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Proof of Theorem 1. If w � 1, �2g = 0; g0 = 1 h(�; �) � 0 we have k (�) =
m (�) and as a consequence Cw;g;m = Bm. Therefore we obtain for the maximal
integrated mean square errors

max
f2F
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�
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n tr
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�
+ �2" ; if j = 2.

We now shows that both terms in this expression are minimized by the uniform

distribution (1.2) on the unit sphere. For this �rst note that tr
�
B�1m

�
corresponds

to Kiefer�s A-optimality criterion, which was considered in Dette, Melas and Pe-

pelyshev (2005) and is minimal for the uniform distribution (1.2) on the unit

sphere. Secondly, note that chmax
�
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�
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Moreover, for any vector a we have
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Z
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�
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�2
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and consequently the matrix Km � B2m is non-negative de�nite, which implies

chmax
�
B�1m KmB

�1
m

�
� 1. But this minimum value of 1 is attained by m (�) =

� (�), for which Km = Bm = I . �

Proof of Proposition 2: For weight functions w0 ( ) and w1 ( ) and t 2 [0; 1]
de�ne wt ( ) = (1� t)w0 ( ) + tw1 ( ). In order that the function w0 ( )

minimize (2.2) subject to the normalizing conditions (2.3) it is su¢ cient that the

function

� (t;�) =

Z
S
wt ( ) g� ( ) z

T ( )B�2m z ( )m ( ) d +�
hZ
S

m ( )

wt ( )
d �1

i
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be minimal at t = 0 for any w1 (�), and that w0 (�) satis�es (2.3). For this,

since � (t;�) is a convex function of t, the �rst order condition is necessary and

su¢ cient, i.e.
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for all w1 (�). This condition is satis�ed if

w0 ( ) =
�

B�1m z ( )

pg� ( )

(on the support of m (�) - we can de�ne w0 ( ) arbitrarily elsewhere), and it
remains only to determine the constant � to satisfy (2.3). �

Proof of Theorem 2. From Proposition 2 we obtain

min
w
max
f;g

IMSEj;f;g;0(�) =

(
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2
" ; if j = 2.

Because g0 ( ) � 1, it follows that


m =
q
1 + �2g

Z
S



B�1m z ( )

m ( ) d : (A.1)

It was shown in the proof of Theorem 1 that the maximum eigenvalue

chmax
�
B�1m KmB

�1
m

�
is minimized by the uniform distribution on the sphere � (�),

for which the corresponding minimax weights are, by Proposition 2, proportional

to kz ( )k�1, hence by (1.7) are constant. If this choice of design can be shown
to minimize (A.1) as well, then the assertion of the Proposition follows, i.e. � (�)
minimizes (2.4). Showing this requires proving the inequalityZ

S



B�1m z ( )

m ( ) d � Z
S



B�1� z ( )

� ( ) d = d+ 1; (A.2)

where we have used (1.7) and (1.6) for the last equality. However, the inequality

in (A.2) is a direct consequence of the Cauchy-Schwarz inequality:
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 � zT ( )B�1m z ( )

kz ( )k =
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;

this givesZ
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Proof of Theorem 3: First take j = 1. From (2.7) and (2.6) we are to show

that

max
h
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2 � ( ) d 
is minimized by m (�) = � (�). By the Cauchy-Schwarz inequality and (A.2),
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But this lower bound (d+ 1)2 is attained by m (�) = � (�); this establishes Theo-
rem 3 in the case j = 1.

For a proof of the result in the case j = 2 we recall (2.8) and consider the

function
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We have to show that

max
h
� (h;m) � max

h
� (h;�) : (A.4)

To establish (A.4), it is clearly su¢ cient to show that for any function h 2 H,

0 � � (h;m)� � (h;�) for any m (�) : (A.5)
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For this, note that
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with a ( ) = B�1m z ( )� ( ) � z ( )m ( ) : Now (A.5) follows from the non-

negative de�niteness of the kernel h (�; �), i.e. from the �rst inequality in (2.6).

�

Proof of Theorem 4: The constraint (3.1) on f is given by the equation

ZTPf = 0. Equivalently, Pf lies in the orthogonal complement to the column

space of Z, so that f = P�1~Zc for some vector c. We have to maximize the

expression

fTMQPQMf + fTPf = cT ~ZTP�1MQPQMP�1~Zc+ cT ~ZTP�1~Zc

subject to condition (3.2), which is fTPf = cT ~ZTP�1~Zc � �2f . Equivalently,

with e =
�
~ZTP�1~Z

�1=2
c=�f , we maximize

eT
�
~ZTP�1~Z

��1=2
~ZTP�1MQPQMP�1~Z

�
~ZTP�1~Z

��1=2
e+ eTe

subject to eTe � 1. This is a standard problem whose solution is as described

in the Theorem. �

Proof of Proposition 3: In light of Theorem 4 we have only to show that

(i) rTg =
P
rig ( i) and

�
�+ 1

nr
�T
=
P�

�i +
ri
n

�
g ( i) are both maximized

over g 2 G0 by g = g�;
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(ii) tr [QPQMHM] and tr [(QM� I)H (MQ� I)P] are both maximized over
h 2 H0 by H = �2hP

�1.

The �rst of these is immediate from the de�nition of G0 and the fact that

ri = z
T ( i)B

�1
m AB

�1
m z ( i)miwi =




A1=2B�1m z ( i)


2miwi � 0:

The second follows from the fact that both traces are maximized by choosing H

to be maximal with respect to the Loewner ordering. But from the de�nition of

H0 it follows that H � �2hP
�1 in this ordering. �

Proof of Theorem 5. If �2f > 0 then we are to minimize �m. But �m is

minimized by m = �, with minimum value �� = 0. This is because for m = �

we have M = P, and consequently the matrix (3.3) contains a factor

~ZTP�1MQ = ~ZTQ = ~ZTZ
�
ZTPZ

��1
ZT = 0:

If �2g > 0 then we are to show that
PN
i=1mi



B�1m z ( i)

 is also minimized by
m = �. But this is merely the discrete analogue of (A.2), and is proven in an

identical manner. That the minimax weights (3.5) are constant follows from

(3.7), B� = I and the constancy of g0.

It remains to show that the design m = � is also optimal when �2h > 0, i.e.

that

tr
�
QPQMP�1M

�
=

NX
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B�1m z ( i) mi

�i





2 �i
and

tr
�
(QM� I)P�1 (MQ� I)P

�
= tr

�
QPQMP�1M

�
+N � 2 (d+ 1)2 :

are both minimized by m = �. The �rst of these is proven as at (A.3), and

implies the second. �




