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Abstract: Student’s t statistic is frequently used in practice to test hypotheses

about means. Today, in fields such as genomics, tens of thousands of t-tests are

implemented simultaneously, one for each component of a long data vector. The

distributions from which the t statistics are computed are almost invariably non-

normal and skew, and the sample sizes are relatively small, typically about one

thousand times smaller than the number of tests. Therefore, theoretical investi-

gations of the accuracy of the tests would be based on large-deviation expansions.

Recent research has shown that in this setting, unlike classical contexts, weak de-

pendence among vector components is often not a problem; independence can safely

be assumed when the significance level is very small, provided dependence among

the test statistics is short range. However, conventional large-deviation results

provide information only about the accuracy of normal and Student’s t approxima-

tions under the null hypothesis. Power properties, especially against sparse local

alternatives, require more general expansions where the data no longer have zero

mean, and in fact where the mean can depend on both sample size and the number

of tests. In this paper we derive this type of expansion, and show how it can be

used to draw statistical conclusions about the effectiveness of many simultaneous

t-tests. Similar arguments can be used to derive properties of classifiers based on

high-dimensional data.
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1. Introduction and Summary

1.1. Statistical motivation.

Student’s t statistic, computed from a dataset X1, . . . , Xn drawn from the
distribution of X, has the form

T =
(Sn − nµ)

σn
, (1.1)

where

Sn =
n∑

i=1

Xi , σ2
n =

n − 1
n

n∑
i=1

(Xi − X̄)2 , X̄ =
Sn

n
. (1.2)
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A variety of contemporary problems in statistics involve large deviations of T .
They include multiple hypothesis testing and classification, and, either directly
or implicitly, sparse signal detection. In the first two of these problems, data
analysis can involve making tens of thousands of decisions, each based on a
version of T computed from as few as tens of data values. There are strong
connections between the methodology used to solve the first two problems and
that employed to solve the third.

The fact that the number of decisions made is many times larger than the
number of data on which each decision is based, typically means that the theoret-
ical background to methodology is built on large-deviation theory. For example,
if in a multiple hypothesis testing problem the test statistics can fairly be viewed
as independent; if a Normal or Student’s t approximation is made to the dis-
tribution of the test statistic, despite the sampling distribution having nonzero
skewness; and if there are p tests, each founded on a t-statistic computed from
a sample of size n; then, in order that it be possible to hold the family-wise
error rate (FWER) at a given level, say 5%, it is necessary and sufficient that
log p = o(n1/3) as n and p increase. See Hall (2006). The result is derived
from large-deviation expansions of Shao (1999), Jing, Shao and Wang (2003)
and Wang (2005). It continues to hold in the case of weak dependence among
the test statistics, for example if the n × p data array has independent columns
but rows that are computed from time-series; and it is valid too if FWER is
replaced by false discovery rate (FDR). See Clarke and Hall (2007).

Results such as these provide crucial information about the robustness of
FWER and FDR against widely-used approximations based on Normal or Stu-
dent’s t distributions. However, they offer no insight into how the approximations
affect the power of multiple hypothesis tests, or the sensitivity of classifiers. In
particular, the arguments needed to address FWER and FDR are all undertaken
in the case µ = E(X) in (1.1), and so require only conventional large-deviation
results; but the calculations needed to elucidate power and sensitivity properties
have µ = E(X)+δn, where δn is a perturbation that generally depends on sample
size. In this paper we derive large-deviation results in the perturbation setting,
and apply them to multiple hypothesis testing and classification problems.

1.2. Probabilistic background

Motivated partly by contemporary statistical applications, the last decade
has seen a very substantial increase in work on properties of self-normalised
sums. A portion of it has focused on weak convergence, and includes deriving
conditions under which convergence to normality occurs. In particular, Giné,
Götze and Mason (1997) proved that when µ = E(X) the statistic T , at (1.1),
converges in distribution to a standard normal random variable if and only if
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the distribution of X is in the domain of attraction of the normal law, written
X ∈ DAN. This attractive result verified part of a conjecture of Logan, Mallows,
Rice and Sheep (1973) and was later extended to self-normalised sum processes
by Csörhő, Szyszkowicz and Wang (2003, 2004). Chistyakov and Götze (2004)
recently established the remainder of the conjecture by showing that Student’s
t statistic has a non-trivial limit distribution if and only if X is in the domain
of attraction of a stable law with exponent γ ∈ (0, 2]. Mason (2005) considered
the asymptotic distribution of self-normalised triangular arrays. Bentkus, Jing,
Shao and Zhou (2007) investigated the asymptotic behaviors of the non-central
t-statistic and their applications to the power of t-tests.

