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This supplement gives the proofs of Theorem 1 and Propositions 1-3 in the official

publication. Results (formulae) cited are along the lines of the official publication.

5 Proof of Theorem 1

Note that o2 = Y, (X; — X)? = V2 — 52/n. 1t is readily seen from Theorem 2 that, for
any x > 0,

PU>z) = P(Sp4+c>a\/V2—=S52/n)>P(S,+c>zV,)
= {1-92v2)} ¥V, () exp (01 An@) {1+0:(1+2x)p,}, (5.1)

which gives the lower bound of (2.1). As for the upper bound, we have,

P(U>z) = P(S,+c>z/V2?-52/n)

< P(ISul 2t Vo) + P(Sn+c> 2V, /1 —n142), (5.2)

where tg = 12 max (z,logn). Since e < 1 —y+ 2y*2 for y > 0, it follows easily that,
for 0 <z < p, /256,

P(V, < 4vn/5) = P(—V?>—16n/25)

616“21_[ E{ exp(— 25:E2Xf/n)}

=1

IN

2

< o162’ (1 —252%2n P4+ 15023 n! pn)n < e 77,

This result, together with Lemma 6.4 of Jing et al. (2003), imply that,

PISi 2 taVa) < P{ISu| 2§10 (Va4V} + P(Vi <4/ /5)
< 9exp | — 2 { max(z,log n)}Z} < gp /232
< Ap{l = @2y 2)} Wny(2), (5.3)



for 0 <z < p;1/256 and |c| < x+/n/5, where we have used (4.8).

In order to establish the upper bound for P(S, + ¢ > xV, \/1—n=1t2), let y, =
z/1—n=1t2. Note that 2/2 < yo < 32/2 and |yo/z — 1| < 24n~" max{2?, (logn)?},
for all sufficiently large n. Routine calculations, together with (4.8), imply that A, ,, <
8Anz, Viry(vo) <V, 4 (2) exp(AA,;) and 1 — P(2yy) < {1 —P(2yx)} exp(A A, ), and

hence, using Theorem 2, that

P(Sn—i-cz x Vi /1 —n—lz%)
<{1—-22vy)} \Pn,”/(yo) eXp(AAn,y()) {1+ A1+ yo) pn}
<{1-2(2v2)} ¥, (2) exp(AD, ) {1+ A1 +2)pnt, (5.4)

which yields the upper bound in (2.1). The proof Theorem 1 is now complete. O

6 Proof of Proposition 1

Write n;, = 2hX] — (hX])Q + gj, where é-j = 9h4X;-LI|X].|§\/ﬁT, and let Cl,"‘ ,Cn be
independent random variables with ¢; having distribution function V;(u) defined by

V}(U) = E{e)\nj[(nj < U)}/Ee/\"j, for j=1,---n,

Set m(\) = E¢p, a2(\) = var(¢y), M2(\) = o2(N),

> =1 (G — EG)
Mn(N)

< t} and R,(\) = %(T)(A)

Go(t) = P{
We need the following lemmas before the proof of (4.9).

LEMMA 6.1. Let h = z/\/n, EX =0, EX? = 1 and E|X|> < oco. Then, for any
A>0,0>0andx >0,

EeMX-000" — 4 (N2)2 — ) 'a? + (NP6 — A)n Y2 E X3
+AN, O)n A, L, (6.1)

