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Abstract: Inference on quantiles associated with dependent observation is a commonly

encountered task in risk management these days. This paper considers employing the

empirical likelihood to construct confidence intervals for quantiles of the stationary dis-

tribution of a weakly dependent process. To accommodate data dependence and avoid

any secondary variance estimation, the empirical likelihood is formulated based on blocks

of observations. To reduce the length of the confidence intervals, the weighted empiri-

cal distribution is smoothed by a kernel function and a smoothing bandwidth. It shows

that a rescaled version of the smoothed block empirical likelihood ratio admits a limiting

chi-square distribution with one degree of freedom, which facilitates likelihood ratio con-

fidence intervals for quantiles. The practical performance of these confidence intervals is

evaluated by a simulation study.
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1. Introduction

Let X1, ..., XN be a sequence of weakly dependent stationary random variables, and

F be their common marginal distribution. The interest of this paper is to construct

confidence intervals for θq =: F−1(q) = inf{x|F (x) ≥ q}, the q-th quantile of F for

q ∈ (0, 1). In financial risk management, θq is called the Value-at-Risk which specifies

the level of excessive losses at a confidence level 1 − q. As financial returns are most

likely dependent, the proposed confidence intervals for θq have direct applications in risk

management.

We propose using the empirical likelihood for the construction of confidence intervals

for θq. Empirical likelihood introduced by Owen (1988, 1990) is a nonparametric method of

inference that enables a likelihood type inference in a nonparametric setting. Two striking
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properties of the empirical likelihood are the Wilks’ theorem and Bartlett correction,

which mirror those of a parametric likelihood. Qin and Lawless (1994) established the

Wilks’ theorem for estimating equations based empirical likelihood, and Chen and Cui

(2006, 2007) showed that this empirical likelihood is Bartlett correctable with or without

nuisance parameters. Tsao (2004) studied the effect of the number of constraints on the

coverage probability of the empirical likelihood confidence intervals for a mean parameter.

Like its parametric counterpart, the empirical likelihood confidence intervals/regions are

constructed by contouring the empirical likelihood ratio, which brings two benefits. One

is that their shape and orientations are naturally determined by data. Another is that

the intervals/regions are obtained without secondary estimation.

These features of the empirical likelihood confidence intervals are the major motiva-

tions for our current proposal for quantiles. Indeed, when considering extreme quantiles

in risk analysis, the distribution of the sample quantile estimator can be quite skewed.

Therefore, it is more appealing to have confidence intervals which are naturally deter-

mined by the data rather than forcing them to be symmetric about a point estimate as

the case for intervals based on the asymptotic normality of the sample quantile estimator.

The fact that the empirical likelihood intervals are obtained by contouring the likelihood

ratio without an secondary variance estimation is particularly advantageous for dependent

data. This is because the data dependence leads to a variance which involves covariances

of all lags, which makes its estimation much more involved than independent cases.

A key ingredient of our proposal is to smooth a weighted empirical distribution func-

tion. The purpose of the kernel smoothing is to reduce the length of the confidence

intervals, which is clearly demonstrated in our simulation study. Combining the empirical

likelihood and the kernel smoothing for confidence intervals of a quantile with indepen-

dent and identically distribution was proposed in Chen and Hall (1993), which shows that

employing a kernel quantile estimator together with the empirical likelihood remarkably

reduces the coverage errors from O(N−1/2) to O(N−1) before the Bartlett correction and

to O(N−7/4) after Bartlett correction. Further investigations have been carried out by

Zhou and Jing (2003a) and (2003b). Quantile estimation using empirical likelihood in the

context of survey sampling is considered in Chen and Wu (2002).
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The paper is organized as follows. We introduced an kernel smoothed empirical like-

lihood for a quantile based on blocks of data in Section 2. Section 3 reports the main

results of the paper. Results from a simulation study are reported in Section 4. All the

technical details are relegated in the appendix.

2. Block Empirical Likelihood for Quantiles

let F l
k be the σ-algebra of events generated by {Xt, k ≤ t ≤ l} for l ≥ k. The α-mixing

coefficient introduced by Rosenblatt (1956) is

α(k) = sup
A∈Fi

1,B∈F∞
i+k

|P (AB)− P (A)P (B)|.

