SUPPLEMENT TO "POLYNOMIAL SPLINE CONFIDENCE BANDS FOR REGRESSION CURVES"

Jing Wang and Lijian Yang
University of Illinois at Chicago, Michigan State University

Appendix A: Proof of Theorem 1

A. 1. Preliminaries

Throughout Appendices A and B, we denote by the same letters c, C, any positive constants, without distinction in each case. Detailed proof is given in Wang and Yang (2006).

Lemma A. 1 Under Assumptions (A3) and (A4), there exists $\alpha_{0}>0$ such that the sequence $\left\{D_{n}\right\}=\left\{n^{\alpha_{0}}\right\}$ satisfies

$$
\begin{equation*}
\frac{\log ^{2} n}{\sqrt{n h}} D_{n} \rightarrow 0, \sum_{n=1}^{\infty} D_{n}^{-(2+\eta)}<\infty, \frac{\sqrt{n h}}{D_{n}^{(1+\eta)}} \rightarrow 0, D_{n}^{-\eta} h^{-1 / 2} \rightarrow 0 \tag{A.1}
\end{equation*}
$$

For such a sequence $\left\{D_{n}\right\}, P\left\{\omega|\exists N(\omega), \ni| \varepsilon_{i} \mid \leq D_{n}, 1 \leq i \leq n, n>N(\omega)\right\}=1$.
Denote the theoretical norms of the basis $c_{j, n}=\left\|b_{j, 1}\right\|_{2}^{2}$ and $d_{j, n}=\left\|b_{j, 2}\right\|_{2}^{2}$ by

$$
c_{j, n}=\int_{a}^{b} I_{j}(x) f(x) d x, d_{j, n}=\int_{a}^{b} K^{2}\left(\frac{x-t_{j+1}}{h}\right) f(x) d x
$$

Lemma A. 2 Under Assumptions (A2) and (A3), as $n \rightarrow \infty$,

$$
\begin{align*}
& c_{j, n}=f\left(t_{j}\right) h\left(1+r_{j, n, 1}\right),\left\langle b_{j, 1}, b_{j^{\prime}, 1}\right\rangle \equiv 0, j \neq j^{\prime} \tag{A.2}\\
& d_{j, n}=\frac{2}{3} f\left(t_{j+1}\right) h \times \begin{cases}1+r_{j, n, 2} & j=0, \ldots, N-1, \\
1 / 2+r_{j, n, 2} & j=-1, N,\end{cases} \tag{A.3}\\
& \left\langle b_{j, 2}, b_{j^{\prime}, 2}\right\rangle=\frac{1}{6} f\left(t_{j+1}\right) h \times \begin{cases}1+\tilde{r}_{j, n, 2} & \left|j^{\prime}-j\right|=1, \\
0 & \left|j^{\prime}-j\right|>1,\end{cases} \tag{A.4}
\end{align*}
$$

where

$$
\begin{equation*}
\max _{0 \leq j \leq N}\left|r_{j, n, 1}\right|+\max _{-1 \leq j \leq N}\left\{\left|r_{j, n, 2}\right|+\left|\tilde{r}_{j, n, 2}\right|\right\} \leq C \omega(f, h) \tag{A.5}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\frac{1}{3} f\left(t_{j+1}\right) h\{1-C \omega(f, h)\} \leq d_{j, n} \leq \frac{2}{3} f\left(t_{j+1}\right) h\{1+C \omega(f, h)\} \tag{A.6}
\end{equation*}
$$

Proof of Lemma 3.1. For brevity, we give only the proof of (3.1) for $A_{n, 1}$. Take any $j=0,1, \ldots, N$

$$
\left|\left\|B_{j, 1}\right\|_{2, n}^{2}-1\right|=\left|\sum_{i=1}^{n} \xi_{i}\right|, \xi_{i}=\left\{B_{j, 1}^{2}\left(X_{i}\right)-1\right\} n^{-1}
$$

with $E \xi_{i}=0$ and for any $k \geq 2$. Minkowski's inequality implies that

$$
E\left|\xi_{i}\right|^{k}=n^{-k} E\left|B_{j, 1}^{2}\left(X_{i}\right)-1\right|^{k} \leq 2^{k-1} n^{-k} E\left[B_{j, 1}^{2 k}\left(X_{i}\right)+1\right] \leq\left\{\frac{2}{n h}\right\}^{k} C_{0} h
$$

while (A.2) implies that $E \xi_{i}^{2} \geq n^{-2} E\left[\frac{1}{2} B_{j, 1}^{4}\left(X_{i}\right)-1\right] \geq\{2 /(n h)\}^{2} C_{1} h$. One can then find a constant $c>0$ such that for $k>2, E\left|\xi_{i}\right|^{k} \leq\left(c n^{-1} h^{-1}\right)^{k-2} k!E\left|\xi_{i}\right|^{2}$. Applying Bernstein's inequality, we conclude that $P\left\{\left|\sum_{i=1}^{n} \xi_{i}\right| \geq \eta_{0} \log ^{1 / 2}(n)(n h)^{-1 / 2}\right\} \leq 2 n^{-3}$ for large enough $\eta_{0}>0$. Thus,

$$
\sum_{n=1}^{\infty} P\left\{\sup _{0 \leq j \leq N}\left|\left\|B_{j, 1}\right\|_{2, n}^{2}-1\right| \geq \eta \log ^{1 / 2}(n)(n h)^{-1 / 2}\right\}<\infty
$$

for such $\eta_{0}>0$, so that (3.1) follows.

A. 2. Proof of Theorem 1

In this section, we investigate the behavior of $\tilde{\varepsilon}_{1}(x)$ defined in (3.4). Since $\left\langle\mathbf{B}_{j^{\prime}, 1}(\mathbf{X}), \mathbf{B}_{j, 1}(\mathbf{X})\right\rangle_{n}=$ 0 unless $j=j^{\prime}, \tilde{\varepsilon}_{1}(x)$ can be written as $\tilde{\varepsilon}_{1}(x)=\sum_{j=0}^{N} \varepsilon_{j}^{*} B_{j, 1}(x)\left\|B_{j, 1}\right\|_{2, n}^{-2}$, in which $\varepsilon_{j}^{*}=$ $\left\langle\mathbf{E}, \mathbf{B}_{j, 1}(\mathbf{X})\right\rangle_{n}=n^{-1} \sum_{i=1}^{n} B_{j, 1}\left(X_{i}\right) \sigma\left(X_{i}\right) \varepsilon_{i}$.

