Supplement to

"Robust Designs for 3D Shape Analysis with Spherical Harmonic Descriptors"

by Holger Dette and Douglas P. Wiens

Proof of Theorem 1. If $w \equiv 1, \eta_{g}^{2}=0 ; g_{0}=1 h(\cdot, \cdot) \equiv 0$ we have $k(\cdot)=$ $m(\cdot)$ and as a consequence $\mathbf{C}_{w, g, m}=\mathbf{B}_{m}$. Therefore we obtain for the maximal integrated mean square errors

$$
\max _{f \in \mathcal{F}} I M S E_{j, f, 1,0}(\xi)= \begin{cases}\eta_{f}^{2} c h_{\max }\left[\mathbf{B}_{m}^{-1} \mathbf{K}_{m} \mathbf{B}_{m}^{-1}\right]+\frac{\sigma_{\varepsilon}^{2}}{n} \operatorname{tr}\left[\mathbf{B}_{m}^{-1}\right], & \text { if } j=1, \\ \eta_{f}^{2} c h_{\max }\left[\mathbf{B}_{m}^{-1} \mathbf{K}_{m} \mathbf{B}_{m}^{-1}\right]+\frac{\sigma_{\varepsilon}^{2}}{n} \operatorname{tr}\left[\mathbf{B}_{m}^{-1}\right]+\sigma_{\varepsilon}^{2}, & \text { if } j=2\end{cases}
$$

We now shows that both terms in this expression are minimized by the uniform distribution (1.2) on the unit sphere. For this first note that $\operatorname{tr}\left[\mathbf{B}_{m}^{-1}\right]$ corresponds to Kiefer's A-optimality criterion, which was considered in Dette, Melas and Pepelyshev (2005) and is minimal for the uniform distribution (1.2) on the unit sphere. Secondly, note that $c h_{\max }\left[\mathbf{B}_{m}^{-1} \mathbf{K}_{m} \mathbf{B}_{m}^{-1}\right]-1=c h_{\max }\left[\mathbf{B}_{m}^{-1}\left(\mathbf{K}_{m}-\mathbf{B}_{m}^{2}\right) \mathbf{B}_{m}^{-1}\right]$. Moreover, for any vector a we have

$$
\mathbf{a}^{T}\left(\mathbf{K}_{m}-\mathbf{B}_{m}^{2}\right) \mathbf{a}=\int_{\mathcal{S}}\left\{\mathbf{a}^{T}\left[\frac{m(\boldsymbol{\psi})}{\mu(\boldsymbol{\psi})} \mathbf{I}-\mathbf{B}_{m}\right] \mathbf{z}(\boldsymbol{\psi})\right\}^{2} \mu(\boldsymbol{\psi}) d \boldsymbol{\psi} \geq 0
$$

and consequently the matrix $\mathbf{K}_{m}-\mathbf{B}_{m}^{2}$ is non-negative definite, which implies $c h_{\max }\left[\mathbf{B}_{m}^{-1} \mathbf{K}_{m} \mathbf{B}_{m}^{-1}\right] \geq 1$. But this minimum value of 1 is attained by $m(\cdot)=$ $\mu(\cdot)$, for which $\mathbf{K}_{m}=\mathbf{B}_{m}=\mathbf{I}$.

