the form of Uw1(β) with V1i = π(ZT

i β)π̄(ZT
i β). Based on 1, 000 replications,

we report the average bias (BS), the sample standard deviation (SD), the mean
squared errors (MSE), and the relative efficiency (RE), which is defined as the
ratio of the mean square errors of β̂F to that of the other three estimators. For
each case, we also evaluated the accuracy of the proposed variance estimators.
The criteria include the average of the proposed standard deviation estimates
(ASD), and the corresponding empirical coverage probabilities of nominal 95%
confidence intervals for β (CP) based on 1, 000 replications. The standard devi-
ation estimates of β̂w∗ and β̂F were computed using the formula given in (2.8),
which can handle both discrete and continuous types of Z. Although (2.8) can
be applied to estimate the standard deviation of β̂I1, it is complicated and be-
comes intractable analytically when Z is continuous. Thus for β̂Ij (j = 1, 2), we
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Table 1. Finite-sample comparison for four estimators of β1 = −1.24 when
the covariate Z is binary. The label BS denotes the average bias, SD denotes
the sample standard deviation, ASD denotes the average of the standard de-
viation estimates, CP denotes the empirical coverage probabilities of nominal
95% confidence intervals, MSE denotes the mean squared errors, and RE de-
notes the relative efficiency defined as the ratio of the MSE of β̂F to that of
the others.

Comparison criteria
Sample %

BS SD ASD CP (%) MSE RE
size censored Estimators

100 30

β̂w∗ -0.015 0.519 0.515 95.9 0.270 1.208

β̂I1 0.000 0.507 0.530 97.2 0.257 1.267

β̂I2 -0.001 0.507 0.523 97.0 0.257 1.267

β̂F 0.028 0.570 0.580 96.8 0.326 1

100 40

β̂w∗ -0.083 0.598 0.581 94.4 0.365 1.498

β̂I1 -0.061 0.579 0.613 96.7 0.339 1.610

β̂I2 -0.060 0.579 0.630 96.3 0.339 1.613

β̂F -0.111 0.731 0.739 96.9 0.546 1

300 30

β̂w∗ -0.011 0.306 0.297 95.1 0.094 1.208

β̂I1 -0.010 0.301 0.300 95.3 0.091 1.248

β̂I2 0.001 0.297 0.296 95.2 0.088 1.283

β̂F -0.013 0.336 0.334 96.0 0.113 1

300 40

β̂w∗ -0.028 0.338 0.338 94.8 0.115 1.411

β̂I1 -0.027 0.334 0.346 95.1 0.112 1.443

β̂I2 -0.026 0.333 0.340 95.3 0.112 1.447

β̂F -0.033 0.401 0.411 96.4 0.162 1

used the bootstrap re-sampling method for variance estimation. The procedure
is described in Section S3.2 of the Supplement.

Tables 1 lists the results when Z is binary. In Table S.4 and S.5 of the
Supplement, we report the results when Z follows standard normal and uniform
distributions, respectively. We only present the analysis for the estimation of
β1 since the results for β0 are similar. The results show that all the proposed
estimators were more efficient than β̂F . In the Supplement, we can see that this
phenomenon becomes more obvious when Z is continuous. We also observe a
larger bias of β̂F , especially when the sample size was small. We explain why β̂F

is sometimes not stable in the Supplement. For all cases, the empirical coverage
probabilities are close to the nominal level, and the values of ASD are close
to those of SD. In Table S.6 of the Supplement, we investigate how robust the
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proposed methods are when C actually depends on Z.

