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Abstract: Asymptotically exact and conservative confidence bands are obtained for

a nonparametric regression function, using piecewise constant and piecewise lin-

ear spline estimation, respectively. Compared to the pointwise confidence interval

of Huang (2003), the confidence bands are inflated by a factor proportional to

{log (n)}1/2, with the same width order as the Nadaraya-Watson bands of Härdle

(1989), and the local polynomial bands of Xia (1998) and Claeskens and Van Kei-

legom (2003). Simulation experiments corroborate the asymptotic theory. The

linear spline band has been used to identify an appropriate polynomial trend for

fossil data.
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1. Introduction

For two decades, nonparametric regression has been widely applied to bio-
statistics, econometrics, engineering and geography, due to its flexibility in mod-
elling complex relationships among variables by “letting the data speak for them-
selves”. Two popular nonparametric techniques are local polynomial/kernel and
polynomial spline smoothing.

The kernel-type estimators, namely the Nadaraya-Watson and the local poly-
nomial estimator, are based on locally weighted averaging. Polynomial spline
estimators are “global” in terms of implementation, as a single least square pro-
cedure leads to the ultimate function estimate over the entire data range, see
Stone (1994). In terms of pointwise asymptotics, of course, both kernel and
spline type estimators are local in nature, see Fan and Gijbels (1996) and Huang
(2003).

The fidelity of a nonparametric regressor is measured in terms of its rate of
convergence to the unknown regression function. The convergence rate can be
pointwise, least squares or uniform. For kernel-type estimators, rates of conver-
gence have been established by Claeskens and Van Keilegom (2003), Fan and
Gijbels (1996) and Mack and Silverman (1982), to name a few. For polynomial
splines, least squares rates of convergence have been obtained by Stone (1994),
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while pointwise convergence rates and asymptotic distributions have been re-
cently established in Huang (2003). Confidence bands for polynomial spline
regression, however, are available only under the restriction of homoscedastic
normal errors, see Zhou, Shen and Wolfe (1998).

In this paper, we present confidence bands for univariate regression functions
based on polynomial spline smoothing. We assume that observations {(Xi, Yi)}n

i=1

and unobserved errors {εi}n
i=1 are i.i.d. copies of (X,Y, ε) satisfying

Y = m (X) + σ (X) ε, (1.1)

where ε is conditional white noise, namely E (ε |X ) ≡ 0, E
(
ε2 |X

)
≡ 1, see

Assumption (A4) in Section 2. The unknown mean m and standard deviation σ,
defined on [a, b], need not be of any specific form. If the data actually follows a
polynomial regression model, m is a polynomial and σ is constant.

Confidence bands have been obtained for kernel-type estimators of m, see
Claeskens and Van Keilegom (2003), Hall and Titterington (1988), Härdle (1989)
and Xia (1998). These bounds are computationally intensive, as the kernel esti-
mator requires solving an optimization problem at every point. In contrast, it is
enough to solve only one such problem to get the polynomial spline estimator.
The greatest advantages of polynomial spline estimation are simplicity of im-
plementation and fast computation. Hence it is desirable from a theoretical and
practical point of view to have confidence bands for polynomial spline estimators.

We organize our paper as follows. In Section 2 we state our main results on
confidence bands constructed from (piecewise) constant/linear splines. In Sec-
tion 3 we provide further insight into the error structure of spline estimators.
Section 4 describes the actual steps to implement the confidence bands. Sec-
tion 5 reports findings in an extensive simulation study, and the testing of the
polynomial trend hypothesis for fossil data using a linear spline band. Section
6 concludes. All technical proofs are contained in Appendices A and B in the
Supplement, available at http://www3.stat.sinica.edu.tw/statistica.

2. Main Results

To introduce spline functions, we divide the finite interval [a, b] into (N + 1)
subintervals Jj = [tj , tj+1) , j = 0, . . . , N −1, JN = [tN , b] . A sequence of equally-
spaced points {tj}N

j=1, called interior knots, is given as

tj = a + jh, j = 0, . . . , N + 1, (2.1)

where h = (b − a) / (N + 1) is the distance between neighboring knots. We
denote by G(p−2) = G(p−2) [a, b] the space of functions that are polynomials of
degree (p − 1) on each Jj and have p − 2 continuous derivatives. For example,
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G(−1) denotes the space of functions that are constant on each Jj , and G(0) the
space of functions that are linear on each Jj and continuous on [a, b].

