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Proof of Theorem 1. If w = 1, 773 =0; go =1 h(-,-) =0 we have k(-) =
m (-) and as a consequence Cy 4 = By,. Therefore we obtain for the maximal

integrated mean square errors

Wichmax (B KnB!] + Zir [B,1] ifj=1,

n

max IMSE; &) =
fer 5r10(8) { Pchmax (B KB + Zir [B

We now shows that both terms in this expression are minimized by the uniform
distribution (1.2) on the unit sphere. For this first note that ¢r [Bfnl] corresponds
to Kiefer’s A-optimality criterion, which was considered in Dette, Melas and Pe-
pelyshev (2005) and is minimal for the uniform distribution (1.2) on the unit
sphere. Secondly, note that chmax [B;lleB;f] —1 = chmax [B;L1 (Km — Bfn) B;}].

Moreover, for any vector a we have

aT(Km—B?n)a:/

S

{aT [%I - Bm} z (¢)}2u(¢)d¢ >0,

and consequently the matrix K,, — B2, is non-negative definite, which implies
Chmax (B! KByt = 1. But this minimum value of 1 is attained by m (-) =
w(+), for which K,, =B,,, =1. |
Proof of Proposition 2: For weight functions wg () and w; (¢) and ¢ € [0, 1]
define wy () = (1 —t)wp () + twy (). In order that the function wq ()
minimize (2.2) subject to the normalizing conditions (2.3) it is sufficient that the

function

A= [ w z! iy, m s
¢ (t; ) —/S t (%) g« (¥) 2 (¥) B, "z (¢) (lp)d’d)—i_)\[/s wi ()

be minimal at ¢ = 0 for any wy (-), and that wq (-) satisfies (2.3).  For this,

d¢—1} (A > 0)

since ¢ (t; \) is a convex function of ¢, the first order condition is necessary and

sufficient, i.e.

¢ (0:1) = /5 fun (4) — wo ()] | 9. () 2" () By () m () — A" }dwzo
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for all wy (). This condition is satisfied if

A
) = 1510 ()| Vo (@)

(on the support of m (-) - we can define wg (1) arbitrarily elsewhere), and it

remains only to determine the constant A to satisfy (2.3). n

Proof of Theorem 2. From Proposition 2 we obtain

minmax IMSE; ¢40(§) =
w

2 . .
{ U?Chmax [Bn_ilengl] + %'W%m lf] = 1a
f.9

2 . .
U?Chmax [B;ﬂKmB;ll] + %77%% +o2, ifj=2.

Because gg (¢) = 1, it follows that

e = \/1+n§/5 Bz ()| m () dp. (A1)

It was shown in the proof of Theorem 1 that the maximum eigenvalue
Chimax [Br KByt is minimized by the uniform distribution on the sphere 1 (+),
for which the corresponding minimax weights are, by Proposition 2, proportional
to ||z (¢)] ", hence by (1.7) are constant. If this choice of design can be shown
to minimize (A.1) as well, then the assertion of the Proposition follows, i.e. u(+)

minimizes (2.4). Showing this requires proving the inequality

LBz mway > [ [Bla@)p@ide =d+1. (42
S S

where we have used (1.7) and (1.6) for the last equality. However, the inequality

in (A.2) is a direct consequence of the Cauchy-Schwarz inequality:

Y)B,'z(v) 2" (¥)B,'z ()

-1 ZT(
B2 =T = arr

this gives

LBz @ m@aw= i [ o 0Byt ) m () dv

TRl [ 26)a @)m () v
1

= d+1tT‘I(d+1)2 = d+1
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Proof of Theorem 3: First take j = 1. From (2.7) and (2.6) we are to show
that

—1 m ()
B, z(¢) ) () dip

is minimized by m (-) = p(-). By the Cauchy-Schwarz inequality and (A.2),

[ Btz =) )y > { HBmlzw) Z((;"))Hmwdwf
{1z e @l ae}
> (d+1)%. (A.3)

But this lower bound (d + 1)? is attained by m (-) = u(-); this establishes Theo-
rem 3 in the case j = 1.
For a proof of the result in the case j = 2 we recall (2.8) and consider the

function

B (hm) = /5 /3 h () 28 () B2z () m (1) m (') dipd
9 / / h (') 27 () Bz () (1) m (') dipelap’ + / h (b, ) 1 () dp.
SJS S

We have to show that
m}:lixtID (h;m) > m;?X(I) (h;p) . (A4)
To establish (A.4), it is clearly sufficient to show that for any function h € H,

0<®(h;m)— @ (h;u) for any m(-). (A.5)
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For this, note that
® (i) =@ () = [ | 0 2" (0) B2 a6) m () m ()
=2 [ [ h sy o () Bl () ) m () iy
— [ h ) 2T @) ) e a6) ()
2 [ [ nea) s () 2 @) @) 0 ()t

// (p.') 2" (') B2z () m () m (')
— 22" (¢') B.,'z () () m (¢)
+2" (¢)z () p <w> (') dipdp’

/ / ($:4') & () a (') dapd,

with a () = B, 'z () u () — z (1) m (1) . Now (A.5) follows from the non-
negative definiteness of the kernel A (-,-), i.e. from the first inequality in (2.6).
[ |

Proof of Theorem 4: The constraint (3.1) on f is given by the equation
ZTPf = 0. Equivalently, Pf lies in the orthogonal complement to the column
space of Z, so that f = P~1Zc for some vector c. We have to maximize the

expression

fIMQPQMS + fTPf = " Z"P'MQPQMP 'Zc + " Z"P ' Zc
subject to condition (3.2), which is f7Pf = ¢TZTP~1Zc < 77]20. Equivalently,
with e = (ZTP_lz) i c/nf, we maximize

- \—1/2 - - /- N\ —1/2
T (ZTP‘1Z> 7ZTP-'MQPQMP'Z (ZTP‘1Z> e+ele

subject to e'e < 1. This is a standard problem whose solution is as described
in the Theorem. |

Proof of Proposition 3: In light of Theorem 4 we have only to show that

(i) rfg=>rig(®;) and (pn+ %r)T = > (ui + %) g (v;) are both maximized
over g € Gg by g = g4;
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(i) tr  QPQMHM] and ¢r [(QM — I) H (MQ — I) P] are both maximized over
h € Ho by H=n?P~ L.

The first of these is immediate from the definition of Gy and the fact that
2
ri = 2" (;) B, AB 'z (1) mjw; = HAWBZJZ (%)H miw; 2 0.

The second follows from the fact that both traces are maximized by choosing H
to be maximal with respect to the Loewner ordering. But from the definition of
H, it follows that H < n?P~! in this ordering. |

Proof of Theorem 5. If 17]% > 0 then we are to minimize \,,. But A,, is
minimized by m = p, with minimum value A, = 0. This is because for m = p

we have M = P, and consequently the matrix (3.3) contains a factor
Z'P'MQ=2"Q=2"7(z"Pz) ' Z" = 0.

If 72 > 0 then we are to show that ZfL m; |B;'z (1;)]| is also minimized by
m = p. But this is merely the discrete analogue of (A.2), and is proven in an
identical manner. That the minimax weights (3.5) are constant follows from
(3.7), B, =TI and the constancy of go.

It remains to show that the design m = p is also optimal when 77% > 0, i.e.

that
N

tr [ QPQMP'M]| =)

1=1

2
Mg

my

B,.'z (1;) m

and
tr (QM -T) P! (MQ - I)P] = tr [QPQMP'M| + N — 2(d + 1)°.
are both minimized by m = p. The first of these is proven as at (A.3), and

implies the second. |