Proof of Proposition 2: For weight functions $w_{0}(\boldsymbol{\psi})$ and $w_{1}(\boldsymbol{\psi})$ and $t \in[0,1]$ define $w_{t}(\boldsymbol{\psi})=(1-t) w_{0}(\boldsymbol{\psi})+t w_{1}(\boldsymbol{\psi})$. In order that the function $w_{0}(\boldsymbol{\psi})$ minimize (2.2) subject to the normalizing conditions (2.3) it is sufficient that the function
$\phi(t ; \lambda)=\int_{\mathcal{S}} w_{t}(\boldsymbol{\psi}) g_{*}(\boldsymbol{\psi}) \mathbf{z}^{T}(\boldsymbol{\psi}) \mathbf{B}_{m}^{-2} \mathbf{z}(\boldsymbol{\psi}) m(\boldsymbol{\psi}) d \boldsymbol{\psi}+\lambda\left[\int_{\mathcal{S}} \frac{m(\boldsymbol{\psi})}{w_{t}(\boldsymbol{\psi})} d \boldsymbol{\psi}-1\right] \quad(\lambda \geq 0)$
be minimal at $t=0$ for any $w_{1}(\cdot)$, and that $w_{0}(\cdot)$ satisfies (2.3). For this, since $\phi(t ; \lambda)$ is a convex function of t, the first order condition is necessary and sufficient, i.e.
$\phi^{\prime}(0 ; \lambda)=\int_{\mathcal{S}}\left[w_{1}(\boldsymbol{\psi})-w_{0}(\boldsymbol{\psi})\right]\left[g_{*}(\boldsymbol{\psi}) \mathbf{z}^{T}(\boldsymbol{\psi}) \mathbf{B}_{m}^{-2} \mathbf{z}(\boldsymbol{\psi}) m(\boldsymbol{\psi})-\lambda \frac{m(\boldsymbol{\psi})}{w_{0}^{2}(\boldsymbol{\psi})}\right] d \boldsymbol{\psi} \geq 0$
for all $w_{1}(\cdot)$. This condition is satisfied if

$$
w_{0}(\boldsymbol{\psi})=\frac{\lambda}{\left\|\mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi})\right\| \sqrt{g_{*}(\boldsymbol{\psi})}}
$$

(on the support of $m(\cdot)$ - we can define $w_{0}(\boldsymbol{\psi})$ arbitrarily elsewhere), and it remains only to determine the constant λ to satisfy (2.3).

Proof of Theorem 2. From Proposition 2 we obtain

$$
\min _{w} \max _{f, g} I M S E_{j, f, g, 0}(\xi)= \begin{cases}\eta_{f}^{2} c h_{\max }\left[\mathbf{B}_{m}^{-1} \mathbf{K}_{m} \mathbf{B}_{m}^{-1}\right]+\frac{\sigma_{\varepsilon}^{2}}{n} \gamma_{m}^{2}, & \text { if } j=1, \\ \eta_{f}^{2} c h_{\max }\left[\mathbf{B}_{m}^{-1} \mathbf{K}_{m} \mathbf{B}_{m}^{-1}\right]+\frac{\sigma_{\varepsilon}^{2}}{n} \gamma_{m}^{2}+\sigma_{\varepsilon}^{2}, & \text { if } j=2 .\end{cases}
$$

Because $g_{0}(\boldsymbol{\psi}) \equiv 1$, it follows that

$$
\begin{equation*}
\gamma_{m}=\sqrt{1+\eta_{g}^{2}} \int_{\mathcal{S}}\left\|\mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi})\right\| m(\boldsymbol{\psi}) d \boldsymbol{\psi} \tag{A.1}
\end{equation*}
$$

It was shown in the proof of Theorem 1 that the maximum eigenvalue $c h_{\max }\left[\mathbf{B}_{m}^{-1} \mathbf{K}_{m} \mathbf{B}_{m}^{-1}\right]$ is minimized by the uniform distribution on the sphere $\mu(\cdot)$, for which the corresponding minimax weights are, by Proposition 2, proportional to $\|\mathbf{z}(\boldsymbol{\psi})\|^{-1}$, hence by (1.7) are constant. If this choice of design can be shown to minimize (A.1) as well, then the assertion of the Proposition follows, i.e. $\mu(\cdot)$ minimizes (2.4). Showing this requires proving the inequality

