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Abstract: Recently a flexible class of semiparametric copula-based multivariate

GARCH models has been proposed to quantify multivariate risks, in which uni-

variate GARCH models are used to capture the dynamics of individual financial

series, and parametric copulas are used to model the contemporaneous dependence

among GARCH residuals with nonparametric marginals. In this paper we address

two questions regarding statistical inference for this class of models. (1) Under

what mild sufficient conditions is the asymptotic distribution of the pseudo max-

imum likelihood estimator (MLE) of the residual copula parameter of Chen and

Fan (2006a) justified? (2) How do we test the correct specification of a parametric

copula for the GARCH residuals? In order to answer both questions rigorously,

we establish a new weighted approximation for the empirical distributions of the

GARCH residuals, which is of interest in its own right. Simulation studies and data

examples are provided to examine the finite sample performance of the pseudo MLE

of the residual copula parameter and the proposed goodness-of-fit test.
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1. Introduction

On June 26, 2004, governors of the G-10 central banks endorsed the pub-
lication of the revised capital accord, known as Basel II, in which the Basel
Committee proposed to adopt a more holistic approach that focuses on the inter-
action between the different risk categories in risk management; see McNeil, Frey
and Embrechts (2005) for a succinct account of the developments of Basel II. In
order to comply with Basel II, banks face the critical issue of adequately model-
ing dependence between different risk factors. Since copulas capture dependence
structures among individual risk factors that are invariant to any monotonic
transformation of the individual risks, they have become standard tools in risk
management. On the insurance front, the International Actuarial Association
recommends using copulas for modeling dependence structure of insurance port-
folios in Solvency II. Since then, major software providers have built various
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copula models to serve the industrial needs. For details on copulas, we refer to
Joe (1997) and Nelsen (2005). Because individual risk series in finance and insur-
ance are typically serially dependent, Chen and Fan (2006a) introduced a class
of Semiparametric COpula-based Multivariate DYnamic (SCOMDY) models, in
which the conditional mean and conditional variance of individual risk series are
parametrically specified, but the joint distribution of the (standardized) inno-
vations is semiparametrically specified as a parametric copula evaluated at the
nonparametric marginals. This class of models is very flexible in capturing a wide
range of temporal and contemporaneous dependence structures of multivariate
(nonlinear) time series.

An important class of the SCOMDY models is the so-called semiparametric
copula-based multivariate GARCH models, where a scalar GARCH model is
used to capture volatility of individual risk series and a parametric copula is
used to model the contemporaneous dependence between different risks. We
formally introduce this class of SCOMDY models. Suppose the observations
{Yt = (Y1,t, . . . , Yr,t)T }n

t=1 satisfy

Yj,t =
√

hj,tεj,t, hj,t = cj +
pj∑

i=1

αj,iY
2
j,t−i +

qj∑
i=1

βj,ihj,t−i, j = 1, . . . , r, (1.1)

where {εt = (ε1,t, . . . , εr,t)T }n
t=1 is a sequence of i.i.d. random vectors with E[εj,t] =

0, E[(εj,t)2] = 1, and the joint distribution function Fε of εt is assumed to take
the semiparametric form:

Fε (ε1, . . . , εr) = C(Fε,1(ε1), . . . , Fε,r(εr); θ0). (1.2)

Here C(x1, . . . , xr; θ) is a parametrized copula function up to unknown θ ∈ Θ ⊂
Rm, and for j = 1, . . . , r, Fε,j is the marginal distribution function of εj,t, assumed
to be continuous but otherwise unspecified. By Sklar’s Theorem (see Nelsen
(2005)), any multivariate distribution with continuous marginals can be uniquely
represented by its copula function evaluated at its marginals. Let Cε denote the
unique copula corresponding to the true joint distribution Fε of the GARCH
residual vector εt. We call Cε the residual copula. It is defined as

Cε(x1, . . . , xr) = Fε(F−
ε,1(x1), . . . , F−

ε,r(xr)),

where F−
ε,j(·) is the generalized inverse of Fε,j(·), j = 1, . . . , r. Model (1.2) ef-

fectively assumes that the true residual copula belongs to a parametric family:
Cε(x1, . . . , xr) = C(x1, . . . , xr; θ0) for some unknown θ0 ∈ Θ ⊂ Rm.