The series is said to be α-mixing if limk→∞ α(k) = 0. The dependence described by α-

mixing is the weakest, as it is implied by other types of mixing; see Doukhan (1994) for

a comprehensive discussion on mixing.

Let Fn(x) = n−1
∑n

i=1 I(Xi ≤ x) be the empirical distribution of the weakly depen-

dent data {Xi}N
i=1, where I(·) is the indicator function. We first smooth the empirical

distribution with a kernel K and a smoothing bandwidth h; then invert it to obtain ker-

nel estimator for the quantile function which is smoother than the conventional sample

quantile estimator.

Let K be a r-th order kernel which satisfies

∫
ujK(u)du =

⎧⎨
⎩

1, if j = 0;
0, if 1 ≤ j ≤ r − 1;
κ, if j = r.

(2.1)

for some integer r ≥ 2 and some κ �= 0. Furthermore let Gh(x) =
∫ x/h

−∞ K(y)dy where

h → 0 as N → ∞.

A kernel estimator of F (x) is F̂n,h(x) = n−1
∑n

i=1 Gh(x − Xi) and the kernel quantile

estimator θ̂q,h is the solution of

F̂n,h(x) = q.

Kernel estimators have been applied to estimation and testing for time series data; see

Robinson (1989), Hjellvik and Tjøstheim (1995), Hjellvik, Chen and Tjøstheim (2004)

and the book of Fan and Yao (2003).
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Chen and Tang (2005) studied the statistical properties of θ̂q,h and its variance es-

timation. Unlike estimation of a regression or a probability density function for weakly

dependent observations, the data dependence contributes to the leading order variance

of the kernel quantile estimator. In particular, for each h > 0 let γh(k) = Cov{Gh(θq −
X1), Gh(θq −Xk+1)}. The leading variance term of θ̂q,h is

σ2
n,h = q(1 − q) + 2

n−1∑
k=1

(1 − k/n)γh(k) (2.2)

which indicates clearly the first order effect of dependence. Chen and Tang (2005) pro-

posed estimating the variance via a kernel estimation of the spectral density of a derived

sequence. The variance estimator together with the asymptotic normality of θ̂q,h can be

used to obtain confidence intervals for θq. The simulation study reported in Section 4

compares confidence interval of this type with the proposed empirical likelihood intervals.

There are two limitations with confidence intervals based on the asymptotic normality.

One is that the intervals are always symmetric. However, for extreme quantiles commonly

used in risk analysis, the finite sample distribution of the quantile estimator can be quite

skewed. Therefore, it is more appealing to have asymmetric confidence intervals to re-

flect the skewness of the underlying distribution. Another limitation is that a secondary

variance estimation is required for (2.2). In Chen and Tang (2005), the estimation is via

estimating the spectral density function. For spectral density estimation, see Brockwell

and Davis (1991).

The proposed empirical likelihood intervals for θq are not only asymmetric but also free

of any secondary variance. The latter is due to empirical likelihood’s ability to standardize

internally via its built-in algorithm.

Let {pi}N
i=1 be probability weights adding to one. A weighted kernel estimator for the

distribution function F is

F̂p,h(x) =
N∑

i=1

piGh(x −Xi). (2.3)

If the observations were independent and identically distributed, we could formulate the
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empirical likelihood for the quantile θq by

Lh(θq) = sup
N∏

i=1

pi

subject to F̂p,h(θq) = q and
∑N

i=1 pi = 1. This is the formulation of Chen and Hall (1993).

However, as pointed out by Kitamura (1997) in the context of estimating equations, the

above single point based empirical likelihood would ignore data dependency and cause

the empirical likelihood ratio to lose its limiting chi-square distribution. The latter has

been a major attraction of the likelihood ratio statistics.