3.2. Analysis of heart transplant data

The proposed inference procedures were applied to the Stanford Heart Trans-
plant data (Crowley and Hu (1977, pp.28-29)). The main objective was to ex-
plore the relationship between certain covariates and the cause of death due to
transplant rejection. This dataset was analyzed by Larson and Dinse (1985) in
the context of a mixture model. Deaths were attributed to transplant rejection
(B̃ = 1), or to other causes (B̃ = 2). Among the 65 heart recipients, there were
29 rejected deaths (B = 1); 12 deaths were from other causes (B = 2), and 24
patients were censored (B = 0). The covariates included the waiting time from
acceptance to surgery (w); the age at surgery (age), and a continuous mismatch
score (m). Both m and age were transformed to have zero mean and unit vari-
ance, and w was recorded as a binary variable according to whether or not the
waiting time exceeded 31 days. The survival time T (in days) was measured from
the date of transplant surgery.

The Cox proportional hazard model was fit for the censoring time C on each
covariate separately, and all p-values are larger than 0.1. Hence we assume that
the distribution of C does not depend on the covariates. The quantity of interest
is F1(τ) = Pr(T ≤ τ, B̃ = 1), the cumulative incidence probability of rejection
by time τ . We set τ = 250, 500, 900, 1, 800 (days). For each covariate, we ran
simple logistic regression under the model

log
(

F1(τ)
1 − F1(τ)

)
= β0(τ) + β1(τ)Z, (3.1)

where Z is one of the covariates. The waiting time w was not significant at any
value of τ . The effect of the mismatch score m was insignificant for small values of
τ , and then became more obvious as τ increased. The covariate age is significant
for all values of τ . Excluding w, we fit a multiple logistic regression model which
contained age and m. In Table 2 we see that age still played an important role
for all values of τ , but the effect of mismatch score was insignificant when it was
considered jointly with age. We conclude that age was the determining factor of
F1(τ). That is, younger patients with transplant surgery were less likely to suffer
transplant rejection.

Larson and Dinse (1985) analyzed the same dataset under the framework of
model (1.3). They assumed that Pr(B̃ = 1), the incidence rate of dying from
transplant rejection, follows a logistic model and the latency distribution 1 −
Q∗

j (t) = Pr(T ≤ t|B̃ = j) follows a proportional hazard model for j = 1, 2. Their
analysis showed that no covariates had a significant effect on Pr(B̃ = 1), but
that both age and m were important for the latency distribution associated with
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Table 2. Multiple regression analysis for the heart transplant data. In each
cell, the estimated parameter and its standard error (in parenthesis) are
given. Items with p-values < 0.05 are marked by a.

Selected values of τ (days)
1800 900 500 250

Uw∗ int 0.545 (0.463) -0.037 (0.374) -0.653 (0.311) -1.016 (0.333)
age 1.561 (0.542)a 1.279 (0.382)a 0.970 (0.310)a 1.070 (0.351)a

m 0.727 (0.549) 0.786 (0.496) 0.691 (0.392) 0.672 (0.386)

UI1 int 0.139 (0.470) -0.136 (0.410) -0.775 (0.336) -1.087 (0.375)
age 1.357 (0.569)a 1.208 (0.518)a 0.927 (0.370)a 1.052 (0.442)a

m 0.665 (0.629) 0.790 (0.654) 0.563 (0.432) 0.601 (0.452)

UI2 int 0.137 (0.464) -0.152 (0.410) -0.760 (0.333) -1.076 (0.378)
age 1.329 (0.527)a 1.197 (0.458)a 0.921 (0.380)a 1.047 (0.438)a

m 0.598 (0.580) 0.696 (0.553) 0.543 (0.410) 0.588 (0.451)

UF int 0.420 (0.484) -0.061 (0.370) -0.657 (0.308) -1.002 (0.330)
age 1.624 (0.748)a 1.265 (0.412)a 0.949 (0.307)a 1.080 (0.356)a

m 0.416 (0.603) 0.570 (0.502) 0.613 (0.395) 0.634 (0.394)

transplant rejection. Our results agree with those of Larson and Dinse (1985) in
that age plays an important role for F1(t). However, Larson and Dinse (1985)
attributed the influence of age on F1(t) to the latency distribution 1 − Q∗

1(t);
in contrast, our analysis showed that the effect of age on F1(τ) persisted for all
selected values of τ . It is reasonable to expect that such effect might carry on to
affect Pr(B̃ = 1).