In what follows, ‖·‖∞ denotes the supremum norm of a function w on [a, b]
and the modulus of continuity of a continuous function w on [a, b] is denoted by
ω (w, h) = maxx,x′∈[a,b],|x−x′|≤h |w (x) − w (x′)|. That lim

h→0
ω (w, h) = 0 follows

from the uniform continuity of w on a compact interval [a, b].
An asymptotically exact (conservative) 100 (1 − α)% confidence band for the

unknown m over the interval [a, b] consists of an estimator m̂ (x) of m (x), and
lower and upper confidence limits m̂ (x) − ln (x) and m̂ (x) + ln (x) at each x in
[a, b] such that

limn→∞ P {m (x) ∈ m̂ (x) ± ln (x) ,∀x ∈ [a, b]} = 1 − α, exact,
lim infn→∞ P {m (x) ∈ m̂ (x) ± ln (x) ,∀x ∈ [a, b]} ≥ 1 − α, conservative.

Our approach is to use the polynomial spline estimator based on data {(Xi,
Yi)}n

i=1 drawn from model (1.1) given by

m̂p (x) = argmin
g∈G(p−2)[a,b]

n∑
i=1

{Yi − g (Xi)}2 , p = 1, 2. (2.2)

We then construct an error bound function ln around this spline estimator. The
technical assumptions we need are as follows.

(A1) m (·) ∈ C(p) [a, b] , p = 1, 2.

(A2) The density function f (·) of X is continuous and positive on the interval
[a, b] ; the standard deviation function σ (·) ∈ C [a, b] is of bounded variation
and has a positive lower bound on [a, b].

(A3) The number of interior knots is N ∼ n1/(2p+1).

(A4) The joint distribution F (x, ε) of random variables (X, ε) satisfies

(a) E (ε |X = x) ≡ 0, E
(
ε2 |X = x

)
≡ 1;

(b) there exists a positive value η > 1/p and a finite positive Mη such that
E|ε|2+η < Mη and supx∈[a,b] E

(
|ε|2+η |X = x

)
< Mη.

Assumptions (A1)−(A3) are the same as in Huang (2003), while (A4) is the
same as (C2) (a) of Mack and Silverman (1982). All are typical for nonparametric
regression, with (A1), (A2), and (A4) weaker than their counterparts in Härdle
(1989).

To define the confidence bands, we introduce some additional notation. For
any x ∈ [a, b], define its location and relative position indices j (x) , r (x) as

j (x) = jn (x) = min
{[

x − a

h

]
, N

}
, r (x) =

{
x − tj(x)

}
h

. (2.3)
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Since any x is between two consecutive knots, it is clear that tjn(x) ≤ x <

tjn(x)+1, 0 ≤ r (x) < 1,∀x ∈ [a, b) , and r (b) = 1. Let ‖φ‖2
2 = E

{
φ2 (X)

}
=∫ b

a φ2 (x) f (x) dx, and take ‖φ‖2
2,n = n−1

∑n
i=1 φ2 (Xi). With standard inner

products notation use, note that E 〈φ, ϕ〉n = 〈φ, ϕ〉.
Elementary algebra shows the linear equivalence of the B-spline basis to the

truncated power basis introduced in Section 4, see de Boor (2001). Hence the
same estimator m̂p (x) (p = 1, 2) can be expressed as a linear combination of
either of the two basis. While the truncated power basis is convenient for im-
plementation, it is easier to work with the B-spline basis for theoretical analysis.
The B-spline basis of G(−1), the space of piecewise constant splines, consists of
indicator functions of intervals Jj , bj,1 (x) = Ij (x) = IJj (x) , 0 ≤ j ≤ N . The
B-spline basis of G(0), the space of piecewise linear splines, are {bj,2 (x)}N

j=−1 ,

where

bj,2 (x) = K

(
x − tj+1

h

)
, j = −1, 0, . . . , N, for K (u) = (1 − |u|)+ .

The rescaled B-spline basis {Bj,p (x)}N
j=1−p for G(1−p), with

Bj,p (x) ≡ bj,p (x) ‖bj,p‖−1
2 , 1 − p ≤ j ≤ N, p = 1, 2,

features basis functions with norm 1.
To express the estimator m̂p (x) based on the standardized basis {Bj,p (x)}N

j=1−p,
we introduce the following vectors in Rn for p = 1, 2 :

Y = (Y1, . . . , Yn)T ,Bj,p (X) = {Bj,p (X1) , . . . , Bj,p (Xn)}T , j = 1 − p, . . . , N.

The definition of m̂p (x) in (2.2) implies that m̂p (x) ≡
∑N

j=1−p λ̂j,pBj,p (x) , where

the coefficients
{
λ̂1−p,p, . . . , λ̂N,p

}T
are solutions of the least squares problem

{
λ̂1−p,p, . . . , λ̂N,p

}T
= argmin

RN+p

n∑
i=1

Yi −
N∑

j=1−p

λj,pBj,p (Xi)


2

. (2.4)

Typically these are solutions of the normal equations

( 〈
Bj,p, Bj′,p

〉
n

)N

j,j′=1−p

(
λ̂j,p

)N

j=1−p
=

(
n−1

n∑
i=1

Bj,p (Xi) Yi

)N

j=1−p

.

It is straightforward that
〈
Bj,p, Bj′,p

〉
≡ 0, |j − j′| ≥ p, thus the inner product

matrix on the left side of the normal equation is diagonal for the constant B spline
basis (p = 1), and tridiagonal for the linear B spline basis (p = 2). According to
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Lemma 3.1, the latter is approximated by its deterministic version, whose inverse
has an explicit formula given in Section 4.

For p = 2, this inverse matrix S and its 2×2 diagonal submatrices {Sj , 0 ≤ j

≤ N} are expressed as

S =
(
sj,j′

)N

j,j′=−1
=

(〈
Bj,2, Bj′,2

〉)−1
, Sj =

(
sj−1,j−1 sj−1,j

sj,j−1 sj,j

)
. (2.5)

The width of the confidence bands depends on the heteroscedastic variance
function. Define

σ2
n,1 (x)=

∫
Ij(x)

σ2 (v) f (v) dv

n‖bj(x),1‖2
2

, σ2
n,2 (x)=

N∑
j,j′,l,l′=−1

Bj′,2 (x) Bl′,2 (x) sjj′sll′σjl

n
(2.6)

with j (x) defined in (2.3), and sll′ in (2.5), and

(σjl)
N
j,j′=−1 = Σ =

{∫
σ2 (v) Bj,2 (v) Bl,2 (v) f (v) dv

}N

j,j′=−1

. (2.7)

These σ2
n,p (x) are shown in Lemmas A.4 and B.4 in the Supplement to be the

pointwise variance functions of m̂p (x), p = 1, 2.
We state our main results in the next two theorems.

Theorem 1. Under Assumptions (A1)−(A4), if p = 1, then an asymptotic
100 (1 − α)% exact confidence band for m (x) over the interval [a, b] is

m̂1 (x) ± σn,1 (x) {2 log (N + 1)}
1
2 dn, (2.8)

in which σn,1 (x) is given in (2.6), and

dn =1−{2 log (N + 1)}−1

[
log

{
− log (1 − α)

2

}
+

log log (N + 1) + log 4π

2

]
. (2.9)

Note that σn,1 can be replaced by σ (x) {f (x) nh}−1/2, according to (A.7) in
Lemma A.4 in the Supplement.

The confidence band in Theorem 1 is superior to the connected error bar of
Hall and Titterington (1988) in two aspects: we treat random instead of equally-
spaced designs and, by applying the strong approximation theorem of Tusnády
(1977), our confidence band is asymptotically exact rather than conservative.
The upcrossing result (Theorem 3.4) used in the proof of Theorem 1 is for a
sequence of i.i.d. Gaussian variables, while its counterpart used in Bickel and
Rosenblatt (1973), Härdle (1989) and Rosenblatt (1976) is for a continuous time
Gaussian process.
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Theorem 2. Under Assumptions (A1)−(A4), if p = 2, then an asymptotic
100 (1 − α)% conservative confidence band for m (x) over the interval [a, b] is

m̂2 (x) ± σn,2 (x) {2 log (N + 1) − 2 log α}
1
2 , (2.10)

where σn,2 (x) is as in (2.6).

Note that σn,2 is replaceable by σ (x) {2f (x) nh/3}−1/2 ∆T (x) Sj(x)∆ (x)
according to Lemma B.4, and by σ (x) {2f (x) nh/3}−1/2 ∆T (x) Ξj(x)∆ (x) ac-
cording to Lemma B.3.

Theorem 2 on linear confidence band bears no similarity to the local poly-
nomial bands in Claeskens and Van Keilegom (2003) and Xia (1998), but the
width of all these bands is of the order n−1/5 (log n)1/2. The asymptotic variance
function σ2

n,2 (x) of m̂2 (x) in (2.6) is a special unconditional version of equation
(6.2) in Huang (2003). Thus, the linear band localized at any given point x is a
factor of {2 log (N + 1)}1/2 wider than the pointwise confidence interval of Huang
(2003).

3. Error Decomposition

In this section, we break the estimation error m̂p (x)−m (x) into a bias term
and a noise term. To understand this decomposition, we begin by discussing the
spline space G(p−2) and the representation of the spline estimator m̂p (x) in (2.2).

We note first the uniform convergence of the empirical inner product to the
theoretical counterparts.