Lemma A. 3 Let $\hat{\varepsilon}_{1}(x)=\sum_{j=0}^{N} \varepsilon_{j}^{*} B_{j, 1}(x), x \in[a, b]$, for $A_{n, 1}$ defined in (3.1)

$$
\left|\tilde{\varepsilon}_{1}(x)-\hat{\varepsilon}_{1}(x)\right| \leq A_{n, 1}\left(1-A_{n, 1}\right)^{-1}\left|\hat{\varepsilon}_{1}(x)\right|, x \in[a, b] .
$$

Thus, $\sup _{x \in[a, b]}\left|\tilde{\varepsilon}_{1}(x)\right|$ and $\sup _{x \in[a, b]}\left|\hat{\varepsilon}_{1}(x)\right|$ have the same asymptotic behavior.
Lemma A. 4 The pointwise variance of $\hat{\varepsilon}_{1}(x)$ is the function $\sigma_{n, 1}^{2}(x)$ defined in (2.6) which satisfies for $\sup _{x \in[a, b]}\left|r_{n, 1}(x)\right| \rightarrow 0$

$$
\begin{equation*}
E\left\{\hat{\varepsilon}_{1}(x)\right\}^{2} \equiv \sigma_{n, 1}^{2}(x)=\frac{\sigma^{2}(x)}{f(x) n h}\left\{1+r_{n, 1}(x)\right\}, x \in[a, b] \tag{A.7}
\end{equation*}
$$

Lemma A. 5 Let the sequence $\left\{D_{n}\right\}$ satisfy (A.1), then as $n \rightarrow \infty$

$$
\left\|\hat{\varepsilon}_{n, 1}(x)-\hat{\varepsilon}_{n, 1}^{D}(x)\right\|_{\infty}=O\left(D_{n}^{-(1+\eta)} \sqrt{n h}\right)=o(1), \text { w.p. } 1,
$$

where, for $x \in[a, b]$,

$$
\begin{align*}
& \hat{\varepsilon}_{n, 1}(x)= \sigma_{n, 1}(x)^{-1} \sum_{j=0}^{N} B_{j, 1}(x) \varepsilon_{j}^{*}=\sigma_{n, 1}(x)^{-1} \sum_{j=0}^{N} B_{j, 1}(x)\left(\varepsilon_{j}^{*}-E \varepsilon_{j}^{*}\right), \\
& \hat{\varepsilon}_{n, 1}^{D}(x)=\sigma_{n, 1}(x)^{-1} \sum_{j=0}^{N} B_{j, 1}(x)\left(\varepsilon_{j}^{*}-E \varepsilon_{j}^{*}\right) I_{\left\{|\varepsilon|<D_{n}\right\}} . \tag{A.8}
\end{align*}
$$

Proof. Notice that $E \varepsilon_{j}^{*}=E\left\{n^{-1} \sum_{i=1}^{n} B_{j, 1}\left(X_{i}\right) \sigma\left(X_{i}\right) \varepsilon_{i}\right\}=0$, so that

$$
\hat{\varepsilon}_{n, 1}(x)=\left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \iint I_{j(x)}(v) \sigma(v) \varepsilon d Z_{n}(v, \varepsilon)
$$

according to the definition of $Z_{n}(v, \varepsilon)$ in (3.9). The truncated part $\hat{\varepsilon}_{n, 1}^{D}(x)$ is defined in (A.8). The tail part $\hat{\varepsilon}_{n, 1}(x)-\hat{\varepsilon}_{n, 1}^{D}(x)$ is bounded uniformly over $[a, b]$ by

$$
\begin{align*}
& \sup _{x \in[a, b]}\left|\left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \iint I_{j(x)}(v) \sigma(v) \varepsilon I_{\left\{|\varepsilon| \geq D_{n}\right\}} d Z_{n}(v, \varepsilon)\right| \\
& \leq \sup _{x \in[a, b]}\left|\left\{\sigma_{n, 1}(x) c_{j(x), n}\right\}^{-1} \frac{1}{n} \sum_{i=1}^{n} I_{j(x)}\left(X_{i}\right) \sigma\left(X_{i}\right) \varepsilon_{i} I_{\left\{\left|\varepsilon_{i}\right| \geq D_{n}\right\}}\right| \tag{A.9}\\
& \left.+\sup _{x \in[a, b]} \mid\left\{\sigma_{n, 1}(x) c_{j(x), n}\right\}^{-1} \iint I_{j(x)}(v) \sigma(v) \varepsilon I_{\left\{|\varepsilon| \geq D_{n}\right\}}\right) d F(v, \varepsilon) \mid . \tag{A.10}
\end{align*}
$$

By Lemma A.1, the term (A.9) is 0 almost surely. The term (A.10) is bounded by

$$
\begin{aligned}
& \sup _{x \in[a, b]}\left\{\sigma_{n, 1}(x) c_{j(x), n}\right\}^{-1} \int I_{j(x)}(v) \sigma(v) f(v)\left[\int|\varepsilon| I_{\left\{|\varepsilon| \geq D_{n}\right\}} d F(\varepsilon \mid v)\right] d v \\
& \leq \sup _{x \in[a, b]}\left\{\sigma_{n, 1}(x) c_{j(x), n}\right\}^{-1} \int I_{j(x)}(v) \sigma(v) f(v) d v \frac{M_{\eta}}{D_{n}^{1+\eta}} \leq C \frac{\sqrt{n h}}{D_{n}^{1+\eta}}
\end{aligned}
$$

The lemma follows immediately by the third condition in (A.1).