The absolute error in the central limit theorem for Student’s t statistic was
obtained by Bentkus and Götze (1996), who gave bounds of general Berry-Esseen
type when the data are independent and identically distributed. See also Chibisov
(1980, 1984) and Slavov (1985). Bentkus, Bloznelis and Götze (1996) extended
Bentkus and Götze’s arguments to non-identically distributed summands. Using
a leading-term approach, Hall and Wang (2004) derived the exact convergence
rate in the central limit theorem, up to terms of order n−1/2 (where n denotes
sample size), or order n−1 when the sampled distribution satisfied Cramér’s con-
tinuity condition. (Hall (1987) had previously established Edgeworth expansions
under minimal moment conditions.) Robinson and Wang (2005) considered ex-
ponential, non-uniform Berry-Esseen bounds under only X ∈ DAN, improving
an earlier result of Wang and Jing (1999). Saddle-point and large-deviation ap-
proximations for Student’s t statistic have been given by Shao (1997, 1999), Jing
et al. (2003), Jing, Shao and Zhou (2004), Wang (2005), Robinson and Wang
(2005) and Zhou and Jing (2006). Related research includes that of van Zwet
(1984), Friedrich (1989), Putter and VAN Zwet (1998), Bentkus, Götze and VAN
Zwet (1997), Wang, Jing and Zhao (2000) and Bloznelis and Putter (1998, 2002).

1.3. Summary of main results

Assume that

E|X|3 < ∞ , E
(
X2

)
= σ2 6= 0 , E(X) = 0 . (1.3)

In place of T at (1.1), define U = (Sn + c σ)/σn, where Sn and σn are as at (1.2)
and c may depend on n. Our aim is to describe the relative error in a normal
approximation to the distribution of U ; that is, to investigate the ratio P (U >

x)/{1 − Φ(u)}, where Φ denotes the standard normal distribution function and
u = u(c, n, x) is a real number chosen to ensure that the ratio is close to 1 in
some sense.

We shall show that an appropriate choice of u is u = 2 γ x, where

γ = 1
2

{
1 − c (x

√
n)−1

}
. (1.4)
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In this case, P (U > x)/{1 − Φ(u)} equals, to first order,

Ψn,γ(x) = exp
{
γ2 (

4γ

3
− 2)x3 E(X3)

σ3
√

n

}
. (1.5)

2. Main Results

Put ρn = E|X|3/(
√

nσ3), τ = σ/(1 + x) and

∆n,x = n− 1
2 τ−3 E|X|3 I{|X|>

√
n τ} + n−1 τ−4 E|X|4 I{|X|≤

√
n τ} .

Define γ and Ψn,γ by (1.4) and (1.5).

Theorem 1. There exists an absolute constant A0 > 0 such that, if (1.3) holds,

P (Sn + c σ ≥ xσn)
1 − Φ(2 γ x)

= Ψn,γ(x) exp(O1 ∆n,x) {1 + O2 (1 + x) ρn} , (2.1)

uniformly in |c| ≤ x
√

n/5 and 0 ≤ x ≤ ρ−1
n /A0, where O1 and O2 are bounded

by an absolute constant.

Theorem 1 is closely related to a Cramér-type large-deviation property for
the so-called self-normalised sum (Sn + c σ)/Vn, where V 2

n =
∑

j≤n X2
j . In fact,

the theorem is implied by the following result.

Theorem 2. There exists an absolute constant A0 > 0 such that, if (1.3) holds,

P (Sn + c σ ≥ xVn)
1 − Φ(2 γ x)

= Ψn,γ(x) exp(O1 ∆n,x) {1 + O2 (1 + x) ρn}, (2.2)

uniformly in |c| ≤ x
√

n/5 and 0 ≤ x ≤ ρ−1
n /A0, where O1 and O2 are bounded

by an absolute constant.

3. Statistical Implications

To appreciate the implications of (2.1), consider first the following, relatively
conventional large-deviation expansion of the distribution of T , derivable from
results of Wang (2005): if (1.3) holds,

P (T > x)
1 − Φ(x)

= Ψn(x) exp(O1 ∆n,x) {1 + O2 (1 + x) ρn} , (3.1)

uniformly in 0 ≤ x ≤ ρ
−1/2
n /A0, where Ψn(x) = exp{−(x3/3)EX3/

√
n} and

the functions O1 and O2 are bounded by an absolute constant. (It is assumed
throughout this section that σ = 1.) We shall show how (3.1) can be used to
determine a critical point, xp say, for each of p simultaneous tests of the null
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hypothesis that µ = 0, against the alternative µ > 0, when the respective tests
are based on p independent samples of size n drawn from populations having
potentially different values of µ.

Provided E|X|3 < ∞ and

x = o
(
n

1
6
)
, (3.2)

it follows directly from (3.1) that the normal approximation to the distribution
of T is accurate in relative terms:

P (T > x)
1 − Φ(x)

→ 1 (3.3)

as n → ∞. Moreover, (3.2) is necessary for (3.3) if E|X|3 < ∞ and E(X3) 6= 0.
Therefore, if we wish to simultaneously test p hypotheses that µ = 0, each for a
sample of size n, then a family-wise error rate of approximately α can be achieved
by taking the critical point xp for each test to be the solution of Φ(xp)p = 1−α.
Since (3.2) is necessary and sufficient for (3.3), then the assertion that the family-
wise error rate of the simultaneous test equals α in the limit as n and p increase,
is correct if and only if

log p = o
(
n

1
3
)
. (3.4)

A similar argument, but based on (2.1) rather than (3.1), can be used to
determine the power of such tests against local alternatives. For simplicity we
assume that the n data in the sample drawn from the ith population, and from
which the ith t statistic Ti is computed, are all independent and distributed as
X+µi, where the distribution of X has zero mean and does not depend on i. (The
case where both n and the distribution of X depend on i can also be treated using
the argument below.) Student’s t test rejects the hypothesis H0i that µi = 0, in
favour of H1i that µ1i > 0, if Ti > xp. Define γi = 1

2 (1 − n1/2µi x
−1
p ). Provided

(3.4) holds or, equivalently, assuming that (3.2) is true for x = xp; and supposing
too that µi = νi/(xp

√
n), where the nonnegative constants νi are bounded above

by x2
p/5 ∼ (2/5) log p and satisfy

1
p

p∑
i=1

(
1 − νi x

−2
p

)−1 exp
(
νi − 1

2 ν2
i x−2

p

)
→ ρ ∈ [0,∞] (3.5)

as p → ∞; it follows from (2.1) that the probability that H0i is rejected for at
least one values of i equals

1 −
p∏

i=1

Φ(2 γi xp) + o(1) → π(α) ≡ 1 − (1 − α)ρ . (3.6)
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Result (3.6) encompasses three cases of special interest: (i) π(α) = α (i.e., ρ =
1), which amounts to the alternative hypotheses H1i not being detectable using
the family-wise error rate approach, because nonzero values of µi are either too
sparse or too small to be detectable; (ii) α < π(α) < 1 (i.e., 1 < ρ < ∞), in which
case the tradeoff between sparsity and size is at a critical point where the pres-
ence of nonzero µi’s is just noticeable; and (iii) π(α) = 1 (i.e., ρ = ∞), where the
presence of nonzero µi’s is relatively obvious. To appreciate the different circum-
stances that lead to cases (i), (ii) and (iii), suppose that there are just q = C1 pξ

nonzero values of νi, each of them equal to η log p, where ξ, η ≥ 0 and C1 > 0 is
a constant. Decreasing ξ and increasing η correspond to increasing sparsity and
increasing the size, respectively, of departures from the null hypothesis. In the
case of this parametrisation the series on the left-hand side in (3.5) is essentially
proportional to C2 pξ+η−(η2/4)−1 + 1 − C1 pξ−1, where C2 = (1 − 1

2 η)−1 C1, and
so cases (i), (ii) and (iii) correspond to ξ + η − η2/4 < 1, ξ + η − η2/4 = 1 and
ξ + η − η2/4 > 1, respectively.

Results of Clarke and Hall (2007) show that these results remain valid in the
case of short-range dependence among test statistics, for example for a moving
average of finite order. They remain valid too if a Student’s t approximation, with
n−1 degrees of freedom, is used in place of a normal approximation. This follows
from the fact that the Student’s t approximation to the normal distribution enjoys
greater accuracy than the normal approximation to the distribution of T when
skewness is nonzero.

