Relative Errors in Central Limit Theorem for Student's t Statistic, with Applications

Qiying Wang University of Sydney, Australia

Peter Hall

University of Melbourne, Australia

This supplement gives the proofs of Theorem 1 and Propositions 1-3 in the official publication. Results (formulae) cited are along the lines of the official publication.

5 Proof of Theorem 1

Note that $\sigma_n^2 = \sum_i (X_i - \bar{X})^2 = V_n^2 - S_n^2/n$. It is readily seen from Theorem 2 that, for any $x \ge 0$,

$$P(U \ge x) = P(S_n + c \ge x \sqrt{V_n^2 - S_n^2/n}) \ge P(S_n + c \ge x V_n)$$

= $\{1 - \Phi(2\gamma x)\} \Psi_{n,\gamma}(x) \exp(O_1 \Delta_{n,x}) \{1 + O_2 (1 + x) \rho_n\},$ (5.1)

which gives the lower bound of (2.1). As for the upper bound, we have,

$$P(U \ge x) = P(S_n + c \ge x \sqrt{V_n^2 - S_n^2/n})$$

$$\le P(|S_n| \ge t_0 V_n) + P(S_n + c \ge x V_n \sqrt{1 - n^{-1} t_0^2}),$$
 (5.2)

where $t_0 = 12 \max(x, \log n)$. Since $e^{-y} \le 1 - y + 2y^{3/2}$ for $y \ge 0$, it follows easily that, for $0 \le x \le \rho_n^{-1}/256$,

$$P(V_n \le 4\sqrt{n}/5) = P(-V_n^2 \ge -16n/25)$$

$$\le e^{16x^2} \prod_{j=1}^n E\{\exp(-25x^2 X_j^2/n)\}$$

$$\le e^{16x^2} (1 - 25x^2 n^{-1} + 150x^3 n^{-1} \rho_n)^n \le e^{-7x^2}.$$

This result, together with Lemma 6.4 of Jing et al. (2003), imply that,

$$P(|S_n| \ge t_0 V_n) \le P\{|S_n| \ge \frac{1}{6} t_0 (V_n + 4\sqrt{n})\} + P(V_n \le 4\sqrt{n}/5)$$

$$\le 9 \exp\left[-2\{\max(x, \log n)\}^2\right] \le 9 n^{-1/2} e^{-3x^2/2}$$

$$\le A \rho_n \{1 - \Phi(2\gamma x)\} \Psi_{n,\gamma}(x), \qquad (5.3)$$

for $0 \le x \le \rho_n^{-1}/256$ and $|c| \le x\sqrt{n}/5$, where we have used (4.8).

In order to establish the upper bound for $P(S_n + c \ge x V_n \sqrt{1 - n^{-1} t_0^2})$, let $y_0 = x \sqrt{1 - n^{-1} t_0^2}$. Note that $x/2 \le y_0 \le 3x/2$ and $|y_0/x - 1| \le 24 n^{-1} \max\{x^2, (\log n)^2\}$, for all sufficiently large n. Routine calculations, together with (4.8), imply that $\Delta_{n,y_0} \le 8 \Delta_{n,x}$, $\Psi_{n,\gamma}(y_0) \le \Psi_{n,\gamma}(x) \exp(A \Delta_{n,x})$ and $1 - \Phi(2\gamma y_0) \le \{1 - \Phi(2\gamma x)\} \exp(A \Delta_{n,x})$, and hence, using Theorem 2, that

$$P\left(S_{n} + c \geq x \, V_{n} \sqrt{1 - n^{-1} \, t_{0}^{2}}\right)$$

$$\leq \left\{1 - \Phi(2 \, \gamma \, y_{0})\right\} \Psi_{n,\gamma}(y_{0}) \, \exp(A \Delta_{n,y_{0}}) \left\{1 + A \, (1 + y_{0}) \, \rho_{n}\right\}$$

$$\leq \left\{1 - \Phi(2 \, \gamma \, x)\right\} \Psi_{n,\gamma}(x) \, \exp(A \Delta_{n,x}) \left\{1 + A \, (1 + x) \, \rho_{n}\right\}, \tag{5.4}$$

which yields the upper bound in (2.1). The proof Theorem 1 is now complete. \Box

6 Proof of Proposition 1

Write $\eta_j = 2 h X_j - (h X_j)^2 + \xi_j$, where $\xi_j = \theta h^4 X_j^4 I_{|X_j| \le \sqrt{n}\tau}$, and let ζ_1, \dots, ζ_n be independent random variables with ζ_j having distribution function $V_j(u)$ defined by

$$V_j(u) = E\{e^{\lambda \eta_j} I(\eta_j \le u)\}/Ee^{\lambda \eta_j}, \quad \text{for } j = 1, \dots, n,$$

Set $m(\lambda) = E\zeta_1$, $\sigma^2(\lambda) = var(\zeta_1)$, $M_n^2(\lambda) = \sigma^2(\lambda)$,

$$G_n(t) = P\left\{\frac{\sum_{j=1}^n (\zeta_j - E\zeta_j)}{M_n(\lambda)} \le t\right\} \text{ and } R_n(\lambda) = \frac{x^2 - n \, m(\lambda)}{M_n(\lambda)}.$$

We need the following lemmas before the proof of (4.9).