$$
\begin{equation*}
\int_{\mathcal{S}}\left\|\mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi})\right\| m(\boldsymbol{\psi}) d \boldsymbol{\psi} \geq \int_{\mathcal{S}}\left\|\mathbf{B}_{\mu}^{-1} \mathbf{z}(\boldsymbol{\psi})\right\| \mu(\boldsymbol{\psi}) d \boldsymbol{\psi}=d+1 \tag{A.2}
\end{equation*}
$$

where we have used (1.7) and (1.6) for the last equality. However, the inequality in (A.2) is a direct consequence of the Cauchy-Schwarz inequality:

$$
\left\|\mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi})\right\| \geq \frac{\mathbf{z}^{T}(\boldsymbol{\psi}) \mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi})}{\|\mathbf{z}(\boldsymbol{\psi})\|}=\frac{\mathbf{z}^{T}(\boldsymbol{\psi}) \mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi})}{d+1} ;
$$

this gives

$$
\begin{aligned}
\int_{\mathcal{S}}\left\|\mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi})\right\| m(\boldsymbol{\psi}) d \boldsymbol{\psi} & \geq \frac{1}{d+1} \int_{\mathcal{S}} \mathbf{z}^{T}(\boldsymbol{\psi}) \mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi}) m(\boldsymbol{\psi}) d \boldsymbol{\psi} \\
& =\frac{1}{d+1} \operatorname{tr} \mathbf{B}_{m}^{-1} \int_{\mathcal{S}} \mathbf{z}(\boldsymbol{\psi}) \mathbf{z}^{T}(\boldsymbol{\psi}) m(\boldsymbol{\psi}) d \boldsymbol{\psi} \\
& =\frac{1}{d+1} \operatorname{tr} \mathbf{I}_{(d+1)^{2}}=d+1
\end{aligned}
$$

Proof of Theorem 3: First take $j=1$. From (2.7) and (2.6) we are to show that

$$
\begin{aligned}
& \max _{h} \int_{\mathcal{S}} \int_{\mathcal{S}} h\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{\prime}\right) \mathbf{z}^{T}\left(\boldsymbol{\psi}^{\prime}\right) \mathbf{B}_{m}^{-2} \mathbf{z}(\boldsymbol{\psi}) m(\boldsymbol{\psi}) m\left(\boldsymbol{\psi}^{\prime}\right) d \boldsymbol{\psi} d \boldsymbol{\psi}^{\prime} \\
& =\eta_{h}^{2} \int_{\mathcal{S}} \mathbf{z}^{T}(\boldsymbol{\psi}) \mathbf{B}_{m}^{-2} \mathbf{z}(\boldsymbol{\psi}) \frac{m^{2}(\boldsymbol{\psi})}{\mu(\boldsymbol{\psi})} d \boldsymbol{\psi} \\
& =\eta_{h}^{2} \int_{\mathcal{S}}\left\|\mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi}) \frac{m(\boldsymbol{\psi})}{\mu(\boldsymbol{\psi})}\right\|^{2} \mu(\boldsymbol{\psi}) d \boldsymbol{\psi}
\end{aligned}
$$

is minimized by $m(\cdot)=\mu(\cdot)$. By the Cauchy-Schwarz inequality and (A.2),

$$
\begin{align*}
\int_{\mathcal{S}}\left\|\mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi}) \frac{m(\boldsymbol{\psi})}{\mu(\boldsymbol{\psi})}\right\|^{2} \mu(\boldsymbol{\psi}) d \boldsymbol{\psi} & \geq\left\{\int_{\mathcal{S}}\left\|\mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi}) \frac{m(\boldsymbol{\psi})}{\mu(\boldsymbol{\psi})}\right\| \mu(\boldsymbol{\psi}) d \boldsymbol{\psi}\right\}^{2} \\
& =\left\{\int_{\mathcal{S}}\left\|\mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi})\right\| m(\boldsymbol{\psi}) d \boldsymbol{\psi}\right\}^{2} \\
& \geq(d+1)^{2} . \tag{A.3}
\end{align*}
$$

But this lower bound $(d+1)^{2}$ is attained by $m(\cdot)=\mu(\cdot)$; this establishes Theorem 3 in the case $j=1$.