By fitting the semiparametric distribution (1.2) to the GARCH residuals,
dimensionality is reduced from r to m, which leads to more efficient estimation
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of the copula parameter. As a result, measures of portfolio risks such as con-
ditional VaR can be more efficiently estimated; see Hull and White (1998) and
Breymann, Dias and Embrechts (2003) for applications to exchange rate data,
and Giacomini, Härdle, Ignatieva and Spokoiny (2008) to stock data. This simple
multivariate GARCH model bypasses the overparametrization issue that is com-
monly encountered in generalizing univariate GARCH to multivariate GARCH
models. For a survey on multivariate GARCH models, see Bauwens, Laurent
and Rombouts (2006). The class of semiparametric copula-based multivariate
GARCH models (1.1)–(1.2) provides a plausible and efficient means to manage
multiple financial risk factors. However, before they can be readily used by banks
and insurance companies, valid statistical inference methodologies must be de-
veloped. In particular, estimation of the residual copula parameter and tests for
the correct specification of the parametric residual copula are of importance and
are addressed in this paper.

Estimation and inference for copulas that directly couple multivariate ob-
served variables have been pursued extensively. For example, in the context of
nonparametric copulas, Fermanian, Radulovic and Wegkamp (2004) considered
empirical copula estimation, while Fermanian and Scaillet (2003) and Chen and
Huang (2007) proposed kernel smoothing. For parametric copulas coupled with
nonparametric marginals, Genest, Ghoudi and Rivest (1995) investigated pseudo
maximum likelihood estimation (MLE), while Chen, Fan and Tsyrennikov (2006)
considered sieve MLE. Chen and Fan (2006b) studied the pseudo MLE and its
properties in estimating copulas that generate nonlinear Markov models. For
i.i.d. data, Klugman and Parsa (1999), Fermanian (2005) Scaillet (2007) and
Genest, Quessy and Rmillard (2006) examined goodness-of-fit tests of paramet-
ric copulas. Chen and Fan (2005) developed model selection tests for multiple
parametric copula comparison.

The main technical difficulty in establishing the asymptotic distribution of
the pseudo MLE of the copula parameter is that the score function and its deriva-
tives in copula-based models can blow up to infinity near the boundaries. Chen
and Fan (2005, 2006b) overcome this difficulty by making use of the weak con-
vergence of the empirical distribution function in a weighted metric. Currently,
there are sporadic results on the convergence of empirical distributions using
residuals of non-linear time series; see, for example, Berkes and Horváth (2003),
Horváth, Kokoszka and Teyssiére (2001) and Koul and Ling (2006). However,
to the best of our knowledge, a weighted approximation result is not available
for empirical distributions of residuals obtained from an initial step estimation
of time series models. Although Chen and Fan (2006a) developed copula model
selection tests for SCOMDY models, their tests rely on the asymptotic property
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of the pseudo MLE of the residual copula parameter θ. Let θ̂ denote this esti-
mator (see Section 2 for its definition). Crucial to the validity of their model
selection tests is the surprising result that the asymptotic distribution of θ̂ is not
affected by the initial step estimation of the GARCH parameters. Chen and Fan
(2006a) established this result by means of a heuristic argument with stringent
conditions, and by assuming the validity of a weighted approximation for the
empirical distributions of GARCH residuals.

In this paper, we first establish a weighted approximation for the empiri-
cal distributions of residuals of univariate GARCH models, which is important
in its own right. This weighted approximation allows us to provide a rigorous
justification of the limiting distribution result for the pseudo MLE θ̂ under mild
sufficient conditions; see Section 2. In addition, we develop a consistent test
for the correct specification of the residual copula Cε(x1, . . . , xr) by a particular
parametric copula class C = {C(x1, . . . , xr; θ) : θ ∈ Θ}. This extends existing
goodness-of-fit tests for i.i.d. data to GARCH residuals. In Section 3, we provide
some simulation studies and data examples to demonstrate finite sample prop-
erties of the pseudo MLE for θ, and the goodness-of-fit test for the parametric
copula. All proofs can be found in the on-line supplement of this paper.