Lemma A. 6 Define for $x \in[a, b]$

$$
\hat{\varepsilon}_{n, 1}^{(0)}(x)=\left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \iint I_{j(x)}(v) \sigma(v) \varepsilon I_{\left\{|\varepsilon|<D_{n}\right\}} d B\{M(v, \varepsilon)\}
$$

then as $n \rightarrow \infty$

$$
\sup _{x \in[a, b]}\left|\hat{\varepsilon}_{n, 1}^{(0)}(x)-\hat{\varepsilon}_{n, 1}^{D}(x)\right|=O\left(h^{-1 / 2} n^{-1 / 2} D_{n} \log ^{2} n\right)=o(1) \text {, w. p. } 1 .
$$

Proof. First, $\left|\hat{\varepsilon}_{n, 1}^{(0)}(x)-\hat{\varepsilon}_{n, 1}^{D}(x)\right|$ can be written as

$$
\left|\left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \iint I_{j(x)}(v) \sigma(v) \varepsilon I_{\left\{|\varepsilon|<D_{n}\right\}} d\left[Z_{n}(v, \varepsilon)-B\{M(v, \varepsilon)\}\right]\right|,
$$

which becomes the following via integration by parts

$$
\begin{aligned}
& \left|\left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \iint\left[Z_{n}(v, \varepsilon)-B\{M(v, \varepsilon)\}\right] d\left\{I_{j(x)}(v) \sigma(v) \varepsilon I_{\left\{|\varepsilon|<D_{n}\right\}}\right\}\right| \\
\leq & \left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \iint\left|Z_{n}(v, \varepsilon)-B\{M(v, \varepsilon)\}\right| d\left\{\varepsilon I_{\left\{|\varepsilon|<D_{n}\right\}}\right\} d\left\{I_{j(x)}(v) \sigma(v)\right\} .
\end{aligned}
$$

Next, by Lemma A.4, the bounded variation of the function $\sigma(x)$ in Assumption (A2), the strong approximation result (3.10), and the first condition in (A.1), $\sup _{x \in[a, b]}\left|\hat{\varepsilon}_{n, 1}^{(0)}(x)-\hat{\varepsilon}_{n, 1}^{D}(x)\right|$ is bounded as

$$
O\left\{(n h)^{1 / 2} n^{-1 / 2} h^{-1}\left(n^{-1 / 2} \log ^{2} n\right) D_{n}\right\}=O\left(n^{-1 / 2} h^{-1 / 2} D_{n} \log ^{2} n\right)=o(1)
$$

with probability 1 , thus completing the proof of the lemma.
The next lemma finds a process $\hat{\varepsilon}_{n, 1}^{(1)}(x)$ defined in terms of the 2-dimensional Brownian motion to approximate $\hat{\varepsilon}_{n, 1}^{(0)}(x)$.

Lemma A. 7 Define for $x \in[a, b]$

$$
\hat{\varepsilon}_{n, 1}^{(1)}(x)=\left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \iint I_{j(x)}(v) \sigma(v) \varepsilon I_{\left\{|\varepsilon|<D_{n}\right\}} d W\{M(v, \varepsilon)\}
$$

then as $n \rightarrow \infty,\left\|\hat{\varepsilon}_{n, 1}^{(1)}(x)-\hat{\varepsilon}_{n, 1}^{(0)}(x)\right\|_{\infty}=O\left(h^{1 / 2} D_{n}^{-(1+\eta)}\right)=o(1)$ w. p. 1 .
Proof. Based on the Rosenblatt transformation $M(x, \varepsilon)$ defined in (3.8), and $\frac{\partial M(x, \varepsilon)}{\partial(x, \varepsilon)}=$ $f(x, \varepsilon)$, the term $\left\|\hat{\varepsilon}_{n, 1}^{(1)}(x)-\hat{\varepsilon}_{n, 1}^{(0)}(x)\right\|_{\infty}$ is bounded by

$$
\begin{aligned}
& \sup _{x \in[a, b]}\left|\left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \iint I_{j(x)}(v) \sigma(v)\right| \varepsilon\left|I_{\left\{|\varepsilon|<D_{n}\right\}} d M(v, \varepsilon) W(1,1)\right| \\
& \leq \sup _{x \in[a, b]}\left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \int I_{j(x)}(v) \sigma(v) f(v) d v \\
& \times\left\{\int|\varepsilon| I_{\left\{|\varepsilon|<D_{n}\right\}} d F(\varepsilon \mid v)\right\}|W(1,1)| \\
& \leq C\left(\frac{\sqrt{n h}}{\sqrt{n} h}\right) h \frac{M_{\eta}}{D_{n}^{1+\eta}}|W(1,1)|=O\left(h^{1 / 2} D_{n}^{-(1+\eta)}\right)=o(1) \quad \text { w. p. } 1 .
\end{aligned}
$$

The last step is obtained by applying the third condition in (A.1).
The next lemma expresses the distribution of $\hat{\varepsilon}_{n, 1}^{(1)}(x)$ in terms of 1-dimensional Brownian motion.

Lemma A. 8 The process $\hat{\varepsilon}_{n, 1}^{(1)}(x)$ has the same distribution as

$$
\hat{\varepsilon}_{n, 1}^{(2)}(x)=\left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \int I_{j(x)}(v) \sigma(v) s_{n}(v) f^{\frac{1}{2}}(v) d W(v), x \in[a, b]
$$

where

$$
\begin{equation*}
s_{n}^{2}(v)=\int \varepsilon^{2} I_{\left\{|\varepsilon|<D_{n}\right\}} d F(\varepsilon \mid v) \tag{A.11}
\end{equation*}
$$

Proof. According to Itô's Isometry Theorem, $\operatorname{var}\left\{\hat{\varepsilon}_{n, 1}^{(1)}(x)\right\}$ and var $\left\{\hat{\varepsilon}_{n, 1}^{(2)}(x)\right\}$ are exactly the same for any $x \in[a, b]$. Hence, the two Gaussian processes $\hat{\varepsilon}_{n}^{(1)}(x)$ and $\hat{\varepsilon}_{n}^{(2)}(x)$ have the same distribution.