where |A(X, 0)] < max{e/U0) (X +0)3/6 + 02/2 4+ (A + 0)%e* /24, (A + 0)(1 + \)?}.
Proof. Write Y = X1 y|< /n,, Where 7 = 1/(1 +z), £ = A\hX — §(hX)? and
Ji(N0) = E(e* — 1) xjsymr, J2(A0) =E(ef — 1)1 x1< /mr-
Noting that A(hs) — 0(hs)? < \?/(40) for s € R, we get
71X, 0)] < XU P(IX| > /nr).
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On the other hand, simple calculation shows that
E¢lixi<ymr = MEY —Oh’EY?,
E&lx<ymr = NWEY? —2MR°EY® 4+ *h'EY",
E&lx1<ymr = NHEY® + AN\ 0)R'EY?,
where |A(), 0)] < (A4 6)3. By virtue of these estimates and the inequality |e® — 1 — s —
s2/2 — s3/6] < |s|*e*V0/24 for s € R, it follows easily that
(X 0) = Etlxi<ymr + 3 E&Ix< /mr + § BE Lx)<ymr
+(1/24)01E|€]* I x < s
= MWEY + (N2 —0)h2EY? + (\3/6 — AO) PEY® + A;(\, )W E|Y|*
= (N2 -0)n"'2? + (N6 — N)n 3PP EXE 4+ Ay(\, 0)n T AL,
where |O1] <1, |41\, 0)] < (A +0)3/6 + 62/2 + (A + 0)*e* /24 and
|A2(X, 0)] < max{|A; (N, 0)], (A +0)(1+ N2}

Combining the bounds on J; (A, #) and Jy(\, €), we obtain (6.1). The proof of Lemma 6.1

is complete. O

LEMMA 6.2. For any A > 0, we have

Er™ = 14+ 2N = NhR+NAN3 -2 EX?+Cin ' A,.,  (6.2)
Emerm = (X =D +402 = NRPEX? +Cyn ' A, (6.3)
Enier™m = 4h? + C3h® E|X)?, (6.4)

ElmPer™ < (27 +4A4%) 2TV R3 BIX3, (6.5)

where C, Cy and Cy are constants depending only on X\, and Cy, Cy and C5 are bounded

by an absolute constant A; whenever 1/4 < \ < 3/4.

Proof. We only prove (6.3). The others are similar and the details are omitted. Write

ny =2h X; — (h X1)?. By the same arguments as in proof of Lemma 6.1, we have
Enie’ = (A—Dh2+4N - N EX*+00N)n A, (6.6)

where |O()\)] < max{3(1 + e*), A + 14X*(1 + e*)}. The property (6.3) now follows easily
from (6.6) and

B — By ]

IN

‘Eni« e/\nf(ekﬁl _ 1)‘ + E & e (i +€1)
< A{)\max(e’\, eA™!) + 1} e)‘(A+1)a?4n_2EX4[|X\g\/ﬁw
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where we have used the facts that ni <1 and

Intle? < A tsup|sle® < A7 max(Ae?, e).
s<A

]

We now turn to the proof of (4.9). By virtue of Lemma 6.2, tedious but simple
calculations show that, for any 1/4 < XA < 3/4 and 4 < z < p, '/ max{16, A;} where A,

is as in Lemma 6.2,

Eetni

E|G]> <

exp{ (2N = A\ R*+ XN*(4\/3 = 2) P EX® + Ojn™ " A, }, (6.7)

Enje/\"j/Ee’\"j

(AN = DR*+4 (N - NRPEX* +05n ' AL, (6.8)
En?e’\”j/Ee)‘"j — (Enje’\"j/Ee)‘"j)2

4h* + Oin~ ' 2% p,, (6.9)
E|77j|3e’\"j/Ee’\”j < An7'a2?p,, (6.10)

where O7, O; and Oj are bounded by an absolute constant A,. We next let Ay be the

solution of the equation

m(Xo) = (2% + d1,) /. (6.11)

By recalling that (; is a non-generate random variable, we have m/(\) = o2()\) > 0,

and hence m(\) is a strict increasing function for A > 0. Also note that, by (6.8) and

|51n| S ZE2/2,

m(1/4) < 2*/(2n) < m(No) < 32%/(2n) < m(3/4),

for 4 <z < p;1/Ap, with Ag = max{16, A;,2A4,}. These facts, together with (6.8) again,
imply that )¢ is the unique solution of (6.11), 1/4 < Ay < 3/4 and

Mo —1/2+ (\) — XN)hEX? — 61,/ (42%)] < Ay A,/ (42%), (6.12)

for 4 <z < p;'/Ap. By using (6.12) and the fact that

(BIX]*)? < 2(B|IXPLixsyme)? + 2B X[ I x< ymr (6.13)

we have that for 4 <z < p1 /Ay,

[do— A — BREX?| < Ay A,./(42%) +3[Ao — M| R E|X[?