Lemma 3.1. Under Assumptions (A2) and (A3), as n → ∞,

An,1 = sup
0≤j≤N

∣∣∣‖Bj,1‖2
2,n − 1

∣∣∣ = Op

(√
n−1h−1 log (n)

)
, (3.1)

An,2 = sup
g1,g2∈G(0)

∣∣∣∣〈g1, g2〉n − 〈g1, g2〉
‖g1‖2 ‖g2‖2

∣∣∣∣ = Op

(√
n−1h−1 log (n)

)
. (3.2)

We write Y as the sum of a signal vector m and a noise vector E as

Y = m + E,m = {m (X1) , . . . ,m (Xn)}T ,E = {σ (X1) ε1, . . . , σ (Xn) εn}T .

Projecting the response Y onto the linear space G
(p−2)
n spanned by {Bj,p (X)}N

j=1−p,
one gets

m̂p = {m̂p (X1) , . . . , m̂p (Xn)}T = Proj
G

(p−2)
n

Y =Proj
G

(p−2)
n

m + Proj
G

(p−2)
n

E.

Correspondingly in the space G(p−2) of spline functions, one has

m̂p (x) = m̃p (x) + ε̃p (x) (3.3)

m̃p (x) =
N∑

j=1−p

λ̃j,pBj,p (x) , ε̃p (x) =
N∑

j=1−p

ãj,pBj,p (x) . (3.4)
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The vectors
{
λ̃1−p,p, . . . , λ̃N,p

}T
and {ã1−p,p, . . . , ãN,p}T are solutions to (2.4)

with Yi replaced by m (Xi) and σ (Xi) εi respectively.
We next cite two important results from de Boor (2001) and Huang (2003).

Theorem 3.1. There exists a constant Cp > 0, for p ≥ 1 such that for every
m ∈ C(p) [a, b], there exists a function g ∈ G(p−2) [a, b] with

‖g − m‖∞ ≤ Cp

∥∥∥ω
(
m(p−1), h

)∥∥∥
∞

hp−1 ≤ Cp

∥∥∥m(p)
∥∥∥
∞

hp.

Theorem 3.2. There exists a constant Cp > 0, for p ≥ 1 such that for any
m ∈ C(p) [a, b] and the function m̃p (x) defined in (3.4),

‖m̃p (x) − m (x)‖∞ ≤ Cp inf
g∈G(p−2)

‖g − m‖∞ = Op (hp) . (3.5)

According to Theorem 3.2, the bias term m̃p (x)−m (x) is of order Op (hp).
Hence the main hurdle for a proof of Theorems 1 and 2 is the noise term ε̃p (x).
This is handled by the next two propositions.

Proposition 3.1. With σn,1 (x) given in (2.6), the process σ−1
n,1 (x) ε̃1 (x) , x ∈

[a, b] , is almost surely uniformly approximated by a Gaussian process U (x) , x ∈
[a, b] , with covariance structure

EU (x) U (y) =
N∑

j=0

Ij (x) · Ij (y) = δj(x),j(y),∀x, y ∈ [a, b] ,

where δj,l = 1 if j = l and 0 otherwise.

Proposition 3.2. For a given 0 < α < 1,and σn,2 (x) as given in (2.6),

lim inf
n→∞

P

[
sup

x∈[a,b]

∣∣∣σ−1
n,2 (x) ε̃2 (x)

∣∣∣ ≤ {2 log (N + 1) − 2 log α}
1
2

]
≥ 1 − α. (3.6)

We next state the Strong Approximation Theorem of Tusnády (1977). It will
be used later in the proof of Lemmas A.6 and B.6 in the Supplement, key steps
to the proof of Propositions 3.1 and 3.2. Let U1, . . . , Un be i.i.d. r.v.’s on the 2
-dimensional unit square with P (Ui < t) = λ (t) ,0 ≤ t ≤ 1, where t = (t1,t2),
1 = (1, 1), and λ (t) = t1t2. The empirical distribution function F u

n (t) based on
sample (U1, . . . , Un) is defined as F u

n (t) = n−1
∑n

i=1 I{Ui<t} for 0 ≤ t ≤ 1. The
2-dimensional Brownian bridge B (t) is defined by B (t) = W (t) − λ (t) W (1)
for 0 ≤ t ≤ 1, where W (t) is a 2-dimensional Wiener process.

Theorem 3.3. There is a version of F u
n (t) and B (t) such that

P

[
sup

0≤t≤1

∣∣∣n 1
2 {F u

n (t) − λ (t)} − B (t)
∣∣∣ > (C log n + x)

log n

n
1
2

]
< Ke−λx (3.7)



332 JING WANG AND LIJIAN YANG

holds for all x, where C,K, λ are positive constants.