LEMMA 6.1. Let $h = x/\sqrt{n}$, EX = 0, $EX^2 = 1$ and $E|X|^3 < \infty$. Then, for any $\lambda > 0$, $\theta > 0$ and $x \ge 0$,

$$Ee^{\lambda hX - \theta(hX)^{2}} = 1 + (\lambda^{2}/2 - \theta)n^{-1}x^{2} + (\lambda^{3}/6 - \lambda\theta)n^{-3/2}x^{3}EX^{3} + A(\lambda, \theta)n^{-1}\Delta_{n,x},$$
(6.1)

where $|A(\lambda,\theta)| \leq \max\{e^{\lambda^2/(4\theta)}, (\lambda+\theta)^3/6 + \theta^2/2 + (\lambda+\theta)^4 e^{\lambda}/24, (\lambda+\theta)(1+\lambda)^2\}.$

Proof. Write $Y = XI_{|X| \le \sqrt{n\tau}}$, where $\tau = 1/(1+x)$, $\xi = \lambda hX - \theta(hX)^2$ and

$$J_1(\lambda,\theta) = E(e^{\xi} - 1)I_{|X| > \sqrt{n}\tau}, \quad J_2(\lambda,\theta) = E(e^{\xi} - 1)I_{|X| \le \sqrt{n}\tau}.$$

Noting that $\lambda(hs) - \theta(hs)^2 \le \lambda^2/(4\theta)$ for $s \in R$, we get

$$|J_1(\lambda, \theta)| \le e^{\lambda^2/(4\theta)} P(|X| \ge \sqrt{n\tau}).$$

On the other hand, simple calculation shows that

$$E\xi I_{|X| \le \sqrt{n}\tau} = \lambda h EY - \theta h^2 EY^2,$$

$$E\xi^2 I_{|X| \le \sqrt{n}\tau} = \lambda^2 h^2 EY^2 - 2\lambda \theta h^3 EY^3 + \theta^2 h^4 EY^4,$$

$$E\xi^3 I_{|X| \le \sqrt{n}\tau} = \lambda^3 h^3 EY^3 + \bar{A}(\lambda, \theta) h^4 EY^4,$$

where $|\bar{A}(\lambda,\theta)| \leq (\lambda+\theta)^3$. By virtue of these estimates and the inequality $|e^s-1-s-s^2/2-s^3/6| \leq |s|^4 e^{s\vee 0}/24$ for $s\in R$, it follows easily that

$$J_{2}(\lambda,\theta) = E\xi I_{|X| \leq \sqrt{n}\tau} + \frac{1}{2} E\xi^{2} I_{|X| \leq \sqrt{n}\tau} + \frac{1}{6} E\xi^{3} I_{|X| \leq \sqrt{n}\tau}$$

$$+ (1/24)O_{1}e^{\lambda} E|\xi|^{4} I_{|X| \leq \sqrt{n}\tau}$$

$$= \lambda h EY + (\lambda^{2}/2 - \theta)h^{2} EY^{2} + (\lambda^{3}/6 - \lambda \theta)h^{3} EY^{3} + A_{1}(\lambda,\theta)e^{\lambda}h^{4} E|Y|^{4}$$

$$= (\lambda^{2}/2 - \theta)n^{-1}x^{2} + (\lambda^{3}/6 - \lambda \theta)n^{-3/2}x^{3} EX^{3} + A_{2}(\lambda,\theta)n^{-1}\Delta_{n,x},$$

where $|O_1| \le 1$, $|A_1(\lambda, \theta)| \le (\lambda + \theta)^3/6 + \theta^2/2 + (\lambda + \theta)^4 e^{\lambda}/24$ and

$$|A_2(\lambda, \theta)| \le \max\{|A_1(\lambda, \theta)|, (\lambda + \theta)(1 + \lambda)^2\}.$$

Combining the bounds on $J_1(\lambda, \theta)$ and $J_2(\lambda, \theta)$, we obtain (6.1). The proof of Lemma 6.1 is complete.