In this paper we introduce a smoothing bandwidth into the estimating equation for

the quantile which makes the estimating equation dependent of the sample size. In order

to capture data dependence, we employ the blocking technique which was first applied to

the bootstrap method (Carlstein, 1986; Künsch, 1989) and then to empirical likelihood

(Kitamura, 1997). The data blocking divides the entire sample into a sequence of data

blocks. The block length is taken to be sufficiently large so that the data dependence can

be captured. At the same time, the weakly dependence allows us to treat the blocks as

independent if the gap between successive blocks becomes large, although this gap will

be much smaller than the block length.

Let M be a positive integer representing the block length and L be the gap between

the beginnings of two consecutive blocks, and Q be the total number of blocks so that

Q = [(N −M)/L] + 1. Assumptions on M and L will be specified in Condition C4 in the

next section.

For i = 1, . . . , Q, define gh(Xi, θq) = Gh(θq−Xi)−q and Ti(θq) = 1
M

∑M
j=1 gh(X(i−1)L+j , θq)

be the i-th block average.

Let p1, · · · , pQ be empirical likelihood weights allocated to the Q blocks respectively.

The block empirical likelihood for θq is

Lh(θq) = sup

Q∏
i=1

pi (2.4)

subject to
∑Q

i=1 pi = 1 and
∑Q

i=1 piTi(θq) = 0. From the standard algorithm of empirical
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likelihood, the optimal pi that maximize the profile likelihood (2.4) is

pi =
1

Q[1 + λ(θq)Ti(θq)]
(2.5)

where λ(θq) is a Lagrange multiplier satisfying

Q∑
i=1

Ti(θq)

1 + λ(θq)Ti(θq)
= 0. (2.6)

Since Lh(θq) attains its maximum at pi = Q−1 for all i ∈ {1, . . . , Q}, we can define

�h(θq) = −2 log{Lh(θq)/Q
−Q} (2.7)

to be the log empirical log-likelihood ratio for θq. From (2.5),

�h(θq) = 2

Q∑
i=1

log[1 + λ(θq)Ti(θq)], (2.8)

where λ(θq) is the solution of (2.6).

If we choose h = 0 in the above formulation, then gh(Xi, θq) = Gh(θq − Xi) − q

is degenerated to I(Xi ≤ θq) − q, namely the estimating equation is free of N . Then

the results in Kitamura (1997) are applicable to this unsmoothed empirical likelihood

formulation for the quantile.

3. Main Results

We assume the following conditions in our investigation:

C1: {Xi}N
i=1 is a strictly stationary α-mixing sequence. The mixing coefficient α(k)

satisfy
∑∞

k=1 kα1/p(k) < ∞ for some p > 1. Let φ(t) be the spectral density function of

{I(Xk < θq)}N
k=1. We assume φ(0) > 0.

C2: Let K be a bounded and compactly supported rth order kernel satisfying (2.1);

and the smoothing bandwidth h satisfies Nh2r → 0 but Nh → ∞ as N → ∞.

C3: The distribution function F of Xi is absolutely continuous with a density f which

has continuous (r − 1)-th derivatives in a neighbourhood of θq and f(θq) > 0.
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C4: The block length satisfies M → ∞ and M = o(N1/2) as N → ∞ and the gap L

between the starting points of two adjacent blocks satisfies kL ≤ M and (k + 1)L > M

for some k > 1.

The reason to assume h = o(N−1/(2r)) in C2 is to reduce the effect of bias result-

ing from the kernel smoothing. This is a weak restriction as it is satisfied by the op-

timal bandwidth for estimating the quantile function. Indeed, the optimal bandwidth

which minimizes the mean square error for quantile estimation with a r-th order kernel is

h = O(N−1/(2r−1)) (Chen and Tang, 2005) provided the underlying distribution function

is sufficiently smooth. Hence, the standard bandwidth selection which is designed for

quantile estimation can be employed for the empirical likelihood intervals. Condition C4

is the standard establishment for data blocking for dependent data (Künsch, 1989 and

Kitamura, 1997). The idea is to use data block to capture dependence existed in the data,

and at the same time allows the number of data blocks going to infinity as N → ∞ to

facilitate asymptotic analysis.

We first establish the order of magnitude for the Lagrange multiplier λ(θq), which is

a key result in establishing stochastic expansions for the empirical likelihood ratio lh(θq).

