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Figure 2: The true density of the first example.

A Illustrations

First example. Figure 2 shows a product density with monotonic marginals.
The density is f(x1, x2) = g(x1)g(x2), where g(t) = (et − 1)/(e − 2)I[0,1](t).
We generated a sample of 300 from the distribution of this density. We took
the the resolution parameter of the dyadic histogram to be J = (4, 4). Fig-
ure 3 shows the histogram with 24 = 16 equispaced bins in each direction.
This histogram corresponds to the choice α = 0 of the resolution parame-
ter and thus the partition of this histogram is the finest allowed partition.
Figure 4 shows the dyadic histogram with α = 0.025.

One can see that the partition of the dyadic histogram has been adapted
to the underlying distribution. The bins around the mode have the finest
allowed resolution, but in the tails the small bins have been combined to
reach optimal larger bins. The small bins in the tails have been joined mostly
along the coordinate axis.

Second example. Figure 5 shows a density which is constant in the x-
direction and monotonic in the y-direction. This is a prototypic example
of a density which has anisotropic smoothness. The density is f(x1, x2) =
g(x2)I[0,1]×[0,1](x1, x2), where g(t) = (et − 1)/(e− 2). We generated a sample
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Figure 3: The dyadic histogram with α = 0 for the first example.
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Figure 4: The dyadic histogram with α = 0.025 for the first example.
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Figure 5: The true density of the second example.

of 300 from the distribution of this density. We took the the resolution
parameter of the dyadic histogram to be J = (4, 4). Figure 6 shows the
histogram with 24 = 16 equispaced bins in each direction. This histogram
corresponds to the choice α = 0 of the resolution parameter. Figure 7 shows
the dyadic histogram with α = 0.05.

One can see that the partition of the dyadic histogram contains splits
only in the y-direction: the anisotropicity of the underlying density has been
detected.

B Oracle inequality

B.1 General setting

We will state an oracle inequality in a general setting, in order to simplify
the notation and exposition. We denote

f̂n,α(x) = f̃
(

x, Λ̂n,α

)

, x ∈ Rd, (51)

where
f̃(x,Λ) =

∑

φ∈D

λφφ(x), x ∈ Rd, (52)
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Figure 6: The dyadic histogram with α = 0 for the second example.
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Figure 7: The dyadic histogram with α = 0.05 for the second example.
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where D ⊂ L2([0, 1]d) is a collection of functions, we will assume that D
has finite cardinality, and Λ = (λφ)φ∈D ∈ RD gives the coefficients of the
expansion,

Λ̂n,α = argminΛ∈K
En(Λ, α), (53)

En(Λ, α) = γn

(

f̃(·,Λ)
)

+ α ·D(Λ),

where γn is defined in (4), α ≥ 0,

D(Λ) = #{λφ : λφ 6= 0}, (54)

and K ⊂ RD.

Theorem 2 We have for the estimator f̂n,α defined in (51), based on i.i.d. ob-
servationsX1, . . . , Xn from the distribution of a continuous density f : [0, 1]d →
R, that

Ef

∥

∥

∥
f̂n,αn

− f
∥

∥

∥

2

2
1Ω̃ ≤ C1 inf

Λ∈K0

K (f,Λ, αn) + C2n
−1, (55)

where

K(f,Λ, α) =
∥

∥

∥
f̃( · ,Λ)− f

∥

∥

∥

2

2
+ α ·D(Λ), (56)

K0 =
{

Λ ∈ K : ‖f̃(·,Λ)‖∞ ≤ 2B∞

}

, (57)

where B∞ > ‖f‖∞ is a positive constant.