2. Estimation and Testing

2.1. Estimation of GARCH models

For each j = 1, . . . , r, let γj = (cj , αj,1, . . . , αj,pj , βj,1, . . . , βj,qj )
T denote the

true GARCH parameters associated with the model (1.1). Let γ̂j = (ĉj , α̂j,1, . . .,
α̂j,pj , β̂j,1, . . . , β̂j,qj )

T denote the quasi MLE of γj based on the sample {Yj,t}n
t=1,

which is the MLE if εj,t is standard normal.
Similar to Berkes and Horváth (2003), for qj ≥ pj , define

dj,0(γj) = cj

(1−βj,1−···−βj,qj
)

dj,1(γj) = αj,1

dj,2(γj) = αj,2 + βj,1dj,1(γj)
...

dj,pj (γj) = αj,pj + βj,1dj,pj−1(γj) + · · · + βj,pj−1dj,1(γj)
dj,pj+1(γj) = βj,1dj,pj (γj) + · · · + βj,pjdj,1(γj)

...
dj,qj (γj) = βj,1dj,qj−1(γj) + · · · + βj,qj−1dj,1(γj);
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for qj < pj , define

dj,0(γj) = cj

(1−βj,1−···−βj,qj
)

dj,1(γj) = αj,1

dj,2(γj) = αj,2 + βj,1dj,1(γj)
...

dj,qj+1(γj) = αj,qj+1 + βj,1dj,qj (γj) + · · · + βj,qjdj,1(γj)
...

dj,pj (γj) = αj,pj + βj,1dj,pj−1(γj) + · · · + βj,qjdj,pj−qj (γ);

for i > max(pj , qj), define

dj,i(γj) = βj,1dj,i−1(γj) + βj,2dj,i−2(γj) + · · · + βj,qjdj,i−qj (γj).

Set wj,k(γj) = dj,0(γj) +
∑∞

i=1 dj,i(γj)Y 2
j,k−i and

Γj = {u = (u1, . . . , upj+qj+1)T : u > 0, upj+2 + · · · + upj+qj+1 ≤ ∆∗
0 < 1,

0<∆∗
1≤min(u1, . . . , upj+qj+1) ≤ max(u1, . . . , upj+qj+1)≤∆∗

2, qj∆∗
1 <∆∗

0}.

Remark 1. When Eε4j,1 < ∞ and γj ∈ Γj , it follows from Berkes and Horváth
(2003, equations 1.8 and 3.4) that hj,k = wj,k(γj)

γ̂j − γj = 1
n

∑n
t=1(ε

2
j,t − 1)A−1

j

w′
j,t(γj)

wj,t(γj)
+ op(n− 1

2 ),
(2.1)

where Aj = E{w′
j,1(γj)

wj,1(γj)
(

w′
j,1(γj)

wj,1(γj)
)T } and

w′
j,t(γj) =

( ∂

∂cj
wj,t(γj),

∂

∂αj,1
wj,t(γj), . . . ,

∂

∂βj,qj

wj,t(γj)
)T

.

Put ŵj,1(γj) = 1 and ŵj,k(γj) = dj,0(γj) +
∑k−1

i=1 dj,i(γj)Y 2
j,k−i for 2 ≤ k ≤ n.

Then we can estimate εt by

ε̂t = (ε̂1,t, . . . , ε̂r,t)T =
( Y1,t√

ŵ1,t(γ̂j)
, . . . ,

Yr,t√
ŵr,t(γ̂j)

)T
. (2.2)

2.2. Estimation of residual copula parameters

We can estimate the true marginal distribution of εj,t, Fε,j(x), by

F̂ε,j(x) =
1

n − ν + 1

n∑
t=ν

I(ε̂j,t ≤ x),



58 N.-H. CHAN, J. CHEN, X. CHEN, Y. FAN AND L. PENG

where ν = ν(n) is an integer. We then estimate the residual copula parameter θ

by θ̂, the pseudo MLE based on the pseudo sample{
(F̂ε,1(ε̂1,t), . . . , F̂ε,r(ε̂r,t))T

}n

t=ν
, (2.3)

i.e.,

θ̂ = arg max
θ

1
n − ν + 1

n∑
t=ν

log c(F̂ε,1(ε̂1,t), . . . , F̂ε,r(ε̂r,t); θ)

:= arg max
θ

ln(θ),

where c(x1, . . . , xr; θ) = ∂rC(x1, . . . , xr; θ)/∂x1 · · · ∂xr is the copula density func-
tion. This estimation approach was employed by Genest, Ghoudi and Rivest
(1995) for independent data, and by Chen and Fan (2006a) for dependent data.

2.3. Weighted approximation for residual empirical distributions

Let U be a Gaussian process with

EU(x) = 0, E{U(x)U(y)} =
r∏

i=1

{xi ∧ yi} −
r∏

i=1

{xiyi},

where x = (x1, . . . , xr)T and y = (y1, . . . , yr)T . The following conditions are
imposed for the study of the empirical process and the weighted empirical process
of the estimated residuals of GARCH models.