Theorem 1 Under Conditions C1-C4, λ(θq) = Op{M(N−1/2 + hr)}.
The next theorem shows that a scaled version of the empirical likelihood ratio con-

verges to the χ2
1 distribution.

Theorem 2 Under Conditions C1-C4 and as N → ∞
N

MQ
lh(θq)

d→ χ2
1.

Theorem 2 readily leads to an empirical likelihood confidence interval for θq at 1 − α

level of confidence

Iα,h = {θq| N

MQ
�h(θq) ≤ cα}.

where cα is the upper α-quantile of χ2
1 such that P (χ2

1 > cα) = α. Theorem 2 ensures that

Iα,h will attain the nominal coverage level 1−α asymptotically. A major attraction of the

proposed confidence interval is in its avoiding any secondary estimation of the variance

of the kernel quantile estimator θ̂q,h given by (2.2).
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If we choose not to carry out the kernel smoothing in the empirical likelihood formula-

tion, which effectively assigns h = 0 as discussed at the end of last section, then Theorem

2 is still valid as a special case of Kitamura (1997). Let l0(θq) be the unsmoothed empiri-

cal likelihood ratio. Then, a 1−α confidence unsmoothed empirical likelihood confidence

interval for θq is

Iα,0 = {θq| N

MQ
�0(θq) ≤ cα}.

We expect that the smoothed confidence intervals Iα,h have shorter length than Iα,0. This

is based on a fact (Chen and Tang, 2005) that the kernel estimator for θq reduces the

variance of the unsmoothed sample quantile estimator at the second order. This is indeed

confirmed by the simulation study reported in the next section.

4. Simulation Results

We report results from a simulation study that is designed to evaluate the performance

of the empirical likelihood confidence intervals for the quantile θq. For comparison pur-

pose, we carry out simulation for both the kernel smoothed intervals Iα,h and unsmoothed

intervals Iα,0. We are interested in the lengths and coverage levels of the confidence in-

tervals.

We considered two time series models in the simulation. One is an AR(1) model

Xt = 0.5Xt−1 + εt

and an AR(2) model

Xt = 5
6
Xt−1 − 1

6
Xt−2 + εt.

In both models, εt are independent and identically distributed N(0, 1) random variables.

Clearly, both models are strictly stationary and satisfies α-mixing. In the simulation, the

initial value X0 was generated from the standard normal distribution under each model.

Two levels of quantiles were considered: the 5% and 50% (median) quantiles. The

former is a level commonly used in risk assessment. The sample sizes considered were

N = 300 and 500. The block length M was 12 for N = 300 and 16 for N = 500. We set the

gap between two successive blocks L to be half of M in all cases. We employed the second

order (r = 2) Epanechnikov kernel throughout the simulation. Three bandwidths were
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used for the kernel smoothed interval: h1 = 1.50N−1/4, h2 = N−1/4 and h3 = 0.50N−1/4.

We also considered confidence intervals based on the asymptotic normality of the kernel

smoothed quantile estimator as given in Chen and Tang (2005). The asymptotic variance

was estimated based on the spectral density estimation approach proposed in Chen and

Tang (2005).

The confidence intervals for the 5% and 50% quantiles with confidence levels 0.95 and

0.99 are reported in Table 1 for the AR(1) model and Table 2 for the AR(2) model. We

observe from Tables 1 and 2 that both smoothed and unsmoothed confidence intervals had

similar and both satisfactory coverage in all the cases considered in the simulation. The

observed empirical coverage was not sensitive to the choice of the smoothing bandwidth

h. From our discussion in the previous section, we have anticipated the kernel smoothed

confidence intervals to be substantially shorter than the unsmoothed counterpart and

this has turned out to be the case. Our discovery clearly exhibited the usefulness of

kernel smoothing in the context of interval estimation for dependent observations. The

empirical likelihood confidence intervals were also substantially shorter than the explicit

confidence intervals based on the asymptotic normality, although there were no much

difference among the coverage levels. The intervals based on the asymptotic normality

were symmetric which led to the intervals being too wide, while the distribution of θ̂q,h

can be quite skewed which is specially the case for extreme quantiles.

Appendix: Technical Details

For each h > 0, let γh(�) = Cov{gh(X1, θq), gh(X�+1, θq)} and

φh(t) = (2π)−1
∞∑

�=−∞
γh(�)exp(−i�t) for t ∈ [−π, π]

be the spectral density function of {gh(Xk, θq)}N
k=1. We note from C2 that φh(t) exists for

each given h and t ∈ [−π, π]. Similarly, we define φ(t) to be the spectral density function

of {I(Xk < θq)}N
k=1. From Lemma 1 of Chen and Tang (2005), φh(0) = φ(0) + o(1) as

N → ∞.

Let Ti(θq) = M−1
∑M

j=1 gh(X(i−1)L+j , θq) and T̃β(θ) = Q−1
∑Q

i=1[Ti(θq)]
β, where β is
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any positive integer. In particular, take SQ = T̃2(θq). We need lemmas in the proof of

Theorems 1 and 2.

Lemma A.1 Under Conditions C1-C4, T̃β(θq) = Op((M
−1/2+hr)β) for any integer β ≥ 2.

Proof: It can be shown that Condition C1 implies that {T β
i (θq)}Q

i=1 is strictly stationary.

Let go
h(Xj , θq) = gh(Xj , θq) − E{gh(Xj , θq)} and τi(θq) = M−1

∑M
j=1 go

h(X(i−1)L+j, θq). We

note that Ti(θq) = τi(θq) + c0h
r + o(hr) and {τi(θq)}Q

i=1 is a centralized version of Ti(θq)

with zero mean. Then,

E[T̃β(θq)] = E[T β
1 (θq)]

= E[τ1(θq) + c0h
r + o(hr)]β

= E[

β∑
j=0

(
β

j

)
{τ1(θq)}j{coh

r + o(hr)}β−j]. (A.1)

Note that E[τβ
i (θq)] = O(M−β/2) by applying the moment inequality in Yokoyama (1980).

Hence for any β ≥ 2, (A.1) leads to

E[T̃β(θq)] = O[(hr)β + (hr)β−1M−1/2 + ... + (M−1/2)β] = O((M−1/2 + hr)β). (A.2)

Next write u(i) = Cov(T β
1 (θq), T

β
i+1(θq)). If we take k as the greatest integer satisfying

kL ≤ M , then V ar(T̃β(θq)) can be rewritten as

QV ar(T̃β(θq)) = u(0) + 2
k+1∑
i=1

(1 − i

Q
)u(i) + 2

Q−1∑
i=k+2

(1 − i

Q
)u(i)

≤ u(0) + 2
k+1∑
i=1

|u(i)| + 2

Q−1∑
i=k+2

(|u(i)|. (A.3)

We shall show that the three terms on the right hand side of (A.3) denoted by A1, A2

and A3 respectively will all converge to zero. From (A.2),

u(0) = E(T 2β
1 (θq)) = O((M−1/2 + hr)β).

By applying the definition of covariance and then the Cauchy-Schwartz inequality on A2,

we can get

A2 ≤ 2

k+1∑
i=1

{|E[T β
1 (θq)T

β
i+1(θq)]| + |E2[T β

1 (θq)]|}
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≤ 2
k+1∑
i=1

{|E[T 2β
1 (θq)]E[T 2β

i+1(θq)]|1/2 + |E2[T β
1 (θq)]|}

= O((M−1/2 + hr)β).

Use the bound derived by Roussas and Ioannides (1987, p109) on A3 to obtain

A3 ≤
Q−1∑

i=k+2

10{E[T βq∗
1 (θq)]}1/q∗{E[T βr∗

i+1 (θq)]}1/r∗αT (i)1/p∗,

where p∗, q∗ and r∗ > 1 and 1
p∗+

1
q∗+

1
r∗ = 1. Since {E[T βq∗

1 (θq)]}1/q∗ = {E[T βr∗
i+1 (θq)]}1/r∗ =

O((M−1/2 +hr)β/2), and αT (i) ≤ α(iL−M) for i ≥ k+2 from Politis and Romano (1992),

we can conclude that

A3 ≤ C1(M
−1/2 + hr)β

Q−1∑
i=k+2

(α(iL − M))1/p∗

≤ C1(M
−1/2 + hr)β

∞∑
i=1

α(i)1/p∗ = O((M−1/2 + hr)β).