αn = CLB∞
loge(#D)

n
, (58)

where CL, C1, C2 are positive constants, and 1Ω̃ is the indicator of the event

Ω̃ =
(

‖f̂n,αn
‖∞ ≤ 2B∞

)

. (59)

B.2 Proof of Theorem 2

Denote f̂ = f̂n,αn
and Λ̂ = Λ̂n,αn

. We condition on the set Ω̃ so that Λ̂ ∈ K0.
Let f be the true density and let Λ0 ∈ K0. Denote

ζ = C1K(f,Λ0, αn),

where C1 is a positive constant to be chosen later. We have that

E‖f̂ − f‖2
2

=

∫ ∞

0

P
(

‖f̂ − f‖2
2 > t

)

dt

≤ ζ +

∫ ∞

ζ

P
(

‖f̂ − f‖2
2 > t

)

dt

= ζ + C2n
−1

∫ ∞

0

P
(

‖f̂ − f‖2
2 > C2n

−1t+ ζ
)

dt, (60)
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where C2 is a positive constant to be chosen later. Let a > 0. Now

A
def
=

(

‖f̂ − f‖2
2 > C2n

−1t+ ζ
)

=
(

(a+ 1)‖f̂ − f‖2
2

> a‖f̂ − f‖2
2 + C1K(f,Λ0, αn) + C2n

−1t
)

. (61)

Lemma 6 implies that the theoretical error-complexity of the minimization es-
timator may be bounded by the theoretical error-complexity of f 0 = f̃(·,Λ0),
with the additional empirical term:

K(f, Λ̂, αn) ≤ K(f,Λ0, αn) + 2νn

(

f̂ − f 0
)

⇔ ‖f̂ − f‖2
2 ≤ K(f,Λ0, αn) − αnD(Λ̂) + 2νn

(

f̂ − f 0
)

.

Thus we may continue (61) with

A ⊂

(

2νn

(

f̂ − f 0
)

>
a

a + 1
‖f̂ − f‖2

2 + αnD(Λ̂)

+

(

C1

a + 1
− 1

)

K(f,Λ0, αn) +
C2

a+ 1
n−1t

)

⊂
(

νn

(

f̂ − f 0
)

> w(Λ̂)ξ
)

⊂

(

sup
Λ∈K0

νn(f̃(·,Λ)) − νn(f 0)

w(Λ)
> ξ

)

def
= B,

where we used the fact that on Ω̃, Λ̂ ∈ K0, and we denote

ξ =
1

2
min

{

C1

a + 1
− 1,

a

a+ 1

}

,

w(Λ) =
∥

∥

∥
f̃(·,Λ) − f

∥

∥

∥

2

2
+
∥

∥f − f 0
∥

∥

2

2
+
τ(Λ)

2n
,

τ(Λ) = Cτ

[

nαn

(

Cτ,1D(Λ0) + Cτ,2D(Λ)
)

+ t
]

, (62)

Cτ =
1

ξ

C2

a+ 1
, Cτ,1 =

C1 − a− 1

C2
, Cτ,2 =

a+ 1

C2
.

We need to choose C1, C2, and a so that 2C−1
τ ≤ ξ2. This inequality will be

needed in (71). This choice is possible: we take 2(a + 1)/C2 ≤ ξ. We need
also C1/(a+ 1) − 1 > 0 to guarantee ξ > 0. We have

P (A) ≤ P (B). (63)
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We prove that
P (B) ≤ C exp{−t(CLB∞)−1}, (64)

where C and CL are positive constants. This proves the theorem, when we
combine (60) and (63).

Proof of (64). For Φ ⊂ D, let K0,Φ be the set of coefficients in K0 which
are non-zero exactly at the positions given by set Φ:

K0,Φ = {Λ ∈ K0 : λφ 6= 0 if and only if φ ∈ Φ} ,

where we use again the notation Λ = (λφ)φ∈D. Let for l = 1, 2, . . .,

Dl = {Φ ⊂ D : #Φ = l}

be the set of subsets of D of cardinality l. We may write

K0 =

∞
⋃

l=1

⋃

Φ∈Dl

K0,Φ.

That is, we make a countable partition of K0 and each member of the parti-
tion is the set of vectors Λ which have exactly l non-zero elements. We have
that

B ⊂

∞
⋃

l=1

⋃

Φ∈Dl

BΦ,

where

BΦ =

(

sup
Λ∈K0,Φ

νn(f̃(·,Λ)) − νn(f 0)

w(Λ)
> ξ

)

.

For Φ ∈ Dl,
P (BΦ) ≤ 2 exp{−(CLB∞)−1(t+ lL)}, (65)

where CL is a positive constant defined in (75) and

L = CLB∞ loge(#D).