LEMMA 6.2. For any $\lambda > 0$, we have

$$Ee^{\lambda \eta_1} = 1 + (2\lambda^2 - \lambda)h^2 + \lambda^2(4\lambda/3 - 2)h^3 EX^3 + C_1 n^{-1} \Delta_{n,x}, \qquad (6.2)$$

$$E \eta_1 e^{\lambda \eta_1} = (4\lambda - 1)h^2 + 4(\lambda^2 - \lambda)h^3 EX^3 + C_2 n^{-1} \Delta_{n,x},$$
(6.3)

$$E \eta_1^2 e^{\lambda \eta_1} = 4h^2 + C_3 h^3 E|X|^3, \tag{6.4}$$

$$E|\eta_1|^3 e^{\lambda \eta_1} \le (27 + 4A^3) e^{\lambda(1+A)} h^3 E|X|^3,$$
 (6.5)

where C_1 , C_2 and C_3 are constants depending only on λ , and C_1 , C_2 and C_3 are bounded by an absolute constant A_1 whenever $1/4 \le \lambda \le 3/4$.

Proof. We only prove (6.3). The others are similar and the details are omitted. Write $\eta_1^* = 2 h X_1 - (h X_1)^2$. By the same arguments as in proof of Lemma 6.1, we have

$$E \eta_1^* e^{\lambda \eta_1^*} = (4\lambda - 1)h^2 + 4(\lambda^2 - \lambda) h^3 E X^3 + O(\lambda) n^{-1} \Delta_{n,x},$$
 (6.6)

where $|O(\lambda)| \leq \max\{3(1+e^{\lambda}), \lambda+14\lambda^2(1+e^{\lambda})\}$. The property (6.3) now follows easily from (6.6) and

$$\begin{aligned}
|E \, \eta_1 \, e^{\lambda \, \eta_1} - E \, \eta_1^* \, e^{\lambda \, \eta_1^*}| &\leq |E \, \eta_1^* \, e^{\lambda \, \eta_1^*} (e^{\lambda \xi_1} - 1)| + E \, |\xi_1| \, e^{\lambda \, (\eta_1^* + \xi_1)} \\
&\leq A \left\{ \lambda \, \max(e^{\lambda}, e^{\lambda^{-1}}) + 1 \right\} e^{\lambda (A+1)} x^4 n^{-2} E X^4 I_{|X| \leq \sqrt{n}\tau},
\end{aligned}$$

where we have used the facts that $\eta_1^* \leq 1$ and

$$|\eta_1^*|e^{\lambda\eta_1^*} \le \lambda^{-1} \sup_{s \le \lambda} |s|e^s \le \lambda^{-1} \max(\lambda e^{\lambda}, e).$$

We now turn to the proof of (4.9). By virtue of Lemma 6.2, tedious but simple calculations show that, for any $1/4 \le \lambda \le 3/4$ and $4 \le x \le \rho_n^{-1}/\max\{16, A_1\}$ where A_1 is as in Lemma 6.2,

$$Ee^{\lambda \eta_j} = \exp\left\{ (2\lambda^2 - \lambda) h^2 + \lambda^2 (4\lambda/3 - 2) h^3 EX^3 + O_1^* n^{-1} \Delta_{n,x} \right\}, \qquad (6.7)$$

$$m(\lambda) = E\eta_j e^{\lambda\eta_j} / Ee^{\lambda\eta_j}$$

$$= (4\lambda - 1)h^2 + 4(\lambda^2 - \lambda)h^3 EX^3 + O_2^* n^{-1} \Delta_{n,x},$$
(6.8)

$$\sigma^{2}(\lambda) = E\eta_{j}^{2} e^{\lambda\eta_{j}} / Ee^{\lambda\eta_{j}} - \left(E\eta_{j} e^{\lambda\eta_{j}} / Ee^{\lambda\eta_{j}}\right)^{2}$$

$$= 4h^2 + O_3^* n^{-1} x^3 \rho_n, (6.9)$$

$$E|\zeta_j|^3 \le E|\eta_j|^3 e^{\lambda \eta_j} / Ee^{\lambda \eta_j} \le A n^{-1} x^3 \rho_n,$$
 (6.10)

where O_1^* , O_2^* and O_3^* are bounded by an absolute constant A_2 . We next let λ_0 be the solution of the equation

$$m(\lambda_0) = (x^2 + \delta_{1n})/n.$$
 (6.11)