The well-known Rosenblatt quantile transformation is(
X ′, ε′

)
= M (X, ε) =

{
FX (X) , Fε|X (ε|X)

}
. (3.8)

It produces random variables X ′ and ε′ with independent and identical uniform
distributions on the interval [0, 1]. This transformation has been used, for in-
stance, in Bickel and Rosenblatt (1973) and Härdle (1989). Replacing t =(t1,t2)
in Theorem 3.3 with (X ′, ε′), and the stochastic process n1/2 {F u

n (t) − λ (t)} with

Zn

{
M−1

(
x′, ε′

)}
= Zn (x, ε) =

√
n {Fn (x, ε) − F (x, ε)} , (3.9)

where Fn (x, ε) denotes the empirical distribution of (X, ε), (3.7) implies that
there exists a version of the 2-dimensional Brownian bridge B such that

sup
x,ε

|Zn (x, ε) − B {M (x, ε)}| = O
(
n− 1

2 log2 n
)

, w.p.1. (3.10)

The next result on upcrossing probabilities is from Leadbetter, Lindgren and
Rootzén (1983), Theorem 1.5.3. It plays the role of Theorem A1 in Bickel and
Rosenblatt (1973), or of Theorem C in Rosenblatt (1976).

Theorem 3.4. If ξ1, . . . , ξn are i.i.d. standard normal r.v.’s, then for Mn =
max {ξ1, . . . , ξn} , τ ∈ R, as n → ∞ ,

P {an (Mn − bn) ≤ τ} → exp
(
−e−τ

)
, P

{
|Mn| ≤

τ

an
+ bn

}
→ exp

(
−2e−τ

)
,

where an = (2 log n)1/2 , bn = (2 log n)1/2− (1/2) (2 log n)−1/2 (log log n + log 4π) .

4. Implementation

In this section, we describe procedures to implement the confidence bands
in Theorems 1 and 2. Our codes are written in XploRe in order to use kernel
smoothing. See Härdle, Hlávka and Klinke (2000).

Given any sample {(Xi, Yi)}n
i=1 from model (1.1), we take a = min(X1, . . .,

Xn) and b = max (X1, . . . , Xn). When outliers are present, the 2.5%- and 97.5%-
tiles can be used as endpoints a, b. The number of interior knots is taken to be
N =

[
c1n

1/(2p+1)
]

+ c2, where c1 and c2 are positive integers. The knots are
taken to be equally spaced, as in (2.1). Since an explicit formula for coverage
probability does not exist for the bands, there is no optimal method to select
(c1, c2). In simulation, the simple choice of 5 for c1 and 1 for c2 seems to work
well, so these are set as default values.
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The least squares problem in (2.2) can be solved via the truncated power
basis

{
1, x, . . . , xp−1 , (x − tj)

p−1
+ , j = 1, . . . , N

}
. In other words

m̂p (x) =
p−1∑
k=0

γ̂kx
k +

N∑
j=1

γ̂j,p (x − tj)
p−1
+ , p = 1, 2, (4.1)

where the coefficients {γ̂0, . . . , γ̂p−1, γ̂1,p, . . . , γ̂N,p}T are solutions to the least
squares problem

{γ̂0, . . . , γ̂N,p}T = argmin
RN+p

n∑
i=1

{
Yi −

p−1∑
k=0

γkX
k
i −

N∑
j=1

γj,p (Xi − tj)
p−1
+

}2
.

When constructing the confidence bands, one needs to evaluate the func-
tions σ2

n,p (x) in (2.6) differently for the exact and conservative bands, and the
description is separated into two subsections. For both cases, following Lem-
mas A.4 and B.4 in the Supplement, one estimates the unknown functions f

and σ2 and then plugs in these estimates, the same approach taken in Hall and
Titterington (1988), Härdle (1989) and Xia (1998). This is analogous to using
X ± 1.96× sn/

√
n instead of X ± 1.96× σ/

√
n as a large sample 95% confidence

interval for a normal population mean µ, where the sample standard deviation
sn is a plugin substitute for the unknown population standard deviation σ.

Let K̃ (u) = 15
(
1 − u2

)2
I {|u| ≤ 1} /16 be the quartic kernel, sn =the sam-

ple standard deviation of (Xi)
n
i=1 , and

f̂ (x) = n−1
n∑

i=1

h−1
rot,f

K̃

(
Xi − x

hrot,f

)
, hrot,f = (4π)

1
10

(
140
3

) 1
5

n− 1
5 sn, (4.2)

where hrot,f is the rule-of-thumb bandwidth in Silverman (1986). Define Zp =
{Z1,p, .., Zn,p}T , p = 1, 2, with Zi,p = {Yi − m̂p (Xi)}2 and

X= X (x) =
(

1 , . . . , 1
X1 − x , . . . , Xn − x

)T

,W = W (x) = diag

{
K̃

(
Xi − x

hrot,σ

)}n

i=1

,

where hrot,σ is the rule-of-thumb bandwidth of Fan and Gijbels (1996) based on
data (Xi, Zi,p)

n
i=1. Take

σ̂2
p (x) =

(
1, 0

) (
XTWX

)−1
XTWZp, p = 1, 2. (4.3)