A1. For j = 1, . . . , r, γj ∈ Γj , Eε4j,1 < ∞, and there exists µ > 0 such that
limt→0 t−µP (ε2j,1 ≤ t) = 0.

A2. For j = 1, . . . , r, the support of εj,t is (−∞,∞), Fε,j has continuous density
F ′

ε,j , and there exist β3 ∈ (0, 1/4) and ∆3 > 0 such that

sup
s

sup
|x−1|≤∆3

sF ′
ε,j(sx)

{Fε,j(s)(1 − Fε,j(s))}β3
< ∞

for j = 1, . . . , r.

Theorem 2.1. Suppose A1 and A2 hold and ν/ log n → ∞, ν/n → 0 as n → ∞.
Then

sup
x

|
√

n−ν+1{F̂ε,j(x)−Fε,j(x)}−U((1, . . . , 1, Fε,j(x), 1, . . . , 1)T )− 1
2xF ′

ε,j(x)τj |
{Fε,j(x)(1−Fε,j(x))}β3

= op(1), (2.4)
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where (U(Tr(x1, . . . , xr)), τ1, . . . , τr)T is a vector valued Gaussian process with
zero mean, and covariance structure

E(τjτi) = E{(ε2j,1 − 1)(ε2i,1 − 1)}E{(
w′

j,1(γj)
wj,1(γj)

)T A−1
j

×E(
w′

j,1(γj)
wj,1(γj)

)(
w′

i,1(γi)
wi,1(γi)

)T A−1
i E(

w′
i,1(γi)

wi,1(γi)
)}, (2.5)

E{U(Tr(x1, . . . , xr))τj}
= E{(ε2j,1 − 1)I(F1(ε1,1) ≤ x1, . . . , Fr(εr,1) ≤ xr)}

×E{(
w′

j,1(γj)
wj,1(γj)

)T }A−1
j E{

w′
j,t(γj)

wj,t(γj)
}, (2.6)

Tr(x1, . . . , xr) to be defined.

Remark 2. Theorem 2.1 establishes a weighted approximation for the empirical
distributions of the residuals (εj,t) in GARCH models. Later on, we use it to
derive the asymptotic distributions of the pseudo MLE of the residual copula
parameter θ, and of the goodness-of-fit test statistic for testing the parametric
specification of the residual copula. For (unweighted) approximation to the em-
pirical process of squared residuals (ε2j,t) in ARCH and GARCH models, we refer
to Horváth, Kokoszka and Teyssiére (2001) and Berkes and Horváth (2003).

2.4. Asymptotic properties of the pseudo MLE of θ

Let θ0 denote the true value of θ and assume the following conditions for
consistency of θ̂.

C1. log c(x1, . . . , xr; θ) is a continuous function of θ for each (x1, . . . , xr)T ∈
[0, 1]r.

C2. Θ is a compact subset of Rm.

C3. E supθ∈Θ | log c(Fε,1(ε1,1), . . . , Fε,r(εr,1); θ)| < ∞.

C4. For any ∆0 ∈ (0, 1/2) and ∆1 ∈ (1/2, 1), there exist β0 ∈ (0, 1), M0 > 0,
β1 > 0 and M1 > 0 such that

sup
θ∈Θ

| log c(x1, . . . , xr; θ)| ≤ M0{∧r
i=1xi}−β0

for ∧r
i=1xi ≤ ∆0,

sup
θ∈Θ

| log c(x1, . . . , xr; θ)| ≤ M0{1 − ∨r
i=1xi}−β0
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for ∨r
i=1xi ≥ ∆1, and

sup
θ∈Θ

| log c(x1, . . . , xr; θ) − log c(y1, . . . , yr; θ)| < M1

r∑
i=1

|xi − yi|β1

for ∆0/2 < ∧r
i=1xi ≤ ∨r

i=1xi < ∆1 + (1 − ∆1)/2 and ∆0/2 < ∧r
i=1yi ≤

∨r
i=1yi < ∆1 + (1 − ∆1)/2.

Note that Conditions C1–C3 are standard conditions for consistency of MLE
based on i.i.d. data. Condition C4 is similar to that imposed by Genest, Ghoudi
and Rivest (1995) and Chen and Fan (2005) for i.i.d. data; it controls the speed
of divergence of the logarithm of the copula density at the boundaries, and is
satisfied by all the commonly used copula densities.