By recalling that ζ_1 is a non-generate random variable, we have $m'(\lambda) = \sigma^2(\lambda) > 0$, and hence $m(\lambda)$ is a strict increasing function for $\lambda > 0$. Also note that, by (6.8) and $|\delta_{1n}| \leq x^2/2$,

$$m(1/4) \le x^2/(2n) \le m(\lambda_0) \le 3x^2/(2n) \le m(3/4),$$

for $4 \le x \le \rho_n^{-1}/A_0$, with $A_0 = \max\{16, A_1, 2A_2\}$. These facts, together with (6.8) again, imply that λ_0 is the unique solution of (6.11), $1/4 \le \lambda_0 \le 3/4$ and

$$|\lambda_0 - 1/2 + (\lambda_0^2 - \lambda_0)hEX^3 - \delta_{1n}/(4x^2)| \le A_2 \Delta_{n,x}/(4x^2),$$
 (6.12)

for $4 \le x \le \rho_n^{-1}/A_0$. By using (6.12) and the fact that

$$(E|X|^3)^2 \le 2(E|X|^3 I_{|X| \ge \sqrt{n}\tau})^2 + 2E|X|^4 I_{|X| \le \sqrt{n}\tau},\tag{6.13}$$

we have that for $4 \le x \le \rho_n^{-1}/A_0$,

$$|\lambda_{0} - \lambda_{1} - \beta h EX^{3}| \leq A_{2} \Delta_{n,x}/(4x^{2}) + 3|\lambda_{0} - \lambda_{1}|h E|X|^{3}$$

$$\leq A_{2} \Delta_{n,x}/(2x^{2}) + 3(h E|X|^{3})^{2}$$

$$\leq (A_{2} + 3) \Delta_{n,x}/x^{2}, \qquad (6.14)$$

where $\lambda_1 = \frac{1}{2} + \delta_{1n}/(4x^2)$ and $\beta = \lambda_1 - \lambda_1^2$. Therefore, by using (6.7) and (6.13) and recalling $|\delta_{1n}| \leq x^2/2$ [also $\delta_{1n} = 2(2\lambda_1 - 1)x^2$], $3/8 \leq \lambda_1 \leq 5/8$ and $\beta \leq \lambda_1$, tedious but simple calculations show that, for $4 \leq x \leq \rho_n^{-1}/A_0$,

$$e^{-\lambda_0(x^2+\delta_{1n})} \prod_{j=1}^n E e^{\lambda_0 \eta_j} = \exp\left[-(\lambda_1 + \beta x E X^3/\sqrt{n})\delta_{1n} + 2\lambda_1(\lambda_1 - 1)x^2 + \left\{2(2\lambda_1 - 1)\beta + \lambda_1^2(4\lambda_1/3 - 2)\right\}x^3 E X^3/\sqrt{n}\right] \exp\left(O_1 \Delta_{n,x}\right),$$

$$= \exp(-2\lambda_1^2 x^2) \Psi_{n,\lambda_1} \exp\left\{O_1 \Delta_{n,x}\right\}, \tag{6.15}$$

where O_1 is bounded by an absolute constant. By (6.9), we also have

$$|M_n^2(\lambda_0)/x^2 - 4| \le A_2 x \rho_n, \qquad 3.5x^4 \le M_n^2(\lambda_0) \le 4.5x^2,$$
 (6.16)

for $4 \le x \le \rho_n^{-1}/A_0$.

We are now ready to prove (4.9). By the conjugate method and (6.15), we have that, for $4 \le x \le \rho_n^{-1}/A_0$,

$$P(2hS_{n} - h^{2}V_{n}^{2} + \theta h^{4}Q_{n} \geq x^{2} + \delta_{1n}) = P\left(\sum_{j=1}^{n} \eta_{j} \geq x^{2} + \delta_{1n}\right)$$

$$= \prod_{j=1}^{n} Ee^{\lambda_{0}\eta_{j}} \int_{x^{2} + \delta_{1n}}^{\infty} e^{-\lambda_{0}u} dP\left(\sum_{j=1}^{n} \zeta_{j} \leq u\right),$$

$$= \prod_{j=1}^{n} Ee^{\lambda_{0}\eta_{j}} e^{-\lambda_{0}(x^{2} + \delta_{1n})} \left[\int_{0}^{\infty} e^{-\lambda_{0}M_{n}(\lambda_{0})v} d\{G_{n}(v) - \Phi(v)\}\right]$$

$$+ \int_{0}^{\infty} e^{-\lambda_{0}M_{n}(\lambda_{0})v} d\Phi(v)$$

$$:= \exp(-2\lambda_{1}^{2}x^{2}) \Psi_{n,\lambda_{1}} \exp(O_{1}\Delta_{n,x}) \{I_{1}(\lambda_{0}) + I_{2}(\lambda_{0})\}. \tag{6.17}$$

To estimate $I_2(\lambda_0)$, write $\psi(x) = \{1 - \Phi(x)\}/\Phi'(x) = e^{x^2/2} \int_x^{\infty} e^{-y^2/2} dy$. Clearly, for $y \ge 3/2$,

$$\frac{1}{2y} \le \psi(y) \le \frac{1}{y}$$
 and $|\psi'(y)| = |y\psi(y) - 1| \le y^{-2}$.