To investigate how the two analyses contradicted each other, we plot the
nonparametric estimators of F1(t) for different age groups in Figure 2. The
sample was partitioned into three age levels such that group j represents the
group with age ≤ 45, ∈ (45, 51), and > 51 for j = 1, 2, 3 respectively. The curves
of the two older groups differ at the beginning, but then grow closer in time. The
conclusion of Larson and Dinse (1985) that age affected the latency distribution
seems to make sense if only the two older groups are considered. However, the
youngest group had lower cumulative incidence probability of developing rejection
throughout the entire study period. This supports our conclusion.

Figure 2 shows that the curve of the youngest group has no crossing with
those of the older groups. We can formally verify the assumption of model (1.2)
that age affected F1(t) homogeneously over time. Consider the hypothesis, H0 :
β1(τ1) = β1(τ2) for any τ1 6= τ2, based on the model in (3.1). The proposed test
statistic is [β̂w∗,1(τ1) − β̂w∗,1(τ2)]/V̂ , where β̂w∗,1(τ1) and β̂w∗,1(τ2) are obtained
by solving Uw∗(β(τ)) = 0 with τ evaluated at τ1 and τ2, respectively, and V̂ is
the estimated standard error of β̂w∗,1(τ1)− β̂w∗,1(τ2). Related derivations are
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Figure 2. Estimated cumulative incidence functions of transplant rejection
for three groups with age≤ 45 (−·−·−), 45 <age≤ 51 (−−−) and 51 <age
(——).

given in Section S4.5 of the on-line Supplement. Choosing (τ1, τ2) = (1800, 500),
the resulting p-value is 0.289, which implies that (1.2) is also a reasonable model.

To simplify the presentation, we assume a logistic model for all values of
τ . The proposed method can be applied to different forms of π(·) for different
values of τ . To determine an appropriate link function at a given time point,
we choose the parametric link family g(µ; ρ) = log { [(1/(1 − µ))ρ − 1]/ ρ}, which
includes the logistic model as the special case with ρ = 1. Testing the goodness-
of-fit for the logistic model is equivalent to testing ρ = 1 under the more general
family. Here we adopt the strategy proposed by Pregibon (1980) to implement
model checking. His idea is based on applying a Taylor series expansion to g(µ; ρ)
around ρ = 1, the hypothesized value. It follows that

g(µ; ρ) ' g(µ; 1) + (ρ − 1)
{

∂

∂ρ
g(u; ρ)

}
ρ=1

,

= ln[
µ

1 − µ
] − (ρ − 1)

[ln(1 − µ) + µ]
µ

.

The above derivations show that the correct link function g(µ; ρ) = ZT β can be
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approximated by

g(µ; 1) = ZT β + (ρ − 1)
[ln(1 − µ) + µ]

µ
. (3.2)

Let µ̂ be the estimated value of µ evaluated under the null model with ρ = 1.
Equation (3.2) can be viewed as a logistic model based on covariates [Z, [ln(1 −
µ̂) + µ̂]/µ̂] with the corresponding parameters γT = [βT , ρ − 1]. To test the hy-
pothesis, H0 : ρ = 1, we consider the test statistic, W = n−1UT

w∗(γ̂)Γ̂−1
w∗Uw∗(γ̂),

where γ̂ is evaluated under the null hypothesis and Γ̂w∗ is the estimated covari-
ance matrix of n−1/2Uw∗(γ̂). The result in Section S4.1 of the on-line Supplement
can be applied to show that under H0, W is asymptotically chi-square with one
degree of freedom. For four selected time points 1,800, 900, 500 and 250, the
resulting values of W are 7.341, 3.443, 2.025 and 0.737 respectively, suggesting
that the logistic link becomes less suitable for larger τ . This also suggests that a
different form of the link function should be considered for modeling the overall
probability of dying due to transplant rejection, namely Pr(B̃ = 1).