IN

Ay A, L/ (22%) + 3 (h E|X]?)?
< (A2 + 3) An,x/x27 (614)
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where A\; = % + 61,,/(42?) and 6 = Ay — A]. Therefore, by using (6.7) and (6.13) and
recalling |01,| < 22/2 [also 01, = 2(2A\; — 1)2?%], 3/8 < \; < 5/8 and 3 < Ay, tedious but
simple calculations show that, for 4 <z < p-1/A,,

g~ +din) H EeMm = exp [ — (M + B EX?/n)0, + 20 (M — 1)2?

=1
+{2(2) — 1)8+ A2(4My/3 — 2) }aP E X /\/ﬁ] exp (O11A,.),
= exp(—2X} 2%) Uy, exp {014, }, (6.15)

where O; is bounded by an absolute constant. By (6.9), we also have
|MZ2(No) /2% — 4] < Ay py, 3.52% < M2 (\o) < 4.527, (6.16)

for 4 <z < p,1/A.
We are now ready to prove (4.9). By the conjugate method and (6.15), we have that,
for 4 <z < p /A,

P(2RS, = B2V +01'Qy = 22+ 61) = P( D my = 2+ 1)

Jj=1
n e’}
= Lz |
j=1 v

e"“”%lP(Z G < u),
2401n j=1

— H Eeoni o= 2o(@?+01n) [/OO e_’\oM"()‘O)”d{Gn(U) - @(v)}
0

Jj=1

+/OO e_’\OM"(’\O)”dq)(v)}
0

= exp(—2A7 2%) Uy, exp (014,.) {L1(Mo) + L2(o) }- (6.17)
To estimate (o), write ¢(z) = {1 — ®(z)}/®¥'(z) = /2 [ e ¥ /2dy. Clearly, for
y = 3/2,
and  [¢/(y)] = lyv(y) — 1| <y~
These estimates, together with the facts that 3z/4 < AgM,,(A\g) < bz/4 by (6.16) and

1/4 < Xy < 3/4, and

’)\OMn()\O) — 2)\1 ilj" S Mn<)\0)‘)\0 - )\1‘ + )\1 ’Mn(h[)) — 2513'| S AiL’Q Pns



by (6.14) and (6.16), imply that for 4 < x < p /A,

L(d) = ¢{NMu(No)}/V2r
_ [¢(2A1x) + 1 (0%) { oM, (Ao) — 2 x}} /21, [where 6 € (3x/4,52/4)]

= ML\/; (1 + Oy x,on)
= M —a@2Na)) (1+ 022 p,), (6.18)

where |Oy] < A. As for I1()g), by (6.10) and (6.16), integration by parts and the Berry-
Esseen theorem, we get

[11(0)| < 2sup |Ga(v) = ©(v)| < 4M (M) Y EIGIP < Apy.

Jj=1

This implies that, for z > 4,
Li(N) = Osxp, e {1 -d(2\2)}, (6.19)

since 7/16 < Ay < 9/16, where |O3] < A. Taking the estimates (6.18) and (6.19)
into (6.17), we obtain the required (4.9). The proof of Proposition 1 is now complete.
O

7 Proof of Proposition 2

We only prove (4.10). The property (4.11) follows from (4.10) and the similar arguments
as in the proof of (5.4).