The following uniform consistency result is given in Bickel and Rosenblatt (1973)
and Fan and Gijbels (1996):

maxp=1,2 supx∈[a,b] |σ̂p (x) − σ (x)| + supx∈[a,b]

∣∣∣f̂ (x) − f (x)
∣∣∣ = op (1) . (4.4)
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As two referees pointed out, the estimation of σ2 (x) can be done via spline instead
of kernel smoothing as well. We decided to use the kernel smoothing technique
only because it is a built-in procedure in the XploRe language in which we wrote
our codes. Since the local linear smoothing is done on the data (Xi, Zi,p)

n
i=1 with

all Zi,p positive, the estimator σ̂2
p (x) always takes positive values.

4.1. Implementing the exact band

The function σn,1 (x) is approximated by the following, with f̂ (x) and σ̂1 (x)
defined in (4.2) and (4.3), j (x) defined in (2.3):

σ̂n,1 (x) = σ̂1 (x) f̂− 1
2 (x) n− 1

2 h− 1
2 .

Then (4.4) implies that, as n → ∞, the band below is asymptotically exact, with
m̂1 (x) given in (4.1) and dn in (2.9):

m̂1 (x) ± σ̂n,1 (x) {2 log (N + 1)}
1
2 dn. (4.5)

4.2. Implementing the conservative band

According to Lemma B.3 in the Supplement, for 0 ≤ j ≤ N , the matrix
Ξj approximates matrix Sj uniformly. Hence the band below is asymptotically
conservative, with m̂2 (x) given in (4.1):

m̂2 (x) ± σ̂n,2 (x) {2 log (N + 1) − 2 log α}
1
2 , (4.6)

where the function σn,2 (x) in (2.6) for the linear band is estimated consistently
by

σ̂n,2 (x) =
{
∆T (x) Ξj(x)∆ (x)

} 1
2 σ̂2 (x)

{
2
3
f̂ (x) nh

}− 1
2

,

with j (x) defined in (2.3), and f̂ (x) and σ̂2 (x) defined in (4.2) and (4.3). Here
∆ (x) and Ξj are defined as follows:

∆ (x) =
(

cj(x)−1 {1 − r (x)}
cj(x)r (x)

)
, cj =

{ √
2 j = −1, N

1 j = 0, . . . , N − 1
, (4.7)

Ξj =
(

lj+1,j+1 lj+1,j+2

lj+2,j+1 lj+2,j+2

)
, j = 0, . . . , N, (4.8)
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with the lik, |i − k| ≤ 1, defined through the matrix inversion

MN+2 =



1
√

2
4 0√

2
4 1 1

4

1
4 1

. . .
. . . . . . 1

4
1
4 1

√
2

4

0
√

2
4 1


(N+2)×(N+2)

= (lik)
−1
(N+2)×(N+2) , (4.9)

and computed via (4.12), (4.13), and (4.14) given below.
To calculate the matrix M−1

N+2, which is needed for (4.8), we use equation
(43) in Gantmacher and Krein (1960), and Theorem 4.5 in Zhang (1999).
Theorem 4.1. For the symmetric Jacobi matrix

J =


a1 b1 0

b1
. . . . . .
. . . . . . bN+1

0 bN+1 aN+2


(N+2)×(N+2)

,

J−1 = (lik)(N+2)×(N+2) satisfies

li,k = ψiχk, i ≤ k, li,k = ψkχi, k ≤ i, (4.10)

where

ψi =
(−1)i det

(
J(1,...,i−1)

)
bibi+1 · · · bN+1

det (J)
, χk =

(−1)k det
(
J(k+1,...,N+2)

)
bkbk+1 · · · bN+1

,

(4.11)
and J(1,...,i−1) is defined as the upper left (i − 1)× (i − 1) submatrix of J , det (J)
is the determinant of matrix J , and J(k+1,...,N+2) is the corresponding lower right
(N + 2 − k) × (N + 2 − k) submatrix.

Theorem 4.2. For the tridiagonal

TN =


a b 0

c a
. . .