Lemma A. 9 Define for any $x \in[a, b]$

$$
\hat{\varepsilon}_{n, 1}^{(3)}(x)=\left\{\sigma_{n, 1}(x) \sqrt{n} c_{j(x), n}\right\}^{-1} \int I_{j(x)}(v) \sigma(v) f^{\frac{1}{2}}(v) d W(v)
$$

then as $n \rightarrow \infty,\left\|\hat{\varepsilon}_{n, 1}^{(2)}(x)-\hat{\varepsilon}_{n, 1}^{(3)}(x)\right\|_{\infty}=O\left(D_{n}^{-\eta} h^{-1 / 2}\right)=o(1)$ w. p. 1 .
Proof. By the fourth condition in (A.1), $\sup _{x \in[a, b]}\left|\hat{\varepsilon}_{n, 1}^{(2)}(x)-\hat{\varepsilon}_{n, 1}^{(3)}(x)\right|$ is almost surely bounded by

$$
\begin{aligned}
& \sup _{v \in[a, b]}\left|s_{n}^{2}(v)-1\right| \sup _{x \in[a, b]}\left|\sigma_{n, 1}^{-1}(x) c_{j(x), n}^{-1} n^{-1 / 2} \int I_{j(x)}(v) \sigma(v) f^{\frac{1}{2}}(v) d W(v)\right| \\
& =O\left(D_{n}^{-\eta} h^{-1 / 2}\right)=o(1) \text {. w. p. } 1
\end{aligned}
$$

Lemma A. 10 The process $\hat{\varepsilon}_{n, 1}^{(3)}(x)$ is a Gaussian process with mean 0 , variance 1, and covariance $\operatorname{cov}\left\{\hat{\varepsilon}_{n, 1}^{(3)}(x), \hat{\varepsilon}_{n, 1}^{(3)}(y)\right\}=\delta_{j(x), j(y)}, \forall x, y \in[a, b]$.

Proof. This follows from Itô's Isometry Theorem and (A.7).
Proof of Proposition 3.1. The proof follows immediately from Lemmas A.3, A.5, A.6, A.7, A.8, A. 9 and A. 10.

Proof of Theorem 1. It is clear from Proposition 3.1 that the Gaussian process $U(x)$ consists of $(N+1)$ i.i.d. standard normal variables $U\left(t_{0}\right), \ldots, U\left(t_{N}\right)$. Hence Theorem 3.4 implies that as $n \rightarrow \infty$

$$
P\left\{\sup _{x \in[a, b]}|U(x)| \leq \tau / a_{N+1}+b_{N+1}\right\} \rightarrow \exp \left(-2 e^{-\tau}\right)
$$

By letting $\tau=-\log \left\{-\frac{1}{2} \log (1-\alpha)\right\}$, and using the definition of a_{N+1} and b_{N+1}, we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P\left[\sup _{x \in[a, b]}|U(x)| \leq-\log \left\{-\frac{1}{2} \log (1-\alpha)\right\}\{2 \log (N+1)\}^{-1 / 2}\right. \\
& \left.+\{2 \log (N+1)\}^{1 / 2}-\frac{1}{2}\{2 \log (N+1)\}^{-1 / 2}\{\log \log (N+1)+\log 4 \pi\}\right]=1-\alpha .
\end{aligned}
$$

Replacing $U(x)$ with $\sigma_{n, 1}(x)^{-1} \tilde{\varepsilon}_{1}(x)$ (Proposition 3.1), and the definition of d_{n} in (2.9) implies that

$$
\lim _{n \rightarrow \infty} P\left[\sup _{x \in[a, b]}\left|\sigma_{n, 1}(x)^{-1} \tilde{\varepsilon}_{1}(x)\right| \leq\{2 \log (N+1)\}^{1 / 2} d_{n}\right]=1-\alpha
$$

As (3.5) implies that $\sqrt{n h / \log (N+1)}\left\|\tilde{m}_{1}(x)-m(x)\right\|_{\infty}=o_{p}$ (1). According to (3.3),

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P\left[m(x) \in \hat{m}_{1}(x) \pm \sigma_{n, 1}(x)\{2 \log (N+1)\}^{1 / 2} d_{n}, \forall x \in[a, b]\right] \\
= & \lim _{n \rightarrow \infty} P\left[\{2 \log (N+1)\}^{-1 / 2} d_{n}^{-1} \sup _{x \in[a, b]} \sigma_{n, 1}^{-1}(x)\left|\tilde{\varepsilon}_{1}(x)+\tilde{m}_{1}(x)-m(x)\right| \leq 1\right] \\
= & \lim _{n \rightarrow \infty} P\left[\{2 \log (N+1)\}^{-1 / 2} d_{n}^{-1} \sup _{x \in[a, b]} \sigma_{n, 1}^{-1}(x)\left|\tilde{\varepsilon}_{1}(x)\right| \leq 1\right]=1-\alpha .
\end{aligned}
$$

Appendix B: Proof of Theorem 2

B. 1. Preliminaries

In this subsection we examine matrices used in (2.10) of Theorem 2. In what follows, we use $|T|$ to denote the maximal absolute value of any matrix T, and M_{N+2} is the tridiagonal matrix as defined in (4.9).

Lemma B. 1 The inner product matrix V of the B-spline basis $\left\{B_{j, 2}(x)\right\}_{j=-1}^{N}$ defined as $V=$ $\left(v_{j^{\prime} j}\right)_{j, j^{\prime}=-1}^{N}=\left(\left\langle B_{j^{\prime}, 2}, B_{j, 2}\right\rangle\right)_{j, j^{\prime}=-1}^{N}$, has the following decomposition

$$
V=M_{N+2}+\left(\tilde{v}_{j^{\prime} j}\right)_{j, j^{\prime}=-1}^{N}=M_{N+2}+\tilde{V}
$$

where $\tilde{v}_{j^{\prime} j} \equiv 0$ if $\left|j-j^{\prime}\right| \geq 1$, and $|\tilde{V}| \leq C \omega(f, h)$.
Proof. By (A.3), (A.4) and (A.5), the inner product of $\left\langle b_{j^{\prime}, 2}, b_{j, 2}\right\rangle$ can be replaced by $\frac{1}{6} f\left(t_{j+1}\right) h$ if $\left|j^{\prime}-j\right|=1$, and $\frac{1}{3} f\left(t_{j+1}\right) h$ or $\frac{2}{3} f\left(t_{j+1}\right) h$ when $j^{\prime}=j$, plus some uniformly infinitesimal differences dominated by $\omega(f, h)$. Based on the definition of $B_{j, 2}(x)$, the lemma follows immediately.

The next lemma shows that multiplication by M_{N+2} behaves similarly to multiplication by a constant.