We first assume 4 < 2 < pn/?/4. Let Q, = (1 — 27'/2,1 4+ 271/2) and \; =
1{1401,/(22%)}, where 01, = —2+2hd5,. Note that |d1,| < 2?/2 whenever |ds,| < zy/n/4
and [\ — Ao| < 1/2%, where Ay = {1+ d2,/(z/n)}. It is readily seen from (4.5) and
(4.7) with s = 1 and Proposition 1 with # = 0 that

IN

Va
P (Sn Z JTVn + 52717 _n € Qn)

T P(2hS, — R*V} > 2 — 2+ 2hdy,)

< {1=92X2)} Uy, (2) exp {A (A, +1)}.
So it suffices to show that, for 4 < x < p51/2/4,

I < {1-2@\2)} Ui (z) exp{A(Ay+1)}, j=1and2, (7.1)



where

I, = P{Sn > 2V, 4 09, V2 > (1 +x_1/2)} ,
L = P{S,>aV,+6,,V.<n(l-2"/2)}.
To estimate I, write By = {(s,t) : 5 > oVt + 2X\ohs,,0 < t < 4)3(2? — 2/2)}. By

noting that /1 —271/2>1— x71/4 — 272 /4 since x > 4, it follows easily from Lemma
6.1 with A = 2\, and 6 = 42, and then (4.6) with ¢y = A, that, for 4 < = < p,/?/4,

I, = P{(2\hS,,ANh*V}}) € By}
< Eexp (2\hS, =8\ AV ) exp { — (s}t?efBl(S —2¢)}
< Eexp (20hS, — 802 h2V2) exp { — 2hoh 6 — 200w\/2? — 1/2 + 803 (27 — 2/2) }
< eexp{ —2Xh by, + 205 — N)2® — (8/3)N52°EX? /v/n+ Mo (1/2 — dXo)z + AN, . }
< eexp (= 2032%) U,y 5, (2) exp {2A5(1 — 2X0)2%p, — x/4 + AN, }
< eexp(— 202U, 5, (2) exp ( — /8 + AN, ,)
< 8V2me {1 — ®(2X1)} U,y (7) exp(AA,,L), (7.2)

where we have used the facts that hds, = (2Xo — 1)2? and 1/3 < Ay < 2/3.

As for I, we have
L < P{S,>aV,+héy,n(l+z7"/2) <V?<9n}
+ P(S, > 2V, + hdy,, V.2 > 9n)

= 1Y+ 1® say. (7.3)

Similarly to the proof of (7.2), by letting By = {(s,t) : s > v/t + 2\ohd,, 4M3 (2% +
271/2) <t < 36 A222}, we get, for 4 < x < pn/?/4,

IV = P{(2\hS,,40202V?) € By}
< Eexp (2\hS, — 203 h°V?/3) exp { — (S’itglef&(s — t/6)}
< Eexp (20hS, — 20202V /3) exp { — 200k 62, — 200x/2% + /2 + 203 (2? + 2/2) /3}
< eexp (= 2032%) Uy, (@) exp {205(1 — Xo/3)2’p, — /6 + AA,, . }
< 4V 2re {1—®(2X2)} W, 5, (2) exp(A A, ),

where we have used the fact that /1 +271/2>1+27!/4 —272/16. On the other hand,
by letting S, = Z?zl Xjlix,|<25y/m/z» @5 in the proof of Lemma 3 of Shao (1999) with

7



minor modifications, we have that,
1P < P(S,>zV,/2+ hé V2>9n)—|—P(i X1 >V, 2)
1 > n Z n 2ny Vi Z it|1x;1>25vmje Z T n/

=1

P(S, > 3v/n)2 + hoan) + P(Z Iix poasviye > 2° /4)

Jj=1

IN

— _ 2 _ 9,2
eh52nm+€2x

IN

< A{1—0(20z)} U,y (z) exp(AA,,).
Taking the estimates for [1(1) and IF) into (7.3), we obtain that
I < (de + 1){1 — ®(2X92) } U, », exp(AA, ;).