Theorem 2.2. Suppose that A1 and C1–C4 hold, and ν(n)/n → 0 as n → ∞.
Then θ̂

p→ θ0 as n → ∞.

Remark 3. Since the approximation between the estimated residuals ε̂j,t and
the residuals εj,t is poor for small t, we employ ν in the above Theorem to obtain
a good approximation rate. The same idea was employed in Hall and Yao (2003)
for deriving the limiting distribution of Quasi-MLE for GARCH models.

Before we state the asymptotic normality result, we introduce some addi-
tional notations. Put

ċ(x1, . . . , xr; θ) = (
∂

∂θ1
c(x1, . . . , xr; θ), . . . ,

∂

∂θm
c(x1, . . . , xr; θ))T ,

δ(x1, . . . , xr; θ) =
ċ(x1, . . . , xr; θ)
c(x1, . . . , xr; θ)

,

and for i = 1, . . . , r, δi(x1, . . . , xr; θ) = ∂δ(x1, . . . , xr; θ)/∂xi. Define C1(x1) = x1,

Ci(xi|x1, . . . , xi−1) = P (Fε,i(εi,1) ≤ xi|Fε,1(ε1,1) = x1, . . . , Fε,i−1(εi−1,1) = xi−1)

for i = 2, . . . , r, Ti(x1, . . . , xi) = (C1(x1), C2(x2|x1), . . . , Ci(xi|x1, . . . , xi−1)) for
i = 1, . . . , r, and

Σ(θ) =
(
E

{ ∂2

∂θi∂θj
log c(Fε,1(ε1,1), . . . , Fε,r(εr,1); θ)

})
1≤i,j≤m

.

We impose the following additional regularity conditions for asymptotic nor-
mality.

N1. For j = 2, . . . , r, the function Cj(xj |T−
j−1(x1, . . . , xj−1)) is differentiable

with respect to x1, . . . , xj−1 over the interior of [0, 1]j−1, and

j−1∑
i=1

∫
[0,1]j−1

| ∂

∂xi
Cj(xj |T−

j−1(x1, . . . , xj−1))| dx1 · · · dxj−1 ≤ M2 ∈ (0,∞).
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N2. There exists β2 ∈ (0, 1/2) such that

sup
0≤x1,...,xr≤1

r∏
i=1

(xi)β2(1 − xi)β2 |δ(T−
r (x1, . . . , xr); θ0)| < ∞,

∫ r∏
i=1

(xi)β2(1 − xi)β2 | dδ(T−
r (x1, . . . , xr; θ0))| < ∞.

N3. For any ∆4 ∈ (0, 1/2) and ∆5 ∈ (1/2, 1), there exist β4 ∈ (0, β2), M4 > 0,
β5 > 0 and M5 > 0 such that

|δj(x1, . . . , xr; θ0)| ≤ M4xj{∧r
i=1xi}−β4

for ∧r
i=1xi ≤ ∆4,

|δj(x1, . . . , xr; θ0)| ≤ M4(1 − xj){1 − ∨r
i=1xi}−β4

for ∨r
i=1xi ≥ ∆5, and

|δ(x1, . . . , xr; θ0) − δ(y1, . . . , yr; θ0)| < M5

r∑
i=1

|xi − yi|β5

for ∆4/2 < ∧r
i=1xi ≤ ∨r

i=1xi < ∆5 + (1 − ∆5)/2 and ∆4/2 < ∧r
i=1yi ≤

∨r
i=1yi < ∆5 + (1 − ∆5)/2.

N4. For 1 ≤ i, j ≤ m, ∂2 log c(x1, . . . , xr; θ)/∂θi∂θj is a continuous function of θ

in an open neighborhood of θ0 for each (x1, . . . , xr)T ∈ [0, 1]r.

N5. There exists an open neighborhood Θ0 of θ0 such that, for 1 ≤ i, j ≤ m,

E sup
θ∈Θ0

| ∂2

∂θi∂θj
log c(Fε,1(ε1,1), . . . , Fε,r(εr,1); θ)| < ∞.