For a proof of the result in the case $j=2$ we recall (2.8) and consider the function

$$
\begin{aligned}
& \Phi(h ; m)=\int_{\mathcal{S}} \int_{\mathcal{S}} h\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{\prime}\right) \mathbf{z}^{T}\left(\boldsymbol{\psi}^{\prime}\right) \mathbf{B}_{m}^{-2} \mathbf{z}(\boldsymbol{\psi}) m(\boldsymbol{\psi}) m\left(\boldsymbol{\psi}^{\prime}\right) d \boldsymbol{\psi} d \boldsymbol{\psi}^{\prime} \\
& -2 \int_{\mathcal{S}} \int_{\mathcal{S}} h\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{\prime}\right) \mathbf{z}^{T}\left(\boldsymbol{\psi}^{\prime}\right) \mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi}) \mu(\boldsymbol{\psi}) m\left(\boldsymbol{\psi}^{\prime}\right) d \boldsymbol{\psi} d \boldsymbol{\psi}^{\prime}+\int_{\mathcal{S}} h(\boldsymbol{\psi}, \boldsymbol{\psi}) \mu(\boldsymbol{\psi}) d \boldsymbol{\psi}
\end{aligned}
$$

We have to show that

$$
\begin{equation*}
\max _{h} \Phi(h ; m) \geq \max _{h} \Phi(h ; \mu) . \tag{A.4}
\end{equation*}
$$

To establish (A.4), it is clearly sufficient to show that for any function $h \in \mathcal{H}$,

$$
\begin{equation*}
0 \leq \Phi(h ; m)-\Phi(h ; \mu) \text { for any } m(\cdot) . \tag{A.5}
\end{equation*}
$$

For this, note that

$$
\begin{aligned}
\Phi(h ; m)-\Phi(h ; \mu) & =\int_{\mathcal{S}} \int_{\mathcal{S}} h\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{\prime}\right) \mathbf{z}^{T}\left(\boldsymbol{\psi}^{\prime}\right) \mathbf{B}_{m}^{-2} \mathbf{z}(\boldsymbol{\psi}) m(\boldsymbol{\psi}) m\left(\boldsymbol{\psi}^{\prime}\right) d \boldsymbol{\psi} d \boldsymbol{\psi}^{\prime} \\
& -2 \int_{\mathcal{S}} \int_{\mathcal{S}} h\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{\prime}\right) \mathbf{z}^{T}\left(\boldsymbol{\psi}^{\prime}\right) \mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi}) \mu(\boldsymbol{\psi}) m\left(\boldsymbol{\psi}^{\prime}\right) d \boldsymbol{\psi} d \boldsymbol{\psi}^{\prime} \\
& -\int_{\mathcal{S}} \int_{\mathcal{S}} h\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{\prime}\right) \mathbf{z}^{T}\left(\boldsymbol{\psi}^{\prime}\right) \mathbf{z}(\boldsymbol{\psi}) \mu(\boldsymbol{\psi}) \mu\left(\boldsymbol{\psi}^{\prime}\right) d \boldsymbol{\psi} d \boldsymbol{\psi}^{\prime} \\
& +2 \int_{\mathcal{S}} \int_{\mathcal{S}} h\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{\prime}\right) \mathbf{z}^{T}\left(\boldsymbol{\psi}^{\prime}\right) \mathbf{z}(\boldsymbol{\psi}) \mu(\boldsymbol{\psi}) \mu\left(\boldsymbol{\psi}^{\prime}\right) d \boldsymbol{\psi} d \boldsymbol{\psi}^{\prime} \\
& =\int_{\mathcal{S}} \int_{\mathcal{S}} h\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{\prime}\right) \mathbf{z}^{T}\left(\boldsymbol{\psi}^{\prime}\right) \mathbf{B}_{m}^{-2} \mathbf{z}(\boldsymbol{\psi}) m(\boldsymbol{\psi}) m\left(\boldsymbol{\psi}^{\prime}\right) \\
& -2 \mathbf{z}^{T}\left(\boldsymbol{\psi}^{\prime}\right) \mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi}) \mu(\boldsymbol{\psi}) m\left(\boldsymbol{\psi}^{\prime}\right) \\
& +\mathbf{z}^{T}\left(\boldsymbol{\psi}^{\prime}\right) \mathbf{z}(\boldsymbol{\psi}) \mu(\boldsymbol{\psi}) \mu\left(\boldsymbol{\psi}^{\prime}\right) d \boldsymbol{\psi} d \boldsymbol{\psi}^{\prime} \\
& =\int_{\mathcal{S}} \int_{\mathcal{S}} h\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{\prime}\right) \mathbf{a}^{T}(\boldsymbol{\psi}) \mathbf{a}\left(\boldsymbol{\psi}^{\prime}\right) d \boldsymbol{\psi} d \boldsymbol{\psi}^{\prime}
\end{aligned}
$$