We prove (65) below. We have that

# Dl =

(

#D
l

)

≤

(

e#D

l

)l

. (66)
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Thus,

P (B) ≤ 2
∞
∑

l=1

∑

Φ∈Dl

exp{−(CLB∞)−1(t+ lL)}

≤ 2
∞
∑

l=1

(

e#D

l

)l

exp{−(CLB∞)−1(t+ lL)}

≤ C exp{−(CLB∞)−1t}, (67)

by the choice of L. We have proved (64) up to proving (65).

Proof of (65). Denote
Z = sup

g∈G
νn(g),

where

G = GΦ =

{

f̃(·,Λ) − f 0

w(Λ)
: Λ ∈ K0,Φ

}

, Φ ∈ Dl.

Denote

v0 = sup
g∈G

‖g‖2
2 = sup

Λ∈K0,Φ

‖f̃(·,Λ) − f 0‖2
2

w2(Λ)

and
τ = Cτ

[

nαn

(

Cτ,1D(Λ0) + Cτ,2 l
)

+ t
]

.

We have for Φ ∈ Dl, Λ ∈ K0,Φ, that τ(Λ) = τ , where τ(Λ) is defined in (62).
Thus, for Φ ∈ Dl and Λ ∈ K0,Φ,

w(Λ) ≥
1

2

(

∥

∥

∥
f̃(·,Λ) − f 0

∥

∥

∥

2

2
+
τ

n

)

≥
∥

∥

∥
f̃(·,Λ) − f 0

∥

∥

∥

2

(τ

n

)1/2

. (68)

Thus
v0 ≤

n

τ
. (69)

We have that
(EZ)2 ≤ ‖f‖∞

(

l +D(Λ0)
)

τ−1 . (70)

We prove equation (70) below in page 30. Denote

η2 = τ−1(t+ Cτ,2Ll).

Then we have

(EZ + η)2 ≤ 2
[

(EZ)2 + η2
]

≤ 2τ−1
[

B∞

(

l +D(Λ0)
)

+ t+ Cτ,2Ll
]

≤ 2C−1
τ

≤ ξ2 (71)
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since

C−1
τ τ ≥ L

(

Cτ,1D(Λ0) + Cτ,2 l
)

+ t ≥ B∞D(Λ0) + (B∞ + Cτ,2L) l + t,

where we used nαn = L and Cτ,1CL loge(#D) ≥ 1. Eq. (71) implies that

P (BΦ) = P (Z ≥ ξ) ≤ P (Z ≥ EZ + η) . (72)

Denote
b = sup{‖g‖∞ : g ∈ G},

and
v = sup{Varf (g(X

1)) : g ∈ G}.

By Talagrand’s theorem, as given in Bousquet (2002), Theorem 2.3, by ap-
plying the inequality h(t) ≥ t2/(2+2t/3), t > 0, for h(t) = (1+t) log(1+t)−t,
we get

P (Z ≥ EZ + η) ≤ exp

{

−nη2

2[v + 2bEZ + ηb/3]

}

. (73)

We have
v ≤ ‖f‖∞ v0 ≤ ‖f‖∞

n

τ
.

Also, for for Φ ∈ Dl and Λ ∈ K0,Φ,

w(Λ) ≥
τ

2n
(74)

and thus

b ≤
2n

τ
sup

Λ∈K0,Φ

‖f̃(·,Λ) − f 0‖∞ ≤
4n

τ
B, B = 2‖f‖∞,

by the definition of K0. Thus, applying inequalities EZ ≤ ξ, η ≤ ξ,

v + 2bEZ + ηb/3 ≤
n

τ
‖f‖∞ (1 + 8 · ξ(2 + 1/3))

def
=

n

τ
‖f‖∞CL/2. (75)

Thus
P (Z ≥ EZ + η) ≤ exp{−(t+ lL)/(B∞CL)}. (76)

Eq. (65) follows from (72) and (76).
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Proof of (70). Let Λ ∈ K0,Φ where Φ ∈ Dl. Denote D(Λ,Λ0) = {φ ∈ D :
λφ 6= 0 or λ0

φ 6= 0}. Let {ψ1, . . . , ψk} be a basis of the span of D(Λ,Λ0). We
have k ≤ #D(Λ,Λ0) ≤ l +D(Λ0) and, applying (68),

sup
Λ∈K0,Φ

‖f̃(·,Λ) − f 0‖2
2

w2(Λ)
≤
n

τ
.