Lemma B. 2 Given the matrix $\Omega=M_{N+2}+\Gamma$, for which $\Gamma=\left(\gamma_{j j^{\prime}}\right)_{j, j^{\prime}=-1}^{N}$ satisfies $\gamma_{j j^{\prime}} \equiv 0$ if $\left|j-j^{\prime}\right| \geq 1$ and $|\Gamma| \xrightarrow{p} 0$, there exist constants $c, C>0$ independent of n and Γ, such that in probability

$$
\begin{equation*}
c|\boldsymbol{\xi}| \leq|\Omega \boldsymbol{\xi}| \leq C|\boldsymbol{\xi}|, C^{-1}|\boldsymbol{\xi}| \leq\left|\Omega^{-1} \boldsymbol{\xi}\right| \leq c^{-1}|\boldsymbol{\xi}|, \forall \boldsymbol{\xi} \in R^{N+2} . \tag{B.1}
\end{equation*}
$$

Proof. In (4.9), M_{N+2} has diagonal elements 1 , and the sum of the absolute values of offdiagonal elements in each row does not exceed $1 / \sqrt{2}$. Hence it follows that $(1-1 / \sqrt{2}-3|\Gamma|)|\boldsymbol{\xi}| \leq$ $|\Omega \boldsymbol{\xi}| \leq 3(1+|\Gamma|)|\boldsymbol{\xi}|$, which implies the first inequality of (B.1), and the second one follows by switching the roles of $\boldsymbol{\xi}$ and $\Omega \boldsymbol{\xi}$.

As an application of Lemma B.2, consider the matrix $S=V^{-1}$ defined in (2.5). Let $\tilde{\boldsymbol{\xi}}_{j^{\prime}}=\left\{\operatorname{sgn}\left(s_{j^{\prime} j}\right)\right\}_{j=-1}^{N}$, then there exists a positive C_{s} such that

$$
\begin{equation*}
\sum_{j=-1}^{N}\left|s_{j^{\prime} j}\right| \leq\left|S \tilde{\boldsymbol{\xi}}_{j^{\prime}}\right| \leq C_{s}\left|\tilde{\boldsymbol{\xi}}_{j^{\prime}}\right|=C_{s}, \forall j^{\prime}=-1,0, \ldots, N \tag{B.2}
\end{equation*}
$$

The matrix S in the construction of the confidence band can not be computed exactly as it involves the unknown density $f(x)$. We approximate S by the inverse of M_{N+2}, with a simpler, distribution-free form in (4.9). This approximation is uniform for S_{j} in (2.5) and Ξ_{j} in (4.8) as well.

Lemma B. 3 As $n \rightarrow \infty,\left|M_{N+2}^{-1}-S\right| \rightarrow 0$ and $\max _{0 \leq j \leq N}\left|\Xi_{j}-S_{j}\right| \rightarrow 0$.
Proof. By definition, $M_{N+2} M_{N+2}^{-1}=I=V S=\left(M_{N+2}+\tilde{V}\right) S$. Denote by e_{i} the unit vector with i-th element 1. Applying Lemma B. 2 with $\Omega=M_{N+2}$,

$$
\begin{aligned}
& c\left|M_{N+2}^{-1}-S\right|=c \max _{i=1}^{N+2}\left|\left(M_{N+2}^{-1}-S\right) e_{i}\right| \\
\leq & \max _{i=1}^{N+2}\left|M_{N+2}\left(M_{N+2}^{-1}-S\right) e_{i}\right| \leq c|\tilde{V}|\left(\left|M_{N+2}^{-1}-S\right|+\left|M_{N+2}^{-1}\right|\right)
\end{aligned}
$$

Since Lemma B. 1 implies $|\tilde{V}| \leq C \omega(f, h)$, as $n \rightarrow \infty,\left|M_{N+2}^{-1}-S\right|=O\{\omega(f, h)\} \rightarrow 0$. By definition of submatrices S_{j} and Ξ_{j}, $\max _{0 \leq j \leq N}\left|\Xi_{j}-S_{j}\right| \leq\left|M_{N+2}^{-1}-S\right|$. The lemma follows.

B. 2. Variance calculation

We now examine the asymptotic behavior of

$$
\begin{equation*}
\tilde{\varepsilon}_{2}(x)=\operatorname{Proj}_{G_{n}^{(0)}} \mathbf{E}=\sum_{j=-1}^{N} \tilde{a}_{j} B_{j, 2}(x), x \in[a, b] \tag{B.3}
\end{equation*}
$$

where the coefficient vector $\tilde{\mathbf{a}}=\left(\tilde{a}_{-1}, \ldots, \tilde{a}_{N}\right)^{T}$ is the solution to the normal equations

$$
\left(\left\langle B_{j, 2}, B_{j^{\prime}, 2}\right\rangle_{n}\right)_{j, j^{\prime}=-1}^{N}\left(\tilde{a}_{j}\right)_{j=-1}^{N}=\left(n^{-1} \sum_{i=1}^{n} B_{j, 2}\left(X_{i}\right) \sigma\left(X_{i}\right) \varepsilon_{i}\right)_{j=-1}^{N}
$$

In other words

$$
\begin{equation*}
\tilde{\mathbf{a}}=\left(\tilde{a}_{j}\right)_{j=-1}^{N}=(V+\tilde{B})^{-1}\left(n^{-1} \sum_{i=1}^{n} B_{j, 2}\left(X_{i}\right) \sigma\left(X_{i}\right) \varepsilon_{i}\right)_{j=-1}^{N}, \tag{B.4}
\end{equation*}
$$

where $|\tilde{B}| \leq A_{n, 2}=O_{p}\left(n^{-1 / 2} h^{-1 / 2} \log ^{1 / 2}(n)\right)$ by (3.2).

Now define the \hat{a}_{j} 's by replacing $(V+\tilde{B})^{-1}$ with $V^{-1}=S$ in above formula, i.e.

$$
\begin{equation*}
\hat{\mathbf{a}}=\left(\hat{a}_{j}\right)_{j=-1}^{N}=\left(\sum_{j=-1}^{N} s_{j^{\prime} j} n^{-1} \sum_{i=1}^{n} B_{j, 2}\left(X_{i}\right) \sigma\left(X_{i}\right) \varepsilon_{i}\right)_{j=-1}^{N} \tag{B.5}
\end{equation*}
$$

and define for $x \in[a, b]$

$$
\begin{equation*}
\hat{\varepsilon}_{2}(x)=\sum_{j^{\prime}=-1}^{N} \hat{a}_{j^{\prime}} B_{j^{\prime}, 2}(x)=\sum_{j, j^{\prime}=-1}^{N} s_{j^{\prime} j} n^{-1} \sum_{i=1}^{n} B_{j, 2}\left(X_{i}\right) \sigma\left(X_{i}\right) \varepsilon_{i} B_{j^{\prime}, 2}(x) . \tag{B.6}
\end{equation*}
$$