Similar arguments, again based on Theorem 1, can be used in the context
of higher-criticism approaches to (a) signal detection, and (b) classification (see
e.g., Donoho and Jin (2004) and Delaigle and Hall (2007)). In particular, the
distribution of the signal in case (a), and the marginal distributions of data
components in case (b), can be permitted to have the distribution of a Student’s
t statistic computed from non-normal data. In the context of (b) the main
requirements are that marginal distributions have uniformly bounded moments
of order 4 + ε for some ε > 0, and that the length, p, of the vector satisfy a
uniform version of (3.4): log p = o(min1≤i≤p n

1/3
i ), where ni denotes the size

of the sample used to construct the t statistic corresponding to the ith vector
component. This assumption is realistic. For example, in genomic problems the
ith vector component is generally an empirical measure of the extent to which
the ith gene is “switched-on,” and can be a t statistic.

4. Proofs of Theorems

We assume, throughout the proofs in Section 4 and without loss of generality,
that σ2 = EX2 = 1 and A0 ≥ 256. We denote by A, A1, A2, . . ., C0, C1, C2, . . .

absolute positive constants, which may be different at each appearance. We only
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give the proof of Theorem 2 since Theorem 1 is essentially a corollary of that
result. The detailed proof of Theorem 1 may be found in the on-line supplement
of this paper.

Proof of Theorem 2. Write Yj = Xj I|Xj |≤
√

nτ , where τ = 1/(1 + x). Then,

P (Sn + c ≥ xVn) = p1n + p2n, (4.1)

where p1n = P (Sn + c ≥ xVn, Xj = Yj , all j = 1, . . . , n) and

p2n = P (Sn + c ≥ xVn, Xj 6= Yj , some j = 1, . . . , n) .

First we treat the case 0 ≤ x ≤ 16, where

p2n ≤ nP (|X| ≥
√

nτ) ≤ Aρn . (4.2)

Since |(1 + y)1/2 − (1 + y/2)| ≤ y2 then, for y ≥ −1,

p1n = P

[
n∑

j=1

Yj + c ≥ xBn

{
1 + B−2

n

n∑
j=1

(
Y 2

j − EY 2
j

)} 1
2

]

= P

{ n∑
j=1

(Zj − EZj) +
xθ

B3
n

∑
1≤i 6=j≤n

WiWj ≥ xBn − c − nEZ1

}
, (4.3)

where |θ| ≤ 1, Wj = Y 2
j − EY 2

j , B2
n = EY 2

1 and

Zj = Yj −
x

2Bn
Wj +

xθ

B3
n

W 2
j .

Simple calculations, using the fact that EX2 = 1, show that B2
n = (1 + O1n

−1/2

E|X|3), var(Z1) = 1 + O2 n−1/2E|X|3 and n EZ1 = O3, for 0 ≤ x ≤ 16, where
O1, O2 and O3 are bounded by an absolute constant. We also have E|Z1|3 ≤
AE|X|3 and E|W1W2/Bn|5/3 ≤ AE|X|3. By virtue of these facts it follows from
Theorem 2.1 of Wang et al. (2000) with minor modifications that, for 0 ≤ x ≤ 16,∣∣p1n − {1 − Φ(x − c√

n
)}

∣∣ ≤ Aρn . (4.4)

This, together with (4.1)–(4.2), implies (2.2) for 0 ≤ x ≤ 16 and |c| ≤ x
√

n/5.
Next we treat the case x ≥ 16. First note that, whenever |t − t0| ≤ A (s +

∆n,x)/x2 where 1/3 ≤ t0 ≤ 2/3 and |s| ≤ A, we have

1 − Φ(2tx) ≤ {1 − Φ(2t0x)} exp{A (∆n,x + s)} , (4.5)

x−1 exp
(
− 2t20x

2
)
≤ 2

√
2π {1 − Φ(2t0x)} , (4.6)

Ψn,t(x) ≤ Ψn,t0(x) exp{A (∆n,x + s)} , (4.7)



350 QIYING WANG AND PETER HALL

for 2 ≤ x ≤ ρ−1
n /A. Indeed, (4.7) is obvious and (4.5)–(4.6) follow from the

inequality (see, for example, Revuz and Yor (1990, p.30): for y > 0,

y√
2π (1 + y2)

e−
y2

2 ≤ 1 − Φ(y) ≤ 1√
2π y

e−
y2

2 . (4.8)

We also need following three propositions, the proofs of which will be given
in the on-line supplement of this paper.