N6. For any ∆6 ∈ (0, 1/2) and ∆7 ∈ (1/2, 1), there exist β6 ∈ (0, 1), M6 > 0,
β7 > 0 and M7 > 0 such that

sup
θ∈Θ0

| ∂2

∂θi∂θj
log c(x1, . . . , xr; θ)| ≤ M6{∧r

i=1xi}−β6

for ∧r
i=1xi ≤ ∆6,

sup
θ∈Θ0

| ∂2

∂θi∂θj
log c(x1, . . . , xr; θ)| ≤ M6{1 − ∨r

i=1xi}−β6
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for ∨r
i=1xi ≥ ∆7, and

supθ∈Θ0
| ∂2

∂θi∂θj
log c(x1, . . . , xr; θ) − ∂2

∂θi∂θj
log c(y1, . . . , yr; θ)|

< M7
∑r

i=1 |xi − yi|β7

for ∆6/2 < ∧r
i=1xi ≤ ∨r

i=1xi < ∆7 + (1 − ∆7)/2 and ∆6/2 < ∧r
i=1yi ≤

∨r
i=1yi < ∆7 + (1 − ∆7)/2.

Note that conditions N4–N5 are standard for proving asymptotic normality
of MLE based on i.i.d. data. Conditions N1-N2 are imposed by Csörgő and
Révész (1975) for multivariate empirical processes. Conditions N3 and N6 are
similar to the ones imposed by Genest, Ghoudi and Rivest (1995) and Chen
and Fan (2005) for asymptotic normality based on i.i.d. data; they are employed
to control the speed of divergence of partial derivatives of the logarithm of the
copula density at the boundaries, and are again satisfied by all the commonly
used copula densities.

Theorem 2.3. Suppose A1–A2, C1–C4 and N1–N6 hold, and that ν(n)/ log n →
∞, ν(n)/n → 0 as n → ∞. Then

√
n(θ̂ − θ0) converges in distribution to Z

given by

−Σ−1(θ0)
{∫

δ(T−
r (x1, . . . , xr); θ0) dU(x1, . . . , xr)

+
r∑

i=1

∫
δi(x1, . . . , xr; θ0)U((1, . . . , 1, xi, 1, . . . , 1)T )c(x1, . . . , xr; θ0) dx1 · · · dxr.

Remark 4. Theorem 2.3 states that under mild sufficient conditions, the limit
distribution of θ̂ is independent of the GARCH filtering. In Chen and Fan
(2006a), the normal limiting distribution was obtained by means of heuristic argu-
ments under stringent conditions, and by assuming the existence of the weighted
approximation for the empirical distributions of GARCH residuals. Since the
variance given in Chen and Fan (2006a) is expressed in terms of a conditional
distribution, it is hard to see whether the limit in the above theorem is the
same as that in Chen and Fan (2006a). However, both limits are normal and
independent of the parameter estimation in the GARCH models. Due to this in-
dependence of GARCH models, we can employ the parametric bootstrap method
to estimate the variance of θ̂ and construct confidence intervals for θ0; see the
simulation study below.

2.5. A goodness-of-fit test of residual copulas

The results established in the preceding subsection assume the correct specifi-
cation of the residual copula by the parametric copula class C={C(x1, . . . , xr; θ) :
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θ ∈ Θ}. In this subsection, we propose a consistent test for this assumption. Let

H0 : P (Cε(ε1, . . . , εr) = C(ε1, . . . , εr; θ0)) = 1 for some θ0 ∈ Θ,

H1 : P (Cε(ε1, . . . , εr) = C(ε1, . . . , εr; θ)) < 1 for all θ ∈ Θ.

Take the empirical estimator of Cε(x1, . . . , xr) to be

Ĉε(x1, . . . , xr) =
1
n

n∑
t=1

I(F̂ε,1(ε̂1,t) ≤ x1, . . . , F̂ε,r(ε̂r,t) ≤ xr).

Then our test statistic is

Tn =
∫

{Ĉε(x1, . . . , xr) − C(x1, . . . , xr; θ̂)}2c(x1, . . . , xr; θ̂) dx1 · · · dxr,

where θ̂ is the pseudo MLE of θ0 under H0. Let

Ċ(x1, . . . , xr; θ) =
( ∂

∂θ1
C(x1, . . . , xr; θ), . . . ,

∂

∂θm
C(x1, . . . , xr; θ)

)T
.

Theorem 2.4. Assume the conditions of Theorem 2.3 hold. Further, suppose

max
1≤i≤r

sup
0≤x≤1

F ′
ε,i(F

−
ε,i(x))F−

ε,i(x) < ∞,

sup
θ∈Θ0

sup
0≤x1,...,xr≤1

|Ċ(x1, . . . , xr; θ)| < ∞,

sup
0≤x1,...,xr≤1

r∑
i=1

∂

∂xi
C(x1, . . . , xr; θ0) < ∞.

