Statistica Sinica (2007): Preprint 1

Supplementary Document for

Asymptotic Overshoot for Arithmetic IID Random Variables
I-Ping Tu
Institute of Statistical Science, Academia Sinica

Taipei, Taiwan, ROC

5 appendix

5.1 4 Lemmas

Lemma 1 and Lemma 2 are used to prove Theorem 1, Lemma 3 and Lemma 4 are used
to prove Theorem 2 and Lemma 2 is used to prove Theorem 3.

Lemma 1 Let z1, s, - -+ be iid random variables with = E(x1) > 0. Then
1 - E(exp(-aS;,)) 1 g I
= — — —E a k
E(S:.) P ; FEE ) ),

where where S;” = max{0, S }.
Proof of Lemma 1: Spitzer (1960) provided equations (13) and (14). Let z1, zo,...
be iid random variables, for @ > 0 and u = E(x;) > 0, then

BE(e *5+) =1—exp <— f: %E[e_as’“;sk > 0]) ; (13)

k=1
For the same condition except that p > 0, then

E(S7,) = pexp <Z %P(Sk < 0)) , (14)

k=1
By combining equations (13) and (14), Lemma 1 is proven.
Lemma 2 For a > 0, # > 0 and h > 0, then

/’T/h exp(—ah — iht)
—»/n 1 — exp(—ah — iht)

ho[T/" 1
b 5 /_,r/h T exp(—ph+ ey 0 = 1
h /’f/h exp(—ah — iht)log(1 — exp(iht))
2 ) 1 — exp(—ah — iht)
/’T/h log(1 — exp(iht))
—n/n 1 —exp(=Bh +iht)

Proof of Lemma 2

dt =10

dt =log(1 — e M)

dt =10

Let z = e~ then

—a/p L—exp(—ah —iht) " —ih [, _; (1—e ohz)z

dz =0,

because the residue is at z = e®" outside the circle r = 1. This proves equation (a).
To prove equation (b), let z = e**. Then

i/ﬂ/h 1 P % dz _ 2w
27 J_z/n 1 — exp(—Bh + iht) ~ 27ih =1 (1 —emh2)z 2w

because there exist one residue z = 0 inside the circle r = 1.
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Lemma 3 is from Siegmund (1985, chap 8).
Lemma 4 For 8 > 0 and h > 0, then

=0

27 /h < (— i
(a): /O : exp(—ph + iht)

1 — exp(—ph + iht))?

. 2m/% oxp(—Bh + iht)(1 — exp(iht))
b) /0 (1 — exp(—ph + iht))?

, 27/h oxp(—Bh + iht) log(1 — exp(iht))
) /0 (1 — exp(—Bh + iht))?

dt =10

dt=0

Proof: Let z = exp(—fSh + iht), then equations (a) and (b) can be shown by doing the

complex integrals straight forward. Equation (a) becomes

l% dz ~0
Zh |Z|:e—ﬁh (1 — 2)2 Y

and equation (b) becomes

1 1—efh
o T
ih |z|=e—Bh (1 - Z)

because the residues in both cases are not inside the circle |2| = e~

To prove equation (c), f(r) is defined as:

Fr) = /02“/’1 exp(—pFh + iht) log(1l — exp(—r + iht)) Qb

(1 — exp(—Bh + iht))?

Then f(co) =0 and

™/ _ ; L
f/(r):/j h( exp(—pBh + iht) exp(—r + iht) gt

1 — exp(—Bh + iht))? (1 — exp(—r + iht))
Let z = e, then

) — 1 (e Ph="2)dz
ih Jjy=1 (1 —e772)(1 — e=Phy)?

=0, iff »r > 0.

So f(r) =0 for r > 0. Aslong as § > 0, f(r) is continuous at r = 0 from right. So,
f(0) = f(o0) = 0, and the proof is done.
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5.2 Proof of Theorem 1

By Lemma 1, the goal is to calculate the term ;- | E(e—as,j) to get the proof.

— 1
Z %E(e—as,:r)
k=1

1
k

= D | PSS e (S = —jih) (15)
k=1 j=1 =
h w/h f(t)e_ah_iht h w/h é.(t)
2 -qqhdtl-e*“h*mt 5ﬁ§2wm/;vhdt1__eﬁh+mt (16)

h w/h (f(t) + log% + log(l _ eiht)) e—h—iht b
— %/ dt l rpp—— —log(l —e™ ")

—7n/h
©/h (£(t) + log £ + log(1 — etht))
n - "
h w/h . e—ah—iht 1 h/ﬂ
= — 1 1—¢'th - z log ————
g | ) + o1 = /1) (i o+ )]+ o
(18)

From equation (15) to equation (16), the following two equations are used.