Therefore V ar(T̃β(θq)) = O((M−1/2+hr)βQ−1). Lastly a straightforward usage of Cheybe-

shev’s inequality concludes the proof.

Lemma A.2 Under Conditions C1-C4, MSQ
p→ 2πφ(0) > 0.

Proof: Although Lemma A.1 tells us that E[MSQ] = O((1+M1/2hr)2), but here we will

attempt to show that its limit is 2πφ(0). Note that

E(MSQ) =
1

M
V ar{

M∑
i=1

gh(Xi, θq)} = γh(0) + 2
M−1∑
i=1

(1 − i

M
)γh(i)

= γh(0) + 2
∞∑
i=1

γh(i) − 2
∞∑

i=M

γh(i) − 2

M

M−1∑
i=1

iγh(i).

Clearly the first two terms in the last step is 2πφ(0). For the remaining two terms, we

can use Davydov’s inequality to show that

| 2

M

M−1∑
i=1

iγh(i) + 2

∞∑
i=M

γh(i)| ≤ 2

M

∞∑
i=1

i|γh(i)|
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≤ 2

M

∞∑
i=1

i2p(2αg(i))
1/p{E[gh(Xi, θq)]}1−1/p

≤ C1

M

∞∑
i=1

iα(i)1/p{coh
r + o(hr)}1−1/p = o(M−1hr).

Hence E(MSQ) = 2πφ(0) + o(1). Observe also that V ar(MSQ) = O((1 + M1/2hr)2Q−1)

from Lemma A.1. Our result then follows from Cheybeshev’s inequality.

Lemma A.3. Under Conditions C1-C4, T̃1(θq) = Op(N
−1/2 + hr).

Proof: As c0h
r + o(hr) = E{gh(Xj, θq) − q},

V ar{T̃1(θq)} = V ar[Q−1

Q∑
i=1

τi(θq) + c0h
r + o(hr)]

= V ar[Q−1

Q∑
i=1

τi(θq)]

= Q−1E[τ 2
1 (θq)] = O{(MQ)−1} = O(N−1).

Since E[T̃1(θq)] = coh
r + o(hr), it can be easily deduced that

T̃1(θq) = Op{N−1/2 + hr} = Op(N
−1/2)

which follows from Condition C2.

Lemma A.4. Take ξQ = Q−1
∑Q

i=1 τ 2
i (θq). Under Conditions C1-C4,

MξQ
p→ 2πφ(0) > 0.

Proof: We note that

E[MξQ] =
M

Q

Q∑
i=1

{E[Ti(θq)] − (c0h
r + o(hr))}2

= E(MSQ) − 2ME[T̃1(θq)][c0h
r + o(hr)] + M [c0h

r + o(hr)]2]

= E(MSQ) + O(Mh2r) = 2πφ(0) + o(1).

It can also be shown that V (MξQ) = O(Q−1) by a proof similar to Lemma A.1. Hence

from Cheybeshev’s result, the statement is proved.
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Proof of Theorem 1: By following the standard procedure in empirical likelihood, for

instance that outlined in Owen (1990),

0 = |g(λ(θq))|

≥ |λ(θq)|
Q

Q∑
i=1

T 2
i (θq)

1 + λ(θq)Ti(θq)
− 1

Q
|

Q∑
i=1

Ti(θq)|

≥ |λ(θq)|
1 + |λ(θq)|max1≤i≤Q|Ti(θq)|MSQ − |MT̃1(θq)|.

From Lemma A.2, MSQ = 2πφ(0) + op(1). Recall also Lemma A.3, that |MT̃1(θq)| =

Op(MN−1/2). This means that

|λ(θq)|
1 + |λ(θq)|max1≤i≤Q |Ti(θq)| = Op(MN−1/2).

As MN−1/2 = o(1), hr = o(N1/2M−1) where N1/2M−1 → ∞ as N → ∞. From a result

in Künsch (1989), we see that

max
1≤i≤Q

|Ti(θq)| = max
1≤i≤Q

|τi(θq) + coh
r + o(hr)|

= o(N1/2M−1) + O(hr) = o(N1/2M−1).