Thus we may apply Lemma 7 with B2
2 = n/τ to get (70). �

B.3 Proof of (32)

The series estimator f ∗
n,α defined in (22) is equal to the estimator f̂n,α defined

in (51), under suitable identifications. Indeed, we note that we can write

f ∗
n,α(x) = f̃

(

x, Ŵn,α, Θ̂n,α, B̂n,α

)

, x ∈ Rd, (77)

where
(

B̂n,α, Θ̂n,α, Ŵn,α

)

= argminB∈L,Θ∈RB,W∈W(B)En (W,Θ,B, α) . (78)

We have that
f ∗

n,α(x) = f̂n,α(x), x ∈ Rd, (79)

when we choose
D =

{

I[0,1]d
}

∪
⋃

B∈L

B,

and
K ⊂

{

Λ ∈ RD : Λ ∈ W(B) for some B ∈ L
}

. (80)

Definition (80) is explained by the fact that the vectors Λ = (λφ)φ∈D have to
be such that components are non-zero only for a single basis B: {φ : λφ 6=
0} ⊂ B for some B ∈ L. Eq. (79) holds since we may use the identification
λφ = wφθφ.

Cardinality of the library. To apply Theorem 2 we have to check that the
smoothing parameter in (31) has the same order as the smoothing parameter
in (58). This follows because the cardinality of the dictionary D = {I[0,1]d}∪
∪B∈L(J)B satisfies

#D ≤ C · na log2(2d) (81)

for a positive constant C. The calculation of the cardinality of the library is
basically the same as the calculation in (23). Indeed, every function in B(T ),
defined in (15), may be obtained as a node of a large multitree which has 1
root node, where the number of children of each node is equal to 2d, and the
depth of the tree is equal to |Jn|max ≤ ⌈a log2 n⌉. The number of the nodes

of the tree in question is
∑|Jn|max−1

i=0 (2d)i ≤ (2d)|Jn|max.
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Final detail. Theorem 2 involves set Ω̃ defined in (59). We need to show
that the restriction to this set is not essential. We have the bound

Ef

∥

∥f ∗
n,αn

− f
∥

∥

2

2
1Ω̃c ≤

(

∥

∥f ∗
n,αn

∥

∥

∞
+ ‖f‖∞

)2

P
(

Ω̃c
)

, (82)

where we applied the fact that ‖g‖2
2 ≤ ‖g‖2

∞, when the support of g is
contained in [0, 1]d. First, for all samples,

‖f ∗
n,αn

‖∞ ≤ nκ (83)

for some κ > 0. We may prove (83) by noting that by Lemma 1, ‖f ∗
n,α‖∞ =

‖f̂n,α‖∞ and ‖f̂n,α‖∞ ≤ 2|J |, since 2|J | is the minimal volume of the rectangles

in the partition of histogram f̂n,α. Second, we need that for sufficiently large
n,

P
(

Ω̃c
)

≤ δ∗n
def
= nκ′

exp

{

−n1−a 3‖f‖∞
8

}

, (84)

for some κ′ > 0, where 0 < a < 1 is the fineness parameter in (28). Equation
(84) follows from Bernstein’s inequality. (Note that also in the proof of (84)
we apply Lemma 1.) �

C Proof of Lemma 4

As before, we denote J ∗ = Jh∗. We prove that

M
∑

m=0

∑

k∈KJ∗(m)

min
{

τ 2
mk, α

}

≤

(

2 +
2Cp,L,d

2β∗ − 1

)

· α2σ/(2σ+1) (85)

and
∞
∑

m=M+1

∑

k∈KJ∗(m)

τ 2
mk ≤

2dL2

22β∗ − 1
· α2σ/(2σ+1), (86)

when 0 < α < 1 is sufficiently small, where τmk is defined in (45), Cp,L,d =
maxl=1,...,d(2

d/2L)p̃l, and β∗ = minl=1,...,d(σ + 1/2 − 1/p̃l) = σ + 1/2 − 1/p∗,
p∗ = minl=1,...,d p̃l. This implies the lemma, when we apply Lemma 5 with
B = B∗

α and with the basis B∞ = B∗.