The next lemma is a special case of the unconditional version of (6.2) in Huang (2003).
Lemma B. 4 The pointwise variance of $\hat{\varepsilon}_{2}(x)$ is the function $\sigma_{n, 2}^{2}(x)$ defined in (2.6), which satisfies

$$
E\left\{\hat{\varepsilon}_{2}^{2}(x)\right\} \equiv \sigma_{n, 2}^{2}(x)=\frac{3 \sigma^{2}(x)}{2 f(x) n h} \boldsymbol{\Delta}^{T}(x) S_{j(x)} \boldsymbol{\Delta}(x)\left\{1+r_{n, 2}(x)\right\}
$$

with $\sup _{x \in[a, b]}\left|r_{n, 2}(x)\right| \rightarrow 0, j(x)$ in (2.3), $\boldsymbol{\Delta}(x)$ in (4.7) and matrix S_{j} in (2.5). Consequently, there exist $0<c_{\sigma}<C_{\sigma}$ such that for n large enough

$$
\begin{equation*}
c_{\sigma}(n h)^{-1 / 2} \leq \sigma_{n, 2}(x) \leq C_{\sigma}(n h)^{-1 / 2}, \forall x \in[a, b] . \tag{B.7}
\end{equation*}
$$

Proof. See Wang and Yang (2006).

B. 3. Proof of Theorem 2

The next several lemmas are needed for the proof of Proposition 3.2.
Lemma B. 5 Define for $x \in[a, b]$

$$
\begin{aligned}
& \hat{\varepsilon}_{n, 2}(x)=\sigma_{n, 2}^{-1}(x) \hat{\varepsilon}_{2}(x)=\sigma_{n, 2}^{-1}(x) \sum_{j^{\prime}=-1}^{N} \hat{a}_{j^{\prime}} B_{j^{\prime}, 2}(x), \\
& \hat{\varepsilon}_{n, 2}^{D}(x)=\sigma_{n, 2}^{-1}(x) \sum_{j^{\prime}=-1}^{N} \hat{a}_{j^{\prime}} B_{j^{\prime}, 2}(x) I_{\left\{|\varepsilon|<D_{n}\right\}} .
\end{aligned}
$$

where D_{n} satisfies (A.1). Then with probability 1

$$
\left\|\hat{\varepsilon}_{n, 2}(x)-\hat{\varepsilon}_{n, 2}^{D}(x)\right\|_{\infty}=O\left(n^{1 / 2} h^{1 / 2} D_{n}^{-(1+\eta)}\right)=o(1) .
$$

Proof. Since obviously $E \hat{\varepsilon}_{n, 2}(x)=0, \forall x \in[a, b]$,

$$
\hat{\varepsilon}_{n, 2}(x)=\sigma_{n, 2}^{-1}(x) n^{-1 / 2} \sum_{j^{\prime}=j(x)-1}^{j(x)} B_{j^{\prime}, 2}(x) \sum_{j=-1}^{N} s_{j^{\prime} j} \iint B_{j, 2}(v) \sigma(v) \varepsilon d Z_{n}(v, \varepsilon)
$$

where $Z_{n}(x, \varepsilon)$ is defined in (3.9). The technical proof is very similar to Lemma A.5, except that we employ (B.2) to deal with $\sum_{j=-1}^{N} s_{j^{\prime} j}$. The same order is also achieved.

Lemma B. 6 Let M be the Rosenblatt transformation given in (3.8) and define

$$
\hat{\varepsilon}_{n, 2}^{(0)}(x)=\frac{1}{\sqrt{n} \sigma_{n, 2}(x)} \sum_{j^{\prime}, j=-1}^{N} B_{j^{\prime}, 2}(x) s_{j^{\prime} j} \iint B_{j, 2}(v) \sigma(v) \varepsilon I_{\left\{|\varepsilon|<D_{n}\right\}} d B\{M(v, \varepsilon)\}
$$

for $x \in[a, b]$. Then as $n \rightarrow \infty$

$$
\sup _{x \in[a, b]}\left|\hat{\varepsilon}_{n, 2}^{(0)}(x)-\hat{\varepsilon}_{n, 2}^{D}(x)\right|=O\left(n^{-1 / 2} h^{-1 / 2} D_{n} \log ^{2} n\right)=o(1) \quad \text { w. p. } 1 .
$$

Proof. See Lemma A. 6 .

Lemma B. 7 Define for $x \in[a, b]$

$$
\hat{\varepsilon}_{n, 2}^{(1)}(x)=\frac{\sigma_{n, 2}^{-1}(x)}{\sqrt{n}} \sum_{j^{\prime}, j=-1}^{N} B_{j^{\prime}, 2}(x) s_{j^{\prime} j} \iint B_{j, 2}(v) \sigma(v) \varepsilon I_{\left\{|\varepsilon|<D_{n}\right\}} d W\{M(v, \varepsilon)\},
$$

then as $n \rightarrow \infty$

$$
\sup _{x \in[a, b]}\left|\hat{\varepsilon}_{n, 2}^{(1)}(x)-\hat{\varepsilon}_{n, 2}^{(0)}(x)\right|=O\left(h^{1 / 2} D_{n}^{-(1+\eta)}\right)=o(1) \text { w. p. } 1 .
$$

Lemma B. 8 The process $\hat{\varepsilon}_{n, 2}^{(1)}(x), x \in[a, b]$ has the same distribution as

$$
\hat{\varepsilon}_{n, 2}^{(2)}(x)=\sigma_{n, 2}^{-1}(x) n^{-1 / 2} \sum_{j^{\prime}, j=-1}^{N} B_{j^{\prime}, 2}(x) s_{j^{\prime} j} \iint B_{j, 2}(v) \sigma(v) s_{n}(v) f^{\frac{1}{2}}(v) d W(v)
$$

for $x \in[a, b]$, where $s_{n}^{2}(v)$ is as defined in (A.11).