. . . . . . b

0 c a


N×N

, N ≥ 1,

if a2 6= 4bc,

detTN =
αN+1 − βN+1

α − β
, α =

a +
√

a2 − 4bc

2
, β =

a −
√

a2 − 4bc

2
.
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Now we let

z1 =
2 +

√
3

4
, z2 =

2 −
√

3
4

, θ =
z2

z1
=

(
2 −

√
3
)2

= 7 − 4
√

3, (4.12)

and apply Theorems 4.1 and 4.2 to obtain

l11 = lN+2,N+2 =
8z2

1

(
1 − θN+1

)
− z1

(
1 − θN

)
8z2

1 (1 − θN+1) − 2z1 (1 − θN ) + 8 (1 − θN−1)
,

li,i =

{
8z1

(
1 − θN+2−i

)
−

(
1 − θN+1−i

)} {
8z1

(
1 − θi−1

)
−

(
1 − θi−2

)}
(z1 − z2)

{
64z2

1 (1 − θN+1) − 16z1 (1 − θN ) + 64 (1 − θN−1)
} (4.13)

for 2 ≤ i ≤ N + 1, and

l12 = lN+1,N+2 =

(
−2

√
2
)
z1

(
1 − θN

)
−

(
1 − θN−1

)
8z2

1 (1 − θN+1) − 2z1 (1 − θN ) + 8 (1 − θN−1)
,

li,i+1 =

{
8z1

(
1 − θN+1−i

)
−

(
1 − θN−i

)} {
8z1

(
1 − θi−1

)
−

(
1 − θi−2

)}
(−4) (z1 − z2)

{
64z2

1 (1 − θN+1) − 16z1 (1 − θN ) + 64 (1 − θN−1)
} (4.14)

for 2 ≤ i ≤ N. By the symmetry of the matrix MN+2, the lower diagonal entries
are li+1,i = li,i+1,∀i = 1, . . . , N + 1.

5. Examples

5.1. Simulation example

To illustrate the finite-sample behavior of our confidence bands, we simulate
data from model (1.1), with X ∼ U [−1/2, 1/2], and

m (x) = sin (2πx) , σ (x) = σ0
100 − exp (x)
100 + exp (x)

, ε ∼ N (0, 1) .

The noise levels are σ0 = 0.2, 0.5, while sample sizes are taken to be n =
100, 200, 500, 10, 000, and confidence levels are 1 − α = 0.99, 0.95. Table 1 con-
tains the coverage probabilities as the percentage of coverage of the true curve at
all data points by the confidence bands in (4.5) and (4.6), over 500 replications
of sample size n. Also listed in the table, in brackets are averages over the 500
replications of the confidence bands’ enclosed areas which, as one referee pointed
out, measure the confidence bands’ widths.

At all noise levels, the constant bands become much closer with sample sizes
increasing. The coverage percentages for linear bands show positive confirmation
of Theorem 2. At sample size 200, regardless of noise level, the candidate linear
band in (4.6) achieves at least 95.6% and 90% for the confidence levels 1 − α =
0.99, 0.95, respectively.
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Table 1. Coverage probabilities and mean areas (in brackets) from 500 repli-
cations.

σ0 n 1 − α Constant Band Linear Band
0.99 0.458 (0.617) 0.896 (0.417)100 0.95 0.246 (0.501) 0.814 (0.363)
0.99 0.708 (0.472) 0.962 (0.314)0.2 200 0.95 0.456 (0.387) 0.904 (0.274)
0.99 0.834 (0.336) 0.988 (0.223)500 0.95 0.456 (0.279) 0.958 (0.195)
0.99 0.618 (1.384) 0.904 (1.039)100 0.95 0.504 (1.124) 0.814 (0.902)
0.99 0.860 (1.096) 0.960 (0.784)0.5 200 0.95 0.716 (0.899) 0.902 (0.683)
0.99 0.932 (0.805) 0.988 (0.557)500 0.95 0.802 (0.668) 0.960 (0.488)

It is clear that larger sample sizes guarantee improved coverage, with reason-
able coverage achieved at moderate sample sizes. The linear band outperforms
the constant band, corroborating the theory. The noise level has more influence
on the constant band than on the linear one.

According to Theorems 1 and 2, the constant band has larger enclosed area
than the linear band for the same data. In addition, the enclosed area decreases
with increasing sample size and with lower confidence level. All these three
phenomena can be observed from the numbers in brackets in Table 1. In addition,
Table 1 shows that the enclosed area is larger for noise level σ0 = 0.5 than for
σ0 = 0.2, consistent with Theorems 1 and 2 as well.

For the linear bands, we have also carried out 500 simulations for sample
size n = 10, 000. Regardless of the noise level, the coverages are both 99.4% for
α = 0.01, and 97.6% for α = 0.05. Both are higher than the nominal coverages
of 99% and 95%, and consistent with their conservative definitions. Remarkably,
it takes only 88 minutes to run 500 simulations with a sample size as large as
10, 000 on a Pentium 4 PC. This is extremely fast considering that nonparametric
regression is done without WARPing, see Härdle, Hlávka and Klinke (2000).

The graphs in Figure 1 were created based on two samples of size 100 and
500, respectively, each with four types of symbols: points (data), center thin solid
line (true curve), center dashed line (the estimated curve), upper and lower thick
solid line (confidence band). In all figures, the confidence bands for n = 500 are
thinner and fit better than those for n = 100.