This proves (7.1) for j = 1 and 2, hence completes the proof of Proposition 2 for 4 < x <
o2 )4,

We next assume p;1/2/4 <z < p,t/Ag, where A is as in Proposition 1 and Ay >
256. In this case, let Q, = (1 — 4A}L{§/x, 1+ 4A71~/12;/a:) and \; = 1/2 + 6y,,/42* where
O1n = —16A,, . + 2hdy,. Note that A, , < 2?/128 and recall |ds,| < z/n/4. We obtain
A1 — Xo| < 4A,,. /2% and |61,| < 2%/2. By virtue of these facts, it follows from (4.5) and
(4.7) with s = 0 and Proposition 1 with # = 0 that, for 4 < x < p1/A,,

IN

p (Sn > 2V, + Go, Yo o Qn) P(2hS, — h*V} > 2* — 161, , + 2 hdoy,)

Jn

IN

{1-0@2X\ 2)} U, 5 (2) exp (AA,)(1+ Azp,)
< A{1—-92N2)} U, 5, () exp (AA,,).

Now we only need to show that, for ,0;1/2/4 <z< p;l/Ao,

IF < {1-22X2)} ¥, (2) exp(AA,,), j=1and2, (7.4)

J
where

I} = P{S,>aV, 46,V >n(l+4AY2/z)},
I; = P{S,>aV, 46y, V. <n(l—4AY2/z)}.

The proof of (7.4) is similar to (7.1). So we only give a outline for j = 2. Indeed, by
letting B} = {(s,1) : 5 > oV + 2X\oh20,0 < t < 4X3(2% — 42A/2)}, as in the proof of



(7.2), we obtain

I} < Eexp (2/\2h5n — 8\ h2v3> exp { — 2\oh b2y
—2ga/ 22 — Az AN + 82 (22 — 4m;{§)}
< eexp{ — 2Xh by, +2(A5 — No)2® — (8/3)A32°EX?/\/n
+(—32)3 + ANz A2 + AN, }
< eexp ( — 2)\3332)11171,,\2 () exp <2x3pn — 3z Ai/g + AAWC>
< 32e {1 — ®(202) } Uy, (@) exp(A A, L), (7.5)

where we have used the fact that 2z%p, — 3z Az < —x/32, since, by (6.13),

2/16 < 23 p, = n V23 E|X]P < \/E(Aix + szn,x)l/z < 2z AL2

n,x)

whenever x > pﬁl/2/4 and A, , < x?/128. This gives the proof of Proposition 2 for
p;1/2/4 <x < p;t/Ay. The proof of Proposition 2 is now complete. O

8 Proof of Proposition 3

The proof of this proposition is similar to that of Theorem 2.2 in Wang (2005). We
only provide a outline for the difference. Define notations I~ (y), J~ (y) and £, (y) as in
Lemmas 5.4 and 5.5 of Wang (2005). It follows (5.17) and Lemmas 5.4-5.6 in Wang (2005)
that there exists an absolute constant Ay such that, for 4 < z < p-1/Ag and yo = x + I3,

P(Tn +Apn >+ 53n> < % {I’(yo) +1-— J’(yo)}
< 1= ®(yo) + La(yo) + A{pne ™" + (zp,)*?}
EX3 2 yox 5
< 1—(yo) + (—0——>e—yo/2

+A{(pn + Apa/7) e + (2p,)*2}. (8.1)

Recalling 22/3 < yo < 4x/3 and using (4.8), we have, for z > 4 and k = 1,2,

< I_e_y3/2

T Vor

k
Y _
‘yé“{l—@(yo)}— \/;)_We v3/2



and e ¥%/2 < 3V2ra {1 — ®(yo)}. By virtue of these estimates and (8.1),

P<Tn + An,n Z T+ 5371)

< {1-2(yo) {1+ %(%0 — %) + A(zpn + Anz) } + Alzpn)*?
= {1-®2X\s2) {1+ A\j(4X\3/3 = 2) 2> EX®//n

+A(zpn + Any) } + A (zp,)%/?
< {1 — d(2)3 x)}\lfn,,\s (m){l + A(xp, + Anm)} + A(zp,)*?

< {1-0(2Xs2) } W, (@) exp (AA,,) (1+ Azp,) + A(zp,)¥?,

where \3 = % (1 + d2,/x). This proves Proposition 3. O
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