Then we conclude that |λ(θq)| = Op(MN−1/2) because

1 + |λ(θq)| max
1≤i≤Q

|Ti(θq)| = 1 + op(1).

Proof of Theorem 2: We first develop an expansion for λ(θq). Note that

0 = g(λ(θq)) = Q−1

Q∑
i=1

Ti(θq)

1 + λ(θq)Ti(θq)

= Q−1

Q∑
i=1

Ti(θq)[1 − λ(θq)Ti(θq) +
λ2(θq)T

2
i (θq)

1 + λ(θq)Ti(θq)
]

= T̃1(θq) − λ(θq)SQ + Q−1

Q∑
i=1

Ti(θq)[
λ2(θq)T

2
i (θq)

1 + λ(θq)Ti(θq)
]. (A.4)
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To obtain an explicit expression for λ(θq), it is necessary to get the order of
∑Q

i=1 |Ti(θq)|3,
and this is

Q−1

Q∑
i=1

|Ti(θq)|3 ≤ max
1≤i≤Q

|Ti(θq)|SQ

= o(N1/2M−1)Op{(M−1/2 + hr)2}
= op{N1/2M−2(1 + M1/2hr)2} = op(N

1/2M−2)

as Nh2r → 0 implies Mh2r → 0 and M2N−1/2 = o(N1/2). The last term in (A.4) becomes

Q−1

Q∑
i=1

Ti(θq)[
λ2(θq)T

2
i (θq)

1 + λ(θq)Ti(θq)
] ≤ Q−1

Q∑
i=1

|Ti(θq)|3|λ(θq)|2(1 + λ(θq)| max
1≤i≤Q

Ti(θq)|)−1

= Q−1

Q∑
i=1

|Ti(θq)|3|λ(θq)|2(1 + op(1))
−1

= op(N
1/2M−2)Op(MN−1/2)2 = op(N

−1/2).

Now we have an expansion on λ(θq) based on (A.4):

λ(θq) =
T̃1(θq)

SQ
+ β,

where β = op(MN−1/2). It can be shown that β = op

(
T̃1(θq)

SQ

)
.

The adjusted empirical log-likelihood ratio

2N

MQ

Q∑
i=1

log(1 + λ(θq)Ti(θq))

=
2N

M

∞∑
j=1

(−1)j+1λj(θq)T̃j(θq)

j

=
2N

M
T̃1(θq)λ(θq) − N

M
SQλ2(θq) +

2N

MQ

Q∑
i=1

ηi

=
2N

M
T̃1(θq)(

T̃1(θq)

SQ
+ β) − N

M
SQ(

T̃1(θq)

SQ
+ β)2 +

2N

MQ

Q∑
i=1

ηi

=
N

M

T̃ 2
1 (θq)

SQ
− N

M
SQβ2 +

2N

MQ

Q∑
i=1

ηi, (A.5)
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where
∑Q

i=1 ηi consists of the third and higher order terms in the Taylor expansion of

2
∑Q

i=1 log{1 + λ(θq)Ti(θq)} respect to λ(θq)Ti(θq), each having coefficient of the form

λr(θq)
∑Q

i=1 T r
i (θq) for r ≥ 3. In particular, there exists a positive constant D such that

P (|ηi| ≤ Dλ3(θq)

Q∑
i=1

T 3
i (θq)) → 1.

We note from Lemma A.2 and Lemma A.4 that

MSQ = MξQ + op(1) = MξQ[1 + op(1)].

Now the first term in (A.5)

N

M

T̃ 2
1 (θq)

SQ
=

N

M

τ̄ 2(θq)

ξQ(1 + op(1))
+

N{c0h
r + o(hr)}{2τ̄(θq) + c0h

r + o(hr)}
2πφ(0) + op(1)

=
N

M

τ̄ 2(θq)

ξQ
+ Op{Nhr(N−1/2 + hr)}

=
N

M

τ̄ 2(θq)

ξQ
+ op(1).