Proposition 1. Assume (1.3) holds, take h = x/
√

n and let θ be bounded by an
absolute constant, A. Then there exists an absolute constant A0 > 0 such that,
for 4 ≤ x ≤ ρ−1

n /A0 and |δ1n| ≤ x2/2,

P
(
2hSn − h2V 2

n + θh4Qn ≥ x2 + δ1n

)
1 − Φ(2λ1 x)

= Ψn,λ1(x) exp(O1∆n,x)(1 + O2xρn),(4.9)

where Qn =
∑

j X4
j I|Xj |≤

√
nτ , λ1 = {1+δ1n/(2x2)}/2 and O1 and O2 are bounded

by an absolute constant.

Proposition 2. If (1.3) holds then there exists an absolute constant A0 > 0
such that, for 4 ≤ x ≤ ρ−1

n /A0 and |δ2n| ≤ x
√

n/4,

P (Sn ≥ xVn + δ2n) ≤ {1 − Φ(2λ2 x)}Ψn,λ2(x) exp{A (∆n,x + 1)} , (4.10)

where λ2 = {1 + δ2n/(x
√

n)}/2. Moreover, for 5 ≤ x ≤ ρ−1
n /A0 and |δ2n| ≤

x
√

n/4,

P
{
Sn−1 ≥ (x2 − 1)

1
2 Vn−1 + δ2n

}
≤ {1 − Φ(2λ2 x)}Ψn,λ2(x) exp{A (∆n,x + 1)} . (4.11)

Let ςn and ψn be functions of two and three variables, respectively, and
put Tm = n−1/2

∑
j≤m ςj and Λn,m = n−2

∑
1≤k≤m−1

∑
k+1≤j≤n ψk,j , where

ςj = ςn(x,Xj) and ψk,j = ψn(x, Xk, Xj).

Proposition 3. If the following conditions are satisfied:∣∣∣Eς2
j − 1 +

x√
n

EX3
∣∣∣ ≤ C1

∆n,x

(1 + x)2
, (4.12)∣∣∣Eς3

j − EX3
∣∣∣ ≤ C2

√
n

∆n,x

(1 + x)3
, (4.13)

Eςj = 0 , |ςj | ≤ C3

√
n

(1 + x)
, Eς4

j ≤ C4 EX4 I|X|≤
√

nτ , (4.14)

E(ψk,j |Xk) = E(ψk,j |Xj) = 0 , for k 6= j , (4.15)

E|ψk,j | ≤ C5 |x|, E|ψk,j |
3
2 ≤ C6 |x|

3
2
(
E|X|3

)2
. (4.16)
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then there exists an absolute constant A0 > 0 such that, for 4 ≤ x ≤ ρ−1
n /A0 and

|δ3n| ≤ x/4,

P
(
Tn + Λn,n ≥ x + δ3n

)
≤ {1 − Φ(2λ3 x)}Ψn,λ3(x) exp(A ∆n,x) (1 + Axρn) + A (xρn)

3
2 , (4.17)

where λ3 = (1 + δ3n/x)/2.

We are now ready to prove (2.2). By the Cauchy-Schwarz inequality, xVn ≤
(x2 + h2V 2

n )/2h, where h = x/
√

n. This, together with Proposition 1 with θ = 0
and δ1n = −2hc, implies that

P (Sn + c ≥ xVn) ≥ P
(
2 hSn − h2 V 2

n ≥ x2 − 2h c
)

= {1 − Φ(2γx)}Ψn,γ(x) exp
(
O1 ∆n,x

) (
1 + O2 x ρn

)
,

which implies the lower bound in (2.2). In order to derive the upper bound there
we continue to use the notation p1n and p2n defined at (4.1). Using (5.7) of
Jing et al. (2003) (see also Wang and Jing (1999)), it follows from (4.11) with
δ2n = −c that, for 16 ≤ x ≤ ρ−1

n /A0,

p2n ≤ nP (|X| ≥
√

nτ) P
{
Sn−1 + c ≥ (x2 − 1)

1
2 Vn−1

}
≤ A ∆n,x {1 − Φ(2γx)}Ψn,γ(x) exp(A ∆n,x) . (4.18)