Proof of (85). Let m∗ ≥ 1 be defined by

m∗ =

⌈

1

2σ + 1
log2 α

−1

⌉

. (87)
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Note that m∗ < M since ã > 1/(2σ + 1) by the lower bound in (48). Write

M
∑

m=0

∑

k∈KJ∗(m)

min
{

τ 2
mk, α

}

≤ A+B, (88)

where

A
def
=

m∗

∑

m=0

∑

k∈KJ∗(m)

α = α
m∗

∑

m=0

2m = α(2m∗+1 − 2)

≤ 2αα−1/(2σ+1) = 2α2σ/(2σ+1) (89)

by the definition of m∗ in (87), and

B
def
=

M
∑

m=m∗+1

∑

k∈KJ∗(m)

min
{

τ 2
mk, α

}

≤

M
∑

m=m∗+1

α1−p̃l∗m
/2

∑

k∈KJ∗(m)

|τmk|
p̃l∗m , (90)

where p̃l is defined in (47), and we use the notation l∗m = h∗(m+ 1). Above
we used the fact min {τ 2

mk, α} ≤ α1−p̃l/2|τmk|
p̃l, for l = 1, . . . , d. Indeed, we

have that when τ 2
mk ≤ α, then α1−p̃l/2|τmk|

p̃l ≥ τ 2
mk and when τ 2

mk > α, then
α1−p̃l/2|τmk|

p̃l ≥ α. We have from Lemma 3 that
∑

k∈KJ∗(m)

|τmk|
p̃l∗m ≤

(

2d/2L2−mβm
)p̃l∗m , βm = σ + 1/2 − 1/p̃l∗m. (91)

Continuing from (90),

B ≤ Cp,L,d

M
∑

m=m∗+1

α1−p̃l∗m
/22−p̃l∗m

mβm (92)

= Cp,L,d

M
∑

m=m∗+1

α1−p̃l∗m
/22−p̃l∗m

m∗βm2p̃l∗m
(m∗−m)βm

≤
Cp,L,d

2β∗ − 1
· α2m∗

(93)

≤
2Cp,L,d

2β∗ − 1
· α2σ/(2σ+1), (94)

where in (92) we applied (91). In (93) we applied

α−p̃l∗m
/22−pl∗m

m∗(σ+1/2) ≤ 1
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which holds due to the choice of m∗ in (87), and we applied in (93) also the
fact

∞
∑

m=m∗+1

2p̃l∗m
(m∗−m)βm ≤

∞
∑

m=1

(2−β∗)m =
1

2β∗ − 1

which holds because p̃l∗m ≥ 1, because
∑∞

m=1 r
m = r/(1 − r) for 0 < r < 1,

and because β∗ > 0 which is assumed in (29). The claim (85) follows from
(88), (89), and (94).

Proof of (86). We have that

∞
∑

m=M+1

∑

k∈KJ∗(m)

τ 2
mk ≤

∞
∑

m=M+1





∑

k∈KJ∗(m)

|τmk|
p̃l∗m





2/p̃l∗m

(95)

≤ 2dL2
∞
∑

m=M+1

2−2mβm (96)

≤
2dL2

22β∗ − 1
· 2−2β∗M (97)

≤
2dL2

22β∗ − 1
· α2β∗ã (98)

≤
2dL2

22β∗ − 1
· α2σ/(2σ+1), (99)

where in (95) we applied the subadditivity of the function x 7→ xp̃l/2, in
(96) we applied (91), in (97) we applied that for 0 < r < 1,

∑∞
m=M+1 r

m =
rM+1/(1− r) and the fact that β∗ > 0, in (98) we applied the choice of M in
(49), and in (99) we applied the lower bound for ã in (48). We have proved
Lemma 4. �

D Auxiliary lemmas

D.1 Complexity penalized approximation error

Lemma 5 Let B∞ be a basis of L2([0, 1]d) such that B ⊂ B∞, where B is an
orthonormal system. Then,

min
W∈{0,1}B

K (f,W,Θf(B),B, α)

= α+
∑

φ∈B

min
{

θ2
f,φ, α

}

+
∑

φ∈B∞\B

θ2
f,φ,

where θf,φ =
∫

Rd fφ, Θf(B) = (θf,φ)φ∈B.
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D.2 Pre-oracle inequality

Let
C = {gκ : κ ∈ K}, (100)

where gκ : Rd → R and K is a set of parameters. Let D : K → [0,∞) be a
penalization term and define the complexity penalized empirical risk as

En(κ, α) = γn (gκ) + αD(κ), (101)

where γn(g) is defined in (4) and α ≥ 0 is the smoothing parameter control-
ling the amount of penalization. We assume that D(κ) takes larger values
for more complex gκ. Let κ̂ be such that

En (κ̂, α) ≤ inf
κ∈K

En(κ, α) + ǫ, (102)

where ǫ > 0 and define the minimization estimator by

f̂ = gκ̂. (103)

Lemma 6 Let C ⊂ L2(R
d) be parameterized by (100) and let f̂ = gκ̂ ∈ C

where κ̂ satisfies (102). Then for each f 0 = gκ0 ∈ C,

K(f, κ̂, α) ≤ K(f, κ0, α) + ε+ 2νn

(

f̂ − f 0
)

,

where f is the true density,

K(f, κ, α) = ‖gκ − f‖2
2 + α ·D(κ),

and νn(g) is the centered empirical operator defined by

νn(g) = n−1

n
∑

i=1

g(X i) −

∫

Rd

gf,

Proof. We have for g = f̂ , g = f 0,

‖g − f‖2
2 − γn(g) = ‖f‖2

2 − 2

∫

Rd

fg + 2n−1
n
∑

i=1

g(X i).

Thus,

∥

∥

∥
f̂ − f

∥

∥

∥

2

2
− γn

(

f̂
)

+ γn

(

f 0
)

−
∥

∥f 0 − f
∥

∥

2

2
= 2νn

(

f̂ − f 0
)

. (104)
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We have

K(f, κ̂, α) −K(f, κ0, α)

= K(f, κ̂, α) − En(κ̂, α) + En(κ̂, α) −K(f, κ0, α)

≤ K(f, κ̂, α) − En(κ̂, α) + En(κ
0, α) + ε−K(f, κ0, α) (105)

=
∥

∥

∥
f̂ − f

∥

∥

∥

2

2
− γn(f̂) + γn(f

0) + ε−
∥

∥f 0 − f
∥

∥

2

2

= 2νn

(

f̂ − f 0
)

+ ε. (106)

In (105) we applied (102) and in (106) we applied (104). �

D.3 Expectation of the supremum

Let G be a set of linear combinations of an orthonormal system:

G =

{

k
∑

j=1

θjφj :
k
∑

j=1

θ2
j ≤ B2

2

}

, (107)

where {φ1, . . . , φk} is an orthonormal system and 0 < B2 < ∞. We have a
bound for E supg∈G νn(g) which depends essentially from

√

k/n.

Lemma 7 Let G be defined in (107). We have that

E sup
g∈G

νn(g) ≤ B2‖f‖
1/2
∞ (k/n)1/2 .

Proof. By the Cauchy-Schwartz inequality, for g =
∑k

j=1 θjφj ∈ G,

νn(g) =

k
∑

j=1

θjνn(φj) ≤

(

k
∑

j=1

θ2
j

k
∑

j=1

νn(φj)
2

)1/2

.

We have E|X|1/2 ≤ (E|X|)1/2. Thus,

E sup
g∈G

νn(g) ≤ B2

(

k
∑

j=1

Eνn(φj)
2

)1/2

.

We have
Eνn(φj)

2 ≤ ‖f‖∞n
−1,

which implies the lemma. �
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