We note that the central limit theorem for α-mixing sequences (Bosq, 1998) implies

that √
N

M

τ̄ (θq)√
ξQ

L→ N(0, 1).

Hence
N

M

τ̄ 2(θq)

ξQ

L→ χ2
1.

Furthermore,

N

M
SQβ2 = O(NM−1)Op{(M−1/2 + hr)2}op(M

2N−1)

= op(1 + M1/2hr)2 = op(1).

Finally as MQ ≥ N ,

N

MQ
|2

Q∑
i=1

ηi| ≤ 2N

MQ
D|λ(θq)|3

Q∑
i=1

|Ti(θq)|3

≤ 2D|λ(θq)|3
Q∑

i=1

|Ti(θq)|3

= Op(M
3N−3/2)op(N

1/2M−2Q)

= op(MQN−1) = op(1).
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This concludes the proof.
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Table 1. Average coverage levels and length (in parentheses) of the empirical likelihood

confidence intervals and confidence intervals based on Chen and Tang (2005) for quan-

tiles of the AR(1) process.

(a) N = 300, M = 12, l = 6 for AR(1) process.

Nominal Bandwidth
q Coverage Unsmoothed 1.50N−1/4 N−1/4 0.50N−1/4 Chen-Tang

0.05 0.95 0.963 0.940 0.942 0.942 0.954
(0.622) (0.502) (0.518) (0.526) (0.864)

0.99 0.992 0.987 0.987 0.987 0.988
(0.820) (0.672) (0.694) (0.706) (1.137)

0.50 0.95 0.952 0.948 0.947 0.947 0.960
(0.337) (0.308) (0.314) (0.317) (0.590)

0.99 0.985 0.982 0.982 0.982 0.992
(0.450) (0.413) (0.421) (0.426) (0.776)

(b) N = 500, M = 16, l = 8 for AR(1) process.

Nominal Bandwidth
q Coverage Unsmoothed 1.50N−1/4 N−1/4 0.50N−1/4 Chen-Tang

0.05 0.95 0.963 0.944 0.947 0.948 0.956
(0.461) (0.394) (0.404) (0.411) (0.642)

0.99 0.994 0.988 0.990 0.990 0.992
(0.614) (0.527) (0.541) (0.549) (0.776)

0.50 0.95 0.952 0.948 0.949 0.949 0.952
(0.259) (0.240) (0.244) (0.246) (0.450)

0.99 0.989 0.986 0.986 0.987 0.994
(0.345) (0.321) (0.327) (0.330) (0.592)
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Table 2. Average coverage levels and length (in parentheses) of the empirical likelihood

confidence intervals and the confidence intervals based on Chen and Tang (2005) for

quantiles of the AR(2) process.

(a) N = 300, M = 12, l = 6 for AR(2) process.

Nominal Bandwidth
q Coverage Unsmoothed 1.50N−1/4 N−1/4 0.50N−1/4 Chen-Tang

0.05 0.95 0.963 0.941 0.942 0.942 0.946
(0.781) (0.642) (0.658) (0.667) (1.082)

0.99 0.992 0.987 0.988 0.987 0.984
(1.029) (0.860) (0.883) (0.895) (1.424)

0.50 0.95 0.952 0.948 0.947 0.946
(0.423) (0.391) (0.397) (0.401) (0.804)

0.99 0.985 0.982 0.982 0.983 0.987
(0.565) (0.525) (0.533) (0.538) (1.058)

(b) N = 500, M = 16, l = 8 for AR(2) process.

Nominal Bandwidth
q Coverage Unsmoothed 1.50N−1/4 N−1/4 0.50N−1/4 Chen-Tang

0.05 0.95 0.963 0.946 0.947 0.948 0.950
(0.579) (0.502) (0.514) (0.520) (0.773)

0.99 0.994 0.989 0.990 0.990 0.992
(0.768) (0.672) (0.687) (0.695) (1.018)

0.50 0.95 0.952 0.949 0.949 0.949 0.952
(0.325) (0.305) (0.309) (0.311) (0.624)

0.99 0.989 0.987 0.987 0.987 0.992
(0.434) (0.408) (0.414) (0.417) (0.821)
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