By virtue of (4.1) and (4.18), and following from the same lines as in the proof
of Theorem 1.2 of Wang (2005) (see (3.16) and (3.17) there), the upper bound of
(2.2) will follow if we prove that there exists an absolute constant A0 > 0 such
that, for 16 ≤ x ≤ ρ−1

n /A0,

p1n ≤ {1 − Φ(2γx)}Ψn,γ(x) exp(A ∆n,x)
(
1 + Axρn

)
+ A e−3x2

, (4.19)

p1n ≤ {1 − Φ(2γx)}Ψn,γ(x) exp(A ∆n,x)
(
1 + Axρn

)
+ A (xρn)

3
2 , (4.20)

where γ is as at (1.4).
We first prove (4.20). Without loss of generality, n is so large that EX2

I|X|≥
√

nτ ≤ 1/32. Let ςj =
√

n (Zj − EZj)/Bn, ψk,j = 2x θ B4
n Wk Wj/n2, δ3n =

−c/Bn − nEZ1/Bn and λ3 = (1 + δ3n/x)/2, where notations Zj , Wj and Bn

are as in (4.3). Tedious but simple calculations show that ςj and ψk,j satisfy
(4.12)–(4.16) in Proposition 3, |λ3 − γ| ≤ A∆n,x/x2 and |δ3n| ≤ x/4 whenever
|c| ≤ x

√
n/5. Hence, by (4.3), Proposition 3, and (4.5) and (4.7) with s = 0, we

have

p1n = P
( 1√

n

n∑
j=1

ςj +
1
n2

n−1∑
k=1

n∑
j=k+1

ψk,j ≥ x + δ3n

)
≤ {1 − Φ(2λ3x)}Ψn,λ3(x) exp(A∆n,x) (1 + Axρn) + A (xρn)

3
2

≤ {1 − Φ(2γx)}Ψn,γ(x) exp(A∆n,x) (1 + Axρn) + A (xρn)
3
2 ,
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which implies (4.20).
To prove (4.19), let Wj = Y 2

j −EY 2
j , D2

n =
∑

j≤n EW 2
j and V ∗2

n =
∑

j≤n Y 2
j .

Using (1 + y)1/2 ≥ 1 + y/2− y2 for any y ≥ −1 and recalling h = x/
√

n, we have

p1n = P
[
Sn + c ≥ x

√
n
{
1 +

V 2
n − n

n

} 1
2 , Xj = Yj , j = 1, . . . , n

]
≤ P

[
Sn + c ≥ x

√
n
{
1 +

1
2n

(V 2
n − n) − 1

n2
(V 2

n − n)2
}
, Xj = Yj , j = 1, . . . , n

]
≤ P

[
2hSn − h2V 2

n + 2 c h ≥ x2
{
1 − (V ∗2

n − n)2

n2

}]
≤ P

[
2hSn − h2V 2

n + 2 c h ≥ x2
{
1 − 2(V ∗2

n − EV ∗2
n )2

n2
− 2EX2I|X|≥

√
nτ

}]
≤ P

[
|

n∑
k=1

Wk| ≥
√

6x
{
4Dn + (

n∑
k=1

W 2
k )

1
2
}]

+ P
[
2h Sn − h2V 2

n + 2 c h ≥ x2
{
1 − 24x2 n−2

∑
W 2

k − ∆∗
n(x)

}]
≤ 8e−3x2

+ P
[
2 hSn − h2V 2

n + 48 h4
∑

Y 4
k ≥ x2 + δ1n(x)

]
:= 8e−3x2

+ Kn(x), (4.21)

where ∆∗
n(x) = 2EX2I|X|≥

√
nτ +192x2n−1EX4I|X|≤

√
nτ , δ1n = −2ch+240∆n,x,

and we have used Lemma 6.4 of Jing et al. (2003) in the last inequality. Write
λ1 = {1+δ1n/(2x2)}/2. Note that ∆n,x ≤ (1+x)3ρn and recall that |c| ≤ x

√
n/5.

We have |λ1 − γ| ≤ A∆n,x/x2 and |δ1n| ≤ x2/2 for 16 ≤ x ≤ ρ−1
n /1500. Hence it

follows easily from Proposition 1 that

Kn(x) ≤
{
1 − Φ(2λ1 x)

}
Ψn,λ1(x) exp

(
A∆n,x

) (
1 + Axρn

)
≤

{
1 − Φ(2γ x)

}
Ψn,γ(x) exp

(
A∆n,x

) (
1 + Axρn

)
.

Taking this estimate into (4.21), we obtain the required (4.19). The proof of
Theorem 2 is now complete.
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