5.2. Fossil data example

The fossil data reflects global climate millions of years ago through ratios of
strontium isotopes found in fossil shells. These were studied by Chaudhuri and
Marron (1999) to detect structure, via kernel smoothing. The corresponding
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Confidence band, n=100, confidence level=0.95
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Confidence band, n=100, confidence level=0.99
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Confidence band, n=500, confidence level=0.99
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Figure 1. Plots of confidence bands (thick solid curves), the linear spline
estimator m̂2(x) (dashed curve), the true function m(x) = sin(2πx) (thin
solid curve), and the data scatter plots. The bands are computed from
(4.6).

penalized spline fit was provided in Ruppert, Wand and Carroll (2003). In this
section we test the polynomial form of the fossil data regression curve. The null
hypothesis is H0 : m (x) =

∑d
k=1 akx

k, with polynomial degree d = 2, 3, 5, 6.
The response Y is the strontium isotopes ratio after linear transformation, Y =
0.70715+ratio∗10−5, since all the values are very close to 0.707, while the pre-
dictor X is the fossil shell age in millions of years.

In Figure 2, the center dotted line is the linear spline fit. The upper/lower
thin lines represent a linear band implemented according to (4.6). The solid
line is the least squares polynomial fit with degree d. Clearly, the oversmoothed
quadratic null curve (d = 2) is rejected at significance level 0.01, since it is not
totally covered by the confidence band with confidence level 0.99. When d = 3, 5
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d = 2, confidence level = 0.99
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d = 5, confidence level = 0.99
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d = 3, confidence level = 0.99
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d = 6, confidence level = 0.80
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Figure 2. Plots of null hypothesis curves of H0 : m (x) =
∑d

k=1 akxk, d =
2, 3, 5, 6 (solid line), linear confidence bands (upper and lower thin lines),
the linear spline estimator (dotted line) and the data (circle).

the null solid curves can capture the dip in the range of 110− 115 million years,
but still do not fit well. Thus both null parametric models H0 are rejected at
the level 0.01. The same conclusion is reached for d = 4, although the graph is
not included. In the case of d = 6, all significant features are shown in the null
polynomial curve, the relative high ratio before 105 million years, the substantial
dip around 115 million years, and the relative flat stage between 95 million and
105 million. Given an 80% confidence band the entire null curve falls between
the upper and lower limits, even though the band is narrower than that with
confidence 99%. In other words, a p-value greater than 0.20 indicates that the
null hypotheses of a degree 6 polynomial is not rejected. The shape of the
polynomial curve with d = 6 is consistent with the findings in Chaudhuri and
Marron (1999) and Ruppert, Wand and Carroll (2003).
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6. Conclusions

We provide closed forms of confidence bands constructed from polynomial
spline regression. Asymptotic properties are established for equally spaced, non-
adaptive selection of knots. Extension to adaptive design is infeasible, as Härdle,
Marron and Yang (1997) have shown that adaptive knots selection can lead to
L∞ inconsistency.

It is possible, however, to extend the constant band in Theorem 1 to un-
equally spaced deterministic knots subject to mesh constraints, as in Huang
(2003). The linear band in Theorem 2 does not allow such direct extension. This
is one of the reasons that the constant band remains viable despite the fact that
the linear band has much better theoretical property and practical performance.
The constant band is also kept for its simplicity. When implemented according to
(4.5) with estimation on equally-spaced knots, the confidence limits at x are the
same as those at the nearest knot tj(x), so the constant band is in fact (N + 1)
independently inflated confidence intervals. In contrast, the linear band has to
be calibrated at each new point x, and the confidence limits at x and tj(x) are
different.

One referee pointed out the advantages of the linear band over the constant
band, and conjectured that further improvement can be made by using the more
popular cubic spline. While in principle our method can be extended to cubic
or other higher order splines, the main complication is not theoretical, but com-
putational. Closed form solutions for the inverse of the inner product matrix of
a B-spline basis exist only for constant and linear splines, with the aid of (4.10)
and (4.11), but not for higher order splines due to the multi-diagonal shape of
the inner product matrix. This creates substantial difficulty when computing the
width of the confidence band. Further research is needed to implement a cubic
spline confidence band.

Extension to multivariate regression is difficult for lack of a sharp approxi-
mation, as in (3.7). This limitation is also in Claeskens and Van Keilegom (2003)
and Xia (1998). However, the univariate bands in this paper are still valuable
for multivariate regression for the following reason: semiparametric dimension
reduction models such as the additive model, the partial linear model and the
single index model, provide ways to reduce multivariate nonparametric regres-
sion to some form of univariate smoothing. For instance, the components of the
additive model, the nonparametric component of the partially linear model, and
the nonparametric link function of the single index model are all estimable via
univariate smoothing.
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