These estimates, together with the facts that $3x/4 \le \lambda_0 M_n(\lambda_0) \le 5x/4$ by (6.16) and $1/4 \le \lambda_0 \le 3/4$, and

$$|\lambda_0 M_n(\lambda_0) - 2\lambda_1 x| \le M_n(\lambda_0)|\lambda_0 - \lambda_1| + \lambda_1 |M_n(h_0) - 2x| \le A x^2 \rho_n$$

by (6.14) and (6.16), imply that for $4 \le x \le \rho_n^{-1}/A_0$,

$$I_{2}(\lambda_{0}) = \psi \{\lambda_{0} M_{n}(\lambda_{0})\} / \sqrt{2\pi}$$

$$= \left[\psi(2\lambda_{1}x) + \psi'(\theta^{*}) \{\lambda_{0} M_{n}(\lambda_{0}) - 2\lambda_{1}x\} \right] / \sqrt{2\pi}, \quad \text{[where } \theta^{*} \in (3x/4, 5x/4)]$$

$$= \frac{\psi(2\lambda_{1}x)}{\sqrt{2\pi}} (1 + O_{2}x \rho_{n})$$

$$= e^{2\lambda_{1}^{2}x^{2}} \{1 - \Phi(2\lambda_{1}x)\} (1 + O_{2}x \rho_{n}), \quad (6.18)$$

where $|O_2| \leq A$. As for $I_1(\lambda_0)$, by (6.10) and (6.16), integration by parts and the Berry-Esseen theorem, we get

$$|I_1(\lambda_0)| \le 2 \sup_{v} |G_n(v) - \Phi(v)| \le 4M_n^{-3}(\lambda_0) \sum_{j=1}^n E|\zeta_j|^3 \le A \rho_n.$$

This implies that, for $x \geq 4$,

$$I_1(\lambda_0) = O_3 x \rho_n e^{2\lambda_1^2 x^2} \left\{ 1 - \Phi(2\lambda_1 x) \right\}, \tag{6.19}$$

since $7/16 \le \lambda_1 \le 9/16$, where $|O_3| \le A$. Taking the estimates (6.18) and (6.19) into (6.17), we obtain the required (4.9). The proof of Proposition 1 is now complete. \Box

7 Proof of Proposition 2

We only prove (4.10). The property (4.11) follows from (4.10) and the similar arguments as in the proof of (5.4).

We first assume $4 \leq x \leq \rho_n^{-1/2}/4$. Let $\Omega_n = (1 - x^{-1}/2, 1 + x^{-1}/2)$ and $\lambda_1 = \frac{1}{2}\{1 + \delta_{1n}/(2x^2)\}$, where $\delta_{1n} = -2 + 2h\delta_{2n}$. Note that $|\delta_{1n}| \leq x^2/2$ whenever $|\delta_{2n}| \leq x\sqrt{n}/4$ and $|\lambda_1 - \lambda_2| \leq 1/x^2$, where $\lambda_2 = \frac{1}{2}\{1 + \delta_{2n}/(x\sqrt{n})\}$. It is readily seen from (4.5) and (4.7) with s = 1 and Proposition 1 with $\theta = 0$ that

$$P\left(S_{n} \geq xV_{n} + \delta_{2n}, \frac{V_{n}}{\sqrt{n}} \in \Omega_{n}\right) \leq P\left(2h S_{n} - h^{2} V_{n}^{2} \geq x^{2} - 2 + 2h\delta_{2n}\right)$$

$$\leq \left\{1 - \Phi(2\lambda_{2} x)\right\} \Psi_{n,\lambda_{2}}(x) \exp\left\{A\left(\Delta_{n,x} + 1\right)\right\}.$$

So it suffices to show that, for $4 \le x \le \rho_n^{-1/2}/4$,

$$I_j \leq \{1 - \Phi(2\lambda_2 x)\} \Psi_{n,\lambda_2}(x) \exp\{A(\Delta_{n,x} + 1)\}, \quad j = 1 \text{ and } 2,$$
 (7.1)

where

$$I_1 = P\left\{S_n \ge xV_n + \delta_{2n}, V_n^2 \ge n(1 + x^{-1}/2)\right\},$$

$$I_2 = P\left\{S_n \ge xV_n + \delta_{2n}, V_n^2 \le n(1 - x^{-1}/2)\right\}.$$

To estimate I_2 , write $B_1 = \{(s,t) : s \geq x\sqrt{t} + 2\lambda_2 h\delta_{2n}, 0 \leq t \leq 4\lambda_2^2(x^2 - x/2)\}$. By noting that $\sqrt{1 - x^{-1}/2} \geq 1 - x^{-1}/4 - x^{-2}/4$ since $x \geq 4$, it follows easily from Lemma 6.1 with $\lambda = 2\lambda_2$ and $\theta = 4\lambda_2^2$, and then (4.6) with $t_0 = \lambda_2$ that, for $4 \leq x \leq \rho_n^{-1/2}/4$,