Proof. Similar to that of Lemma A.8, see Wang and Yang (2006) for details.
Lemma B. 9 Define for any $x \in[a, b]$

$$
\hat{\varepsilon}_{n, 2}^{(3)}(x)=\frac{1}{\sqrt{n} \sigma_{n, 2}(x)} \sum_{j^{\prime}, j=-1}^{N} B_{j^{\prime}, 2}(x) s_{j^{\prime} j} \int B_{j, 2}(v) \sigma(v) f^{\frac{1}{2}}(v) d W(v)
$$

then $\operatorname{var}\left\{\hat{\varepsilon}_{n, 2}^{(3)}(x)\right\} \equiv 1, \forall x \in[a, b]$, and as $n \rightarrow \infty$

$$
\left\|\hat{\varepsilon}_{n, 2}^{(2)}(x)-\hat{\varepsilon}_{n, 2}^{(3)}(x)\right\|_{\infty}=O\left(h^{-1 / 2} D_{n}^{-\eta}\right)=o(1) \text { w. p. } 1 .
$$

Proof. Using (A.1) in the last step, the term $\sup _{x \in[a, b]}\left|\hat{\varepsilon}_{n, 2}^{(2)}(x)-\hat{\varepsilon}_{n, 2}^{(3)}(x)\right|$ is bounded by

$$
\sup _{x \in[a, b]}\left|1-s_{n}^{2}(x)\right| \sup _{x \in[a, b]}\left\{\frac{\sigma_{n, 2}^{-1}(x)}{\sqrt{n}} \sum_{j^{\prime}, j=-1}^{N} B_{j^{\prime}, 2}(x)\left|s_{j^{\prime} j}\right| \int B_{j, 2}(v) \sigma(v) f^{\frac{1}{2}}(v) d W(v)\right\}
$$

$$
\leq M_{\eta} D_{n}^{-\eta} h^{1 / 2} C\left|\int \sigma(v) f^{\frac{1}{2}}(v) d W(v)\right|=O\left(h^{-1 / 2} D_{n}^{-\eta}\right)=o(1) \text { w. p. } 1
$$

Meanwhile, directly from (2.7) and (2.6), for any $x \in[a, b]$

$$
\operatorname{var}\left\{\hat{\varepsilon}_{n, 2}^{(3)}(x)\right\}=E\left\{\frac{\sigma_{n, 2}^{-1}(x)}{\sqrt{n}} \sum_{j^{\prime}, j=-1}^{N} B_{j^{\prime}, 2}(x) s_{j^{\prime} j} \int B_{j, 2}(v) \sigma(v) f^{\frac{1}{2}}(v) d W(v)\right\}^{2}=1
$$

Now define for any $j^{\prime}=-1, \ldots, N$ and $x \in[a, b]$, the functions

$$
\zeta_{j^{\prime}}(x)=n^{-1 / 2} \sigma_{n, 2}^{-1}(x) B_{j^{\prime}, 2}(x), \tilde{\boldsymbol{\zeta}}(x)=\left(\zeta_{j(x)-1}(x), \zeta_{j(x)}(x)\right)^{T}
$$

and the random vector $\boldsymbol{\Lambda}=\left(\Lambda_{-1}, \Lambda_{0}, \ldots, \Lambda_{N}\right)^{T}$ where

$$
\Lambda_{j^{\prime}}=\sum_{j=-1}^{N} s_{j^{\prime} j} \int B_{j, 2}(v) \sigma(v) f^{\frac{1}{2}}(v) d W(v)
$$

Then $\boldsymbol{\Lambda} \sim \mathbf{N}\left(\mathbf{0}, S \sum S\right)$ as $E \Lambda_{j^{\prime}}=0, \forall j^{\prime}=-1, \ldots, N$, and the covariance is $E \Lambda_{j^{\prime}} \Lambda_{l^{\prime}}=$ $\sum_{j, l=-1}^{N} s_{j^{\prime} j} \sigma_{j l} s_{l l^{\prime}}$, for any $j^{\prime}, l^{\prime}=-1, . ., N$, and $\sigma_{j l}$ is defined in (2.7). Notice that

$$
\hat{\varepsilon}_{n, 2}^{(3)}(x) \equiv \sum_{j^{\prime}=j(x)-1, j(x)} \zeta_{j^{\prime}}(x) \Lambda_{j^{\prime}}=\tilde{\boldsymbol{\zeta}}(x)^{T} \boldsymbol{\Lambda}_{j(x)}, \boldsymbol{\Lambda}_{j}=\left(\Lambda_{j-1}, \Lambda_{j}\right)^{T}, j=0, \ldots, N
$$

Since Lemma B. 9 states that the variance of $\hat{\varepsilon}_{n, 2}^{(3)}(x) \equiv 1$, it follows that

$$
\begin{equation*}
\hat{\varepsilon}_{n, 2}^{(3)}(x)=\frac{\tilde{\boldsymbol{\zeta}}(x)^{T} \boldsymbol{\Lambda}_{j(x)}}{\sqrt{\tilde{\boldsymbol{\zeta}}(x)^{T}\left\{\operatorname{cov}\left(\boldsymbol{\Lambda}_{j(x)}\right)\right\} \tilde{\boldsymbol{\zeta}}(x)}} \tag{B.8}
\end{equation*}
$$

Lemma B. 10 For any given $0<\alpha<1$,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} P\left(\sup _{x \in[a, b]}\left|\hat{\varepsilon}_{n, 2}(x)\right| \leq[2\{\log (N+1)-\log \alpha\}]^{1 / 2}\right) \geq 1-\alpha \tag{B.9}
\end{equation*}
$$

Proof. Define for any $0 \leq j \leq N, Q_{j}=\boldsymbol{\Lambda}_{j}^{T}\left\{\operatorname{cov}\left(\boldsymbol{\Lambda}_{j}\right)\right\}^{-1} \boldsymbol{\Lambda}_{j}$. Result 4.7 (a), page 140 of Johnson and Wichern (1992) ensures that Q_{j} is distributed as χ_{2}^{2}, hence

$$
P\left[Q_{j}>2\{\log (N+1)-\log \alpha\}\right]=\frac{\alpha}{N+1}, \forall 0 \leq j \leq N
$$