with $\mathbf{a}(\boldsymbol{\psi})=\mathbf{B}_{m}^{-1} \mathbf{z}(\boldsymbol{\psi}) \mu(\boldsymbol{\psi})-\mathbf{z}(\boldsymbol{\psi}) m(\boldsymbol{\psi})$. Now (A.5) follows from the nonnegative definiteness of the kernel $h(\cdot, \cdot)$, i.e. from the first inequality in (2.6).

Proof of Theorem 4: The constraint (3.1) on \mathbf{f} is given by the equation $\mathbf{Z}^{T} \mathbf{P f}=\mathbf{0}$. Equivalently, $\mathbf{P f}$ lies in the orthogonal complement to the column space of \mathbf{Z}, so that $\mathbf{f}=\mathbf{P}^{-1} \tilde{\mathbf{Z}} \mathbf{c}$ for some vector \mathbf{c}. We have to maximize the expression

$$
\mathbf{f}^{T} \mathbf{M Q P Q M f}+\mathbf{f}^{T} \mathbf{P f}=\mathbf{c}^{T} \tilde{\mathbf{Z}}^{T} \mathbf{P}^{-1} \mathbf{M Q P Q M P} \mathbf{P}^{-1} \tilde{\mathbf{Z}} \mathbf{c}+\mathbf{c}^{T} \tilde{\mathbf{Z}}^{T} \mathbf{P}^{-1} \tilde{\mathbf{Z}} \mathbf{c}
$$

subject to condition (3.2), which is $\mathbf{f}^{T} \mathbf{P} \mathbf{f}=\mathbf{c}^{T} \tilde{\mathbf{Z}}^{T} \mathbf{P}^{-1} \tilde{\mathbf{Z}} \mathbf{c} \leq \eta_{f}^{2}$. Equivalently, with $\mathbf{e}=\left(\tilde{\mathbf{Z}}^{T} \mathbf{P}^{-1} \tilde{\mathbf{Z}}\right)^{1 / 2} \mathbf{c} / \eta_{f}$, we maximize

$$
\mathbf{e}^{T}\left(\tilde{\mathbf{Z}}^{T} \mathbf{P}^{-1} \tilde{\mathbf{Z}}\right)^{-1 / 2} \tilde{\mathbf{Z}}^{T} \mathbf{P}^{-1} \mathbf{M Q P Q M P}{ }^{-1} \tilde{\mathbf{Z}}\left(\tilde{\mathbf{Z}}^{T} \mathbf{P}^{-1} \tilde{\mathbf{Z}}\right)^{-1 / 2} \mathbf{e}+\mathbf{e}^{T} \mathbf{e}
$$

subject to $\mathbf{e}^{T} \mathbf{e} \leq 1$. This is a standard problem whose solution is as described in the Theorem.