$$I_{2} = P\{(2\lambda_{2}hS_{n}, 4\lambda_{2}^{2}h^{2}V_{n}^{2}) \in B_{1}\}$$

$$\leq E \exp(2\lambda_{2}hS_{n} - 8\lambda_{2}^{2}h^{2}V_{n}^{2}) \exp\{-\inf_{(s,t)\in B_{1}}(s-2t)\}$$

$$\leq E \exp(2\lambda_{2}hS_{n} - 8\lambda_{2}^{2}h^{2}V_{n}^{2}) \exp\{-2\lambda_{2}h\delta_{2n} - 2\lambda_{2}x\sqrt{x^{2} - x/2} + 8\lambda_{2}^{2}(x^{2} - x/2)\}$$

$$\leq e \exp\{-2\lambda_{2}h\delta_{2n} + 2(\lambda_{2}^{2} - \lambda_{2})x^{2} - (8/3)\lambda_{2}^{3}x^{3}EX^{3}/\sqrt{n} + \lambda_{2}(1/2 - 4\lambda_{2})x + A\Delta_{n,x}\}$$

$$\leq e \exp(-2\lambda_{2}^{2}x^{2})\Psi_{n,\lambda_{2}}(x) \exp\{2\lambda_{2}^{2}(1 - 2\lambda_{2})x^{3}\rho_{n} - x/4 + A\Delta_{n,x}\}$$

$$\leq e \exp(-2\lambda_{2}^{2}x^{2})\Psi_{n,\lambda_{2}}(x) \exp(-x/8 + A\Delta_{n,x})$$

$$\leq 8\sqrt{2\pi}e\{1 - \Phi(2\lambda_{2}x)\}\Psi_{n,\lambda_{2}}(x) \exp(A\Delta_{n,x}), \tag{7.2}$$

where we have used the facts that $h\delta_{2n} = (2\lambda_2 - 1)x^2$ and $1/3 \le \lambda_2 \le 2/3$.

As for I_1 , we have

$$I_{1} \leq P\left\{S_{n} \geq xV_{n} + h\delta_{2n}, n\left(1 + x^{-1}/2\right) \leq V_{n}^{2} \leq 9n\right\}$$

$$+ P(S_{n} \geq xV_{n} + h\delta_{2n}, V_{n}^{2} \geq 9n)$$

$$= I_{1}^{(1)} + I_{1}^{(2)}, \quad say.$$

$$(7.3)$$

Similarly to the proof of (7.2), by letting $B_2 = \{(s,t) : s \ge x\sqrt{t} + 2\lambda_2 h\delta_{2n}, 4\lambda_2^2(x^2 + x^{-1}/2) \le t \le 36\lambda_2^2 x^2\}$, we get, for $4 \le x \le \rho_n^{-1/2}/4$,

$$I_{1}^{(1)} = P\{(2\lambda_{2}hS_{n}, 4\lambda_{2}^{2}h^{2}V_{n}^{2}) \in B_{2}\}$$

$$\leq E \exp(2\lambda_{2}hS_{n} - 2\lambda_{2}^{2}h^{2}V_{n}^{2}/3) \exp\{-\inf_{(s,t)\in B_{2}}(s - t/6)\}$$

$$\leq E \exp(2\lambda_{2}hS_{n} - 2\lambda_{2}^{2}h^{2}V_{n}^{2}/3) \exp\{-2\lambda_{2}h\delta_{2n} - 2\lambda_{2}x\sqrt{x^{2} + x/2} + 2\lambda_{2}^{2}(x^{2} + x/2)/3\}$$

$$\leq e \exp(-2\lambda_{2}^{2}x^{2}) \Psi_{n,\lambda_{2}}(x) \exp\{2\lambda_{2}^{2}(1 - \lambda_{2}/3)x^{3}\rho_{n} - x/6 + A\Delta_{n,x}\}$$

$$\leq 4\sqrt{2\pi}e\{1 - \Phi(2\lambda_{2}x)\} \Psi_{n,\lambda_{2}}(x) \exp(A\Delta_{n,x}),$$

where we have used the fact that $\sqrt{1+x^{-1}/2} \ge 1+x^{-1}/4-x^{-2}/16$. On the other hand, by letting $\hat{S}_n = \sum_{j=1}^n X_j I_{|X_j| \le 25\sqrt{n}/x}$, as in the proof of Lemma 3 of Shao (1999) with

minor modifications, we have that,

$$I_{1}^{(2)} \leq P(\hat{S}_{n} \geq xV_{n}/2 + h\delta_{2n}, V_{n}^{2} \geq 9n) + P\left(\sum_{j=1}^{n} X_{j}I_{|X_{j}| \geq 25\sqrt{n}/x} \geq xV_{n}/2\right)$$

$$\leq P(\hat{S}_{n} \geq 3x\sqrt{n}/2 + h\delta_{2n}) + P\left(\sum_{j=1}^{n} I_{|X_{j}| \geq 25\sqrt{n}/x} \geq x^{2}/4\right)$$

$$\leq e^{-h\delta_{2n}-x^{2}} + e^{-2x^{2}}$$

$$\leq A\left\{1 - \Phi(2\lambda_{2}x)\right\} \Psi_{n,\lambda_{2}}(x) \exp(A\Delta_{n,x}).$$