Then (B.8) and the Maximization Lemma of Johnson and Wichern (1992), page 66, ensures that

$$
\left\{\hat{\varepsilon}_{n, 2}^{(3)}(x)\right\}^{2}=\frac{\left|\tilde{\boldsymbol{\zeta}}(x)^{T} \boldsymbol{\Lambda}_{j(x)}\right|^{2}}{\tilde{\boldsymbol{\zeta}}(x)^{T}\left\{\operatorname{cov}\left(\boldsymbol{\Lambda}_{j(x)}\right)\right\} \tilde{\boldsymbol{\zeta}}(x)} \leq \boldsymbol{\Lambda}_{j(x)}^{T}\left\{\operatorname{cov}\left(\boldsymbol{\Lambda}_{j(x)}\right)\right\}^{-1} \boldsymbol{\Lambda}_{j(x)}=Q_{j(x)}
$$

for any $x \in[a, b]$. Therefore $\sup _{x \in[a, b]}\left|\hat{\varepsilon}_{n, 2}^{(3)}(x)\right|^{2} \leq \max _{0 \leq j \leq N}\left\{Q_{j}\right\}$ and

$$
\begin{aligned}
& P\left[\sup _{x \in[a, b]}\left|\hat{\varepsilon}_{n, 2}^{(3)}(x)\right|^{2} \leq 2\{\log (N+1)-\log \alpha\}\right] \\
\geq & P\left[\max _{0 \leq j \leq N}\left\{Q_{j}\right\} \leq 2\{\log (N+1)-\log \alpha\}\right] \geq 1-\alpha .
\end{aligned}
$$

Equation (B.9) follows from Lemmas B.5, B. 6 B.7, B.8, B.9.

Lemma B. 11

$$
\left|\sup _{x \in[a, b]}\right| \frac{\hat{\varepsilon}_{2}(x)}{\sigma_{n, 2}(x)}\left|-\sup _{x \in[a, b]}\right| \frac{\tilde{\varepsilon}_{2}(x)}{\sigma_{n, 2}(x)}\left|\left\lvert\,=O_{p}\left(\sqrt{\frac{\log n}{n h}}\right)=o_{p}(1) .\right.\right.
$$

Proof. Recall the definition for $\tilde{\mathbf{a}}=\left(\tilde{a}_{-1}, \tilde{a}_{0}, \ldots, \tilde{a}_{N}\right)^{T}$ and $\hat{\mathbf{a}}=\left(\hat{a}_{-1}, \hat{a}_{0}, \ldots, \hat{a}_{N}\right)^{T}$ in (B.4) and (B.5). Then $(V+\tilde{B}) \tilde{\mathbf{a}}=V \hat{\mathbf{a}}$. Based on Lemma B. 2 and (3.2), there exists a constant c such that $c|\hat{\mathbf{a}}-\tilde{\mathbf{a}}| \leq|V(\hat{\mathbf{a}}-\tilde{\mathbf{a}})|=|\tilde{B} \tilde{\mathbf{a}}| \leq A_{n, 2}(|\hat{\mathbf{a}}-\tilde{\mathbf{a}}|+|\hat{\mathbf{a}}|)$, it implies that $|\hat{\mathbf{a}}-\tilde{\mathbf{a}}| \leq \frac{A_{n, 2}}{c-A_{n, 2}}|\hat{\mathbf{a}}|$. From the definitions of $\tilde{\varepsilon}_{2}(x)$ in (B.3) and $\hat{\varepsilon}_{2}(x)$ in (B.6), plus (B.7) and (A.6), as $n \rightarrow \infty$

$$
\sup _{x \in[a, b]}\left|\frac{\hat{\varepsilon}_{2}(x)}{\sigma_{n, 2}(x)}-\frac{\tilde{\varepsilon}_{2}(x)}{\sigma_{n, 2}(x)}\right| \leq \sup _{x \in[a, b]}\left|\sum_{j=-1}^{N} \frac{|\widehat{\mathbf{a}}-\tilde{\mathbf{a}}| B_{j, 2}(x)}{\sigma_{n, 2}(x)}\right| \leq C n^{1 / 2} \frac{A_{n, 2}}{c-A_{n, 2}}|\hat{\mathbf{a}}| .
$$

Using (A.6) again, we conclude that as $n \rightarrow \infty$

$$
\sup _{x \in[a, b]}\left|\frac{\hat{\varepsilon}_{2}(x)}{\sigma_{n, 2}(x)}\right| \geq \frac{\sqrt{n h}}{C_{\sigma}} \sup _{x \in[a, b]}\left|\hat{\mathbf{a}} \mathbf{B}_{2}^{T}(x)\right| \geq C \sqrt{n}|\hat{\mathbf{a}}|
$$

where $\mathbf{B}_{2}(x)=\left\{B_{-1,2}(x), \ldots, B_{N, 2}(x)\right\}^{T}, \mathbf{b}_{2}(x)=\left\{b_{-1,2}(x), \ldots, b_{N, 2}(x)\right\}^{T}$.
The desired result follows, i.e.

$$
\sup _{x \in[a, b]}\left|\frac{\hat{\varepsilon}_{2}(x)}{\sigma_{n, 2}(x)}-\frac{\tilde{\varepsilon}_{2}(x)}{\sigma_{n, 2}(x)}\right| \leq C \frac{A_{n, 2}}{c-A_{n, 2}} \sup _{x \in[a, b]}\left|\frac{\hat{\varepsilon}_{2}(x)}{\sigma_{n, 2}(x)}\right|=O_{p}\left(\sqrt{\frac{\log n}{n h}}\right) .
$$

Proof of Proposition 3.2. This follows from Lemma B. 10 and Lemma B.11.
Proof of Theorem 2. Now (3.5) implies that

$$
\sqrt{n h / \log (N+1)}\left\|\tilde{m}_{2}(x)-m(x)\right\|_{\infty}=O_{p}\left\{\sqrt{n h^{5} / \log (N+1)}\right\}=o_{p}(1)
$$

Applying (3.6) in Proposition 3.2

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} P\left[m(x) \in \hat{m}_{2}(x) \pm \sigma_{n, 2}(x)\{2 \log (N+1)-2 \log \alpha\}^{1 / 2}, \forall x \in[a, b]\right] \\
= & \liminf _{n \rightarrow \infty} P\left[\sup _{x \in[a, b]} \sigma_{n, 2}^{-1}(x)\left|\tilde{\varepsilon}_{2}(x)+\tilde{m}_{2}(x)-m(x)\right| \leq\{2 \log (N+1)-2 \log \alpha\}^{1 / 2}\right] \\
= & \liminf _{n \rightarrow \infty} P\left[\sup _{x \in[a, b]}\left|\frac{\tilde{\varepsilon}_{2}(x)}{\sigma_{n, 2}(x)}\right| \leq\{2 \log (N+1)-2 \log \alpha\}^{1 / 2}\right] \geq 1-\alpha .
\end{aligned}
$$