(2.7)

Then, under H0,

nTn
d→

∫ {
U(Tr(x1, . . . , xr)) +

r∑
j=1

∂

∂xj
C(x1, . . . , xr; θ0)

×U((1, . . . , 1, xj , 1, . . . , 1)T ) − ZT Ċ(x1, . . . , xr; θ0)
}2

×c(x1, . . . , xr; θ0) dx1 · · · dxr,

where Z is given in Theorem 2.3.

Remark 5. As in estimation (see Remark 4), the asymptotic distribution of the
test statistic under H0 is independent of GARCH filtering. This motivates us to
employ a parametric bootstrap method to obtain the critical point of the test
instead of simulating one from the limiting distribution; see the data examples
below.
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3. Simulations and Data Examples

We generate 1,000 random samples of size n = 500 from model (1.1), with
residual copula specified as the mixture

C(u1, . . . , ur; θ1, θ2, λ) = λC1(u1, . . . , ur; θ1) + (1 − λ)C2(u1, . . . , ur; θ2),

where

C1(u1, . . . , ur; θ1) = {
r∑

i=1

u−θ1
i − r + 1}−

1
θ1 , θ1 > 0 ,

C2(u1, . . . , ur; θ2) = exp{−[
r∑

i=1

(− log(ui))θ2 ]
1
θ2 }, θ2 ≥ 1.

In order to demonstrate that the pseudo MLE is independent of the parame-
ter estimation in the GARCH models, we take θ1 = 3.0, θ2 = 2.0, λ = 0.3 or 0.7,
the marginal distributions of εt as N(0, 1), r = 3, and the GARCH model with
either c1 = c2 = c3 = 1, α1,1 = 0.2, α2,1 = 0.3, α3,1 = 0.4, β1,1 = β2,1 = β3,1 = 0.2
(case (i)), or c1 = c2 = c3 = 0.2, α1,1 = α2,1 = α3,1 = 0.2, β1,1 = 0.6, β2,1 = 0.5,
β3,1 = 0.4 (case (ii)). The average and corresponding standard deviation of the
proposed pseudo maximum likelihood estimator are reported in Table 1, along
with the true values of the model parameters. The proposed method works well.
By looking at the two cases with λ = 0.3 in Table 1, the estimators and their
standard deviations for the parameters in GARCH models are different for these
two cases, but those for the parameters in the residual copula almost remain the
same. Similar observations hold when λ = 0.7. This is in line with the limiting
distribution for the proposed pseudo maximum likelihood estimator θ̂ in Theo-
rem 2.3 being independent of the GARCH filtering, as indicated in Remark 4.
We also observe that the standard deviation of θ̂1 for the case λ = 0.3 is larger
than that for the case λ = 0.7, and that the standard deviation of θ̂2 for the case
λ = 0.3 is smaller than that for the case λ = 0.7. This observation is in line with
the role of the parameter λ in the mixture copula.

For constructing confidence intervals, we draw 400 random samples of size
n = 500 from C(x1, x2, x3; θ̂1, θ̂2, λ̂). For each bootstrap sample, we compute the
bootstrap version of the MLE, say θ̂∗1, θ̂

∗
2, λ̂

∗. Use these 400 bootstrap MLE’s to
estimate the variances of θ̂1, θ̂2, λ̂ so that confidence intervals can be obtained.
Based on 1,000 random samples, the coverage probabilities for θ1, θ2, λ with level
0.9 are 0.903, 0.928, 0.899 for case (i) with λ = 0.3; 0.900, 0.926, 0.893 for case
(i) with λ = 0.7; 0.908, 0.909, 0.890 for case (ii) with λ = 0.3; 0.898, 0.920, 0.903
for case (ii) with λ = 0.7. These numbers show that the proposed parametric
bootstrap method works well and further confirms the property of independence
of GARCH filtering given in the Theorem 2.3.
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Table 1. Estimation results for mixture copula C(u1, u2, u3; θ1, θ2, λ). Stan-
dard deviations are given in parenthesis.