Taking the estimates for $I_1^{(1)}$ and $I_1^{(2)}$ into (7.3), we obtain that

$$I_1 \le (4e+1)\{1-\Phi(2\lambda_2 x)\}\Psi_{n,\lambda_2} \exp(A\Delta_{n,x}).$$

This proves (7.1) for j=1 and 2, hence completes the proof of Proposition 2 for $4 \le x \le \rho_n^{-1/2}/4$.

We next assume $\rho_n^{-1/2}/4 \leq x \leq \rho_n^{-1}/A_0$, where A_0 is as in Proposition 1 and $A_0 \geq 256$. In this case, let $\Omega_n = (1 - 4\Delta_{n,x}^{1/2}/x, 1 + 4\Delta_{n,x}^{1/2}/x)$ and $\lambda_1 = 1/2 + \delta_{1n}/4x^2$ where $\delta_{1n} = -16\Delta_{n,x} + 2h\delta_{2n}$. Note that $\Delta_{n,x} \leq x^2/128$ and recall $|\delta_{2n}| \leq x\sqrt{n}/4$. We obtain $|\lambda_1 - \lambda_2| \leq 4\Delta_{n,x}/x^2$ and $|\delta_{1n}| \leq x^2/2$. By virtue of these facts, it follows from (4.5) and (4.7) with s = 0 and Proposition 1 with $\theta = 0$ that, for $4 \leq x \leq \rho_n^{-1}/A_0$,

$$P\left(S_{n} \geq xV_{n} + \delta_{2n}, \frac{V_{n}}{\sqrt{n}} \in \Omega_{n}\right) \leq P\left(2h S_{n} - h^{2} V_{n}^{2} \geq x^{2} - 16\Delta_{n,x} + 2h\delta_{2n}\right)$$

$$\leq \left\{1 - \Phi(2\lambda_{1} x)\right\} \Psi_{n,\lambda_{1}}(x) \exp\left(A \Delta_{n,x}\right) (1 + Ax\rho_{n})$$

$$\leq A\left\{1 - \Phi(2\lambda_{2} x)\right\} \Psi_{n,\lambda_{2}}(x) \exp\left(A \Delta_{n,x}\right).$$

Now we only need to show that, for $\rho_n^{-1/2}/4 \le x \le \rho_n^{-1}/A_0$,

$$I_i^* \le \{1 - \Phi(2\lambda_2 x)\} \Psi_{n,\lambda_2}(x) \exp(A \Delta_{n,x}), \quad j = 1 \text{ and } 2,$$
 (7.4)

where

$$I_1^* = P\left\{S_n \ge xV_n + \delta_{2n}, V_n^2 \ge n(1 + 4\Delta_{n,x}^{1/2}/x)\right\},$$

$$I_2^* = P\left\{S_n \ge xV_n + \delta_{2n}, V_n^2 \le n(1 - 4\Delta_{n,x}^{1/2}/x)\right\}.$$

The proof of (7.4) is similar to (7.1). So we only give a outline for j=2. Indeed, by letting $B_1^* = \{(s,t) : s \geq x\sqrt{t} + 2\lambda_2 h\delta_{2n}, 0 \leq t \leq 4\lambda_2^2(x^2 - 4x\Delta_{n,x}^{1/2})\}$, as in the proof of

(7.2), we obtain

$$I_{2}^{*} \leq E \exp\left(2\lambda_{2}hS_{n} - 8\lambda_{2}^{2}h^{2}V_{n}^{2}\right) \exp\left\{-2\lambda_{2}h\,\delta_{2n} - 2\lambda_{2}x\sqrt{x^{2} - 4x\Delta_{n,x}^{1/2}} + 8\lambda_{2}^{2}\left(x^{2} - 4x\Delta_{n,x}^{1/2}\right)\right\}$$

$$\leq e \exp\left\{-2\lambda_{2}h\,\delta_{2n} + 2(\lambda_{2}^{2} - \lambda_{2})x^{2} - (8/3)\lambda_{2}^{3}x^{3}EX^{3}/\sqrt{n} + (-32\lambda_{2}^{2} + 4\lambda_{2})x\Delta_{n,x}^{1/2} + A\Delta_{n,x}\right\}$$