Proof of Proposition 3: In light of Theorem 4 we have only to show that
(i) $\mathbf{r}^{T} \mathbf{g}=\sum r_{i} g\left(\boldsymbol{\psi}_{i}\right)$ and $\left(\boldsymbol{\mu}+\frac{1}{n} \mathbf{r}\right)^{T}=\sum\left(\mu_{i}+\frac{r_{i}}{n}\right) g\left(\boldsymbol{\psi}_{i}\right)$ are both maximized over $g \in \mathcal{G}_{0}$ by $g=g_{*}$;
(ii) $\operatorname{tr}[\mathbf{Q P Q M H M}]$ and $\operatorname{tr}[(\mathbf{Q M}-\mathbf{I}) \mathbf{H}(\mathbf{M Q}-\mathbf{I}) \mathbf{P}]$ are both maximized over $h \in \mathcal{H}_{0}$ by $\mathbf{H}=\eta_{h}^{2} \mathbf{P}^{-1}$.

The first of these is immediate from the definition of \mathcal{G}_{0} and the fact that

$$
r_{i}=\mathbf{z}^{T}\left(\boldsymbol{\psi}_{i}\right) \mathbf{B}_{m}^{-1} \mathbf{A} \mathbf{B}_{m}^{-1} \mathbf{z}\left(\boldsymbol{\psi}_{i}\right) m_{i} w_{i}=\left\|\mathbf{A}^{1 / 2} \mathbf{B}_{m}^{-1} \mathbf{z}\left(\boldsymbol{\psi}_{i}\right)\right\|^{2} m_{i} w_{i} \geq 0
$$

The second follows from the fact that both traces are maximized by choosing \mathbf{H} to be maximal with respect to the Loewner ordering. But from the definition of \mathcal{H}_{0} it follows that $\mathbf{H} \leq \eta_{h}^{2} \mathbf{P}^{-1}$ in this ordering.

Proof of Theorem 5. If $\eta_{f}^{2}>0$ then we are to minimize λ_{m}. But λ_{m} is minimized by $m=\mu$, with minimum value $\lambda_{\mu}=0$. This is because for $m=\mu$ we have $\mathbf{M}=\mathbf{P}$, and consequently the matrix (3.3) contains a factor

$$
\tilde{\mathbf{Z}}^{T} \mathbf{P}^{-1} \mathbf{M Q}=\tilde{\mathbf{Z}}^{T} \mathbf{Q}=\tilde{\mathbf{Z}}^{T} \mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{P} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T}=\mathbf{0}
$$

If $\eta_{g}^{2}>0$ then we are to show that $\sum_{i=1}^{N} m_{i}\left\|\mathbf{B}_{m}^{-1} \mathbf{z}\left(\boldsymbol{\psi}_{i}\right)\right\|$ is also minimized by $m=\mu$. But this is merely the discrete analogue of (A.2), and is proven in an identical manner. That the minimax weights (3.5) are constant follows from (3.7), $\mathbf{B}_{\mu}=\mathbf{I}$ and the constancy of g_{0}.

It remains to show that the design $m=\mu$ is also optimal when $\eta_{h}^{2}>0$, i.e. that

$$
\operatorname{tr}\left[\mathbf{Q P Q M P}^{-1} \mathbf{M}\right]=\sum_{i=1}^{N}\left\|\mathbf{B}_{m}^{-1} \mathbf{z}\left(\boldsymbol{\psi}_{i}\right) \frac{m_{i}}{\mu_{i}}\right\|^{2} \mu_{i}
$$

and

$$
\operatorname{tr}\left[(\mathbf{Q M}-\mathbf{I}) \mathbf{P}^{-1}(\mathbf{M Q}-\mathbf{I}) \mathbf{P}\right]=\operatorname{tr}\left[\mathbf{Q} \mathbf{P Q M P} \mathbf{P}^{-1} \mathbf{M}\right]+N-2(d+1)^{2}
$$

are both minimized by $m=\mu$. The first of these is proven as at (A.3), and implies the second.