4. Concluding Remarks

In this article, we suggest inverse probability of censoring weighting and
imputation for handling missing responses in the analysis of a logistic regres-
sion model. These approaches have been used by Jung (1996) and Subramanian
(2001) for estimating the long-term survival rate without competing risks. The
proposed estimating function Uw∗(β) further considers efficiency improvement
by utilizing more data information in presence of censoring. The imputation ap-
proach had better performance in our simulations, but it also involved estimating
more nuisance quantities. We have demonstrated that these nuisance functions
can be handled nonparametrically by applying the results of Wang (2003) to the
current regression setting which, however, may need to use smoothing techniques
and hence is quite technically involved. Furthermore if the dimension of the con-
tinuous covariates is high, kernel smoothing may not work well unless the sample
size is large. In such a case, one may try to reduce the dimension of Z based on
a preliminary analysis, or impose additional model assumptions on the latency
distributions.

Now we discuss the inverse probability of censoring weighting method fur-
ther. We propose applying the weighting technique directly to two proxies of the
response ∆1i, namely I(Xi ≤ τ,Bi = j) (j = 1, 2). Alternatively the weighting
scheme can be applied to the mean-corrected response, ∆1i − π(ZT

i β). The lat-
ter method has been generalized by Robins and Rotnitzky (1992) for efficiency
improvement. Specifically, they proposed the so-called augmented inverse proba-
bility of censoring weighting (AIPCW) method by adding an augmented term in
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the original weighted estimating function. Applying their idea to our problem,
we obtain

UA(β) =
n∑

i=1

I(Bi 6= 0)
G(Xi−)

[∆1i − π(ZT
i β)]

π(ZT
i β)

π(ZT
i β)π̄(ZT

i β)
Zi + Ai(e,G), (4.1)

where Ai(e, G) =
∫ Xi

0 e(u,Zi)/G(u)dMC,i(u) is the augmented term in which
e(u,Z) = E(∆1 − π(ZT β)|T ≥ u,Z) = pZ(u) − π(ZT β), with pZ(u) defined
in (2.10) and dMC,i(u) = I(Xi = u,Bi = 0) − I(Xi ≥ u)λC(u)du, with λC(u)
denoting the hazard function of the censoring variable C. Notice that the first
term of UA(β) only involves uncensored observations. The second component
Ai(e,G) is a mean-zero augmented term contributed from subject i if censored.
Robins and Rotnitzky (1992) have shown that the AIPCW method possesses
attractive properties such as local efficiency and double robustness. The book
by Tsiatis (2006) contains more detailed discussions about this method. No-
tice that Ai(e,G) involves the conditional incidence probability pZ(u) which also
appears in the proposed imputation approach. This implies that we can view
UA(β) as a way of combining the methods of weighting and imputation. Despite
the aforementioned advantages, a crucial drawback of UA(β) is that its validity
depends on the condition that E(I(B 6= 0)/G(X−)|Z) = 1 for all Z. It is easy
to show that if the support of C is shorter than the support of T , E(I(B 6=
0)/G(X−)|Z) = Pr(T ≤ τC |Z) < 1, where τC = sup{t : Pr(C > t) > 0}. Due to
this constraint, the application of the AIPCW method to our problem is limited.

For the imputation method, we suggest imputing ∆1i by its conditional mean
or the corresponding estimator. The so-called “multiple imputation” approach is
another option. Specifically we can replace a missing value of ∆1i by a random
variable generated from the conditional distribution of ∆1i given the observed
data (X,B,Z), which is a Bernoulli distribution with success probability equal
to the estimated value of pZ(X) defined in (2.10). Subsequent analysis is carried
out by treating the imputed sample as uncensored. The imputation procedure
is repeated many times and the corresponding estimates of β are averaged to
obtain the final estimate.
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