$$\leq e \exp\left(-2\lambda_{2}^{2}x^{2}\right)\Psi_{n,\lambda_{2}}(x) \exp\left(2x^{3}\rho_{n} - 3x\Delta_{n,x}^{1/2} + A\Delta_{n,x}\right)$$

$$\leq 32e^{2}\left\{1 - \Phi(2\lambda_{2}x)\right\}\Psi_{n,\lambda_{2}}(x) \exp(A\Delta_{n,x}), \tag{7.5}$$

where we have used the fact that $2x^3\rho_n - 3x \Delta_{n,x}^{1/2} \leq -x/32$, since, by (6.13),

$$x/16 \le x^3 \rho_n = n^{-1/2} x^3 E|X|^3 \le \sqrt{2} \left(\Delta_{n,x}^2 + x^2 \Delta_{n,x}\right)^{1/2} \le 2x \Delta_{n,x}^{1/2}$$

whenever $x \geq \rho_n^{-1/2}/4$ and $\Delta_{n,x} \leq x^2/128$. This gives the proof of Proposition 2 for $\rho_n^{-1/2}/4 \leq x \leq \rho_n^{-1}/A_0$. The proof of Proposition 2 is now complete. \square

8 Proof of Proposition 3

The proof of this proposition is similar to that of Theorem 2.2 in Wang (2005). We only provide a outline for the difference. Define notations $I^-(y)$, $J^-(y)$ and $\mathcal{L}_n(y)$ as in Lemmas 5.4 and 5.5 of Wang (2005). It follows (5.17) and Lemmas 5.4–5.6 in Wang (2005) that there exists an absolute constant A_0 such that, for $4 \le x \le \rho_n^{-1}/A_0$ and $y_0 = x + \delta_{3n}$,

$$P(T_{n} + \Delta_{n,n} \geq x + \delta_{3n}) \leq \frac{1}{2} \{I^{-}(y_{0}) + 1 - J^{-}(y_{0})\}$$

$$\leq 1 - \Phi(y_{0}) + \mathcal{L}_{n}(y_{0}) + A \{\rho_{n}e^{-y_{0}^{2}/2} + (x\rho_{n})^{3/2}\}$$

$$\leq 1 - \Phi(y_{0}) + \frac{EX^{3}}{\sqrt{2\pi n}} (\frac{y_{0}^{2}}{6} - \frac{y_{0}x}{2})e^{-y_{0}^{2}/2}$$

$$+ A \{(\rho_{n} + \Delta_{n,x}/x) e^{-y_{0}^{2}/2} + (x\rho_{n})^{3/2}\}. \quad (8.1)$$

Recalling $2x/3 \le y_0 \le 4x/3$ and using (4.8), we have, for $x \ge 4$ and k = 1, 2,

$$\left| y_0^{k+1} \left\{ 1 - \Phi(y_0) \right\} - \frac{y_0^k}{\sqrt{2\pi}} e^{-y_0^2/2} \right| \le \frac{x^{k-2}}{\sqrt{2\pi}} e^{-y_0^2/2}$$

and $e^{-y_0^2/2} \le \frac{4}{3}\sqrt{2\pi} x \left\{1 - \Phi(y_0)\right\}$. By virtue of these estimates and (8.1),

$$P\left(T_{n} + \Delta_{n,n} \geq x + \delta_{3n}\right)$$

$$\leq \left\{1 - \Phi(y_{0})\right\} \left\{1 + \frac{EX^{3}}{\sqrt{n}} \left(\frac{y_{0}^{3}}{6} - \frac{y_{0}^{2}x}{2}\right) + A(x\rho_{n} + \Delta_{n,x})\right\} + A(x\rho_{n})^{3/2}$$

$$= \left\{1 - \Phi(2\lambda_{3}x)\right\} \left\{1 + \lambda_{3}^{2} (4\lambda_{3}/3 - 2) x^{3} EX^{3}/\sqrt{n} + A(x\rho_{n} + \Delta_{n,x})\right\} + A(x\rho_{n})^{3/2}$$

$$\leq \left\{1 - \Phi(2\lambda_{3}x)\right\} \Psi_{n,\lambda_{3}}(x) \left\{1 + A(x\rho_{n} + \Delta_{n,x})\right\} + A(x\rho_{n})^{3/2}$$

$$\leq \left\{1 - \Phi(2\lambda_{3}x)\right\} \Psi_{n,\lambda_{3}}(x) \exp\left(A\Delta_{n,x}\right) \left(1 + Ax\rho_{n}\right) + A(x\rho_{n})^{3/2},$$

where $\lambda_3 = \frac{1}{2} (1 + \delta_{2n}/x)$. This proves Proposition 3.