Case (i) Case (i) Case (ii) Case (ii)
λ = 0.3 λ = 0.7 λ = 0.3 λ = 0.7

c1 1.033 1.111 0.241 0.260
(0.292) (0.306) (0.117) (0.122)

α1,1 0.206 0.215 0.209 0.219
(0.073) (0.071) (0.065) (0.062)

β1,1 0.207 0.197 0.566 0.563
(0.181) (0.177) (0.149) (0.137)

c2 1.062 1.129 0.237 0.254
(0.269) (0.278) (0.109) (0.110)

α2,1 0.309 0.327 0.208 0.217
(0.083) (0.081) (0.068) (0.067)

β2,1 0.195 0.188 0.457 0.456
(0.146) (0.135) (0.173) (0.174)

c3 1.071 1.124 0.219 0.236
(0.245) (0.247) (0.086) (0.091)

α3,1 0.408 0.437 0.206 0.216
(0.089) (0.085) (0.070) (0.067)

β3,1 0.192 0.192 0.381 0.375
(0.114) (0.108) (0.191) (0.185)

θ1 2.956 2.959 2.984 2.981
(0.504) (0.242) (0.537) (0.250)

θ2 2.064 2.166 2.061 2.171
(0.091) (0.163) (0.102) (0.195)

λ 0.298 0.693 0.295 0.690
(0.064) (0.061) (0.065) (0.060)

Next we apply the proposed estimate and test to two data sets. The first
one consists of 2,275 daily log-returns of the S&P 500 index, Cisco System and
Intel Corporation, from January 2, 1991 to December 31, 1999; see Figure 1 and
Fan, Wang and Yao (2008). The second data set contains 2,635 daily log-returns
of stock prices of Nortel, Lucent and Cisco, from April 4, 1996 to September
22, 2006; see Figure 2. Here, we fit the mixture copula C(x1, x2, x3; θ1, θ2, λ)
to the residuals from filtering a GARCH(1,1) for each series; see Tables 2−5
for parameter estimates. As mentioned in Remark 3, we employ the parametric
bootstrap method to obtain p-values of the test.

We draw 200 random samples with size 2,275 for the first data set and size
2,635 for the second data set from C(x1, x2, x3; θ̂1, θ̂2, λ̂). Based on each sample,
we compute the bootstrap version of Tn, say T ∗

n . Hence we have T ∗
n(1), . . .,

T ∗
n(200), and the p-value is calculated as (1/200)

∑200
i=1 I(T ∗

n(i) ≥ Tn), see Tables
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Figure 1. Daily Log-returns of S&P 500 index (a), Stock Price of Cisco
Systems (b) and Stock Price of Intel Corporation (c) from January 2, 1991
to December 31, 1999.

3 and 5. The p-values in Tables 3 and 5 clearly reject the mixture copula for
both data sets. Since this mixture copula is mainly designed to catch both tails



MULTIVARIATE RESIDUAL COPULA OF GARCH MODELS 67

Figure 2. Daily Log-returns of stock prices of Nortel (a), Lucent (b) and
Cisco (c) from April 4, 1996 to September 22, 2006.

of a data set, it is quite challenging to fit a parametric residual copula to catch
both the tail and middle parts of a data set; seeking more flexible parametric
models is of importance.
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Table 2. Parameter estimates for GARCH(1,1) of the daily log-returns of
S&P 500 index, stock prices of Cisco and Intel.

S&P 500 index Cisco systems Intel Corporation
c 0.0096 0.3272 0.1336
α 0.0636 0.0737 0.0186
β 0.9247 0.8879 0.9597

Table 3. Copula parameter estimates and test statistic of the daily log-
returns of S&P 500 index, stock prices of Cisco and Intel.

C2(; θ1, θ2, λ)
Parameter estimation (1.0549, 1.4618, 0.4716)

Test statistic nTn 0.1806
P-value 0.000

Table 4. Parameter estimates for GARCH(1,1) of the daily log-returns of
stock prices of Nortel, Lucent and Cisco.

Nortel Lucent Cisco
c 7.0 × 10−6 1.0 × 10−5 8.0 × 10−6

α 0.0360 0.0436 0.0627
β 0.9609 0.9504 0.9301

Table 5. Copula parameter estimates and test statistic of the daily log-
returns of stock prices of Nortel, Lucent and Cisco.

C2(; θ1, θ2, λ)
Parameter estimation (1.05839, 1.3456, 0.4284)

Test statistic nTn 0.2301
P-value 0.000
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Giacomini, E., Härdle, W., Ignatieva, E. and Spokoiny, V. (2008). Inhomogeneous dependency

modelling with time varying copulae. J. Business and Economic Statist. 26, in press.

Hall, P. and Yao, Q. (2003). Inference in ARCH and GARCH models. Econometrica 71, 285-317.

Hull, J. and White, A. (1998). Value at risk when daily changes in market variables are not

normally distributed. J. Derivatives 5, 9-19.
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