h m/h k ijht
P(Sk = ]h) = %/ n dtgb (t)eim s

because Sj is an iid sum and the definition; and
e =Y 0 = Ctogt - 60,
k=1

From equation (16) to equation (17), Lemma 2 is used. From equation (17) to equation
(18), the Dominant Convergent Theorem is applied to exchange the orders of the limit
and the integral. The integral region of the second integral of equation (17) is split into
two parts: |t| < € and € < |t| < w/h, where € is positive and much smaller than 7/h
(0 < € << m/h, << means 'much smaller than’ ) such that Taylor expansion over ¢
can be done in the region |¢| < e. The integrated function in the region ¢ < |t| < w/h
is bounded by an integrable function such that the Dominant Convergent Theorem can
be applied. For the region |t| < €, Taylor expansion is used for each function: £(t) =

—log(—ipt) — i%5t + O(#), log(1 — ¢t) = log(~iht) + iht/2 + O(t>) such that the

. (Ez3/u—h 1 1 1
numerator is —27( mléu )t + O(tQ)- |176—ﬁh+iht | = |(1,e—ﬁh),ihe—ﬁht+o(t2)| S ht+O(t2) |
I _ ,iht
Therefore [““”‘fﬁg_ﬁ‘,f’ff,}t < ))] = O(t) and the Dominant Convergent Theorem can be

applied to get equation (18).
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Proof of Corollary 1 The integral region is split into four parts:[; = {t: —n/h <t <

—€e/h}, L={t:—e/h<t< 0}, Iz3={t:0<t<e/h},and I, = {t : ¢/h < w/h < 0},

where 0 < € << 1. Because limsup |¢(¢)| < 1, so lim sup |£(t)| is bounded. Furthermore
—ah—iht

log(u(1 — €"™)/h), “——m and —57 are all bounded in the regions I and I4. In
Theorem 1, it is shown that

e—ah—iht
G(E) = — - [(E(0) +log(u(1 — ) /) (o b ] o

is an integrable function on [—7/h, 7 /h]. So

— 00 oo

im [ dt Gt) = / dt G(t) + / dt G(t) = 0.
hl0 I +14 —0o0

o0

For regions I, and I3, and ah << 1, given any a > 0, Taylor expansion is allpied on
log(u(1 — €Y /h), 20 and L. By the definition of £(t) = —log(1 — (1)), it
is known that R(£(—t)) = R(E(t)), and S(E(—t) = —(&(t)). This lets the last equality

of the following equations hold.

lim lim dt G(t)
el0 hlo Jr, 01,
= lim li 6/hdtl t 1 it O(ht 1 il O(ht
= it [ a0 +loa(int) + O] (o + )1+ O(h0)
= i [ [(%(e(ﬂ)+log<u|t|>>a2it2 — (3(E) — sign(n/2) (= + )| (1+0()

1 /Ooo[ o SE@R)-—7m/2 «

T a?+ 12 t a? + t2

(R(E(2)) + log(ut))]dt.
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5.3  Proof of Theorem 2

Proof: Lemma 3 provided a formula to compute.

h2 w/h p f(t)e_ﬁh+iht
510 2 /_ﬂ/h A=y

j 2?)— i —Bh+i
_p2 qm/h (f(t) + log(4) + log(1 — eihty — W(l —e ht)) e 5’1*{’:
fd —llm—/ (l_e—ﬁh+iht)2 \AO)

(19)

p2 [/ R(E()) + log () + log (2[sin ) — Blay)—hy (1 — cos(ht))

2uh
= ) 2(cos(ht) — 1) @1
 E@)  h > [ R(E)) +log (£) + log (2]sin &)
= TiE@) 1 2 _ﬂ/hdt 2(cosl(lht)—1) ' 22

From (19) to (20), Lemma 4 is used. From (20) to (21), the Dominant Convergent
Theorem is applied and the the equation (17"‘:21)2 = 2(cos(}zt)—1) which is a real number,

so only the real part of the rest of the function is considered. From (21) to (22), simple
algebra is used. To apply the Dominant Convergent Theorem, the integral region of
(20) is split into two parts like the proof for Theorem 1: f‘t|<6 and f6<‘t|<ﬁ/h, where
0 < € << m/h. For the region e < [t| < 7/h, the function is bounded by an integrable
function. For the region |t| << ¢, Taylor expansion is used to get the order of the
function:
K iht E(z1) — hu iht 2
)+ (tog (2) 10g (1— ) - ZEDZ I (1 ) _ )

et + (10g (§) +10g (1 - ) - O ey ) o)
and (1 — e PhFiht)2 i of the order O(¢?) when = 0. So the Dominant Convergent
Theorem can be applied.

From Lemma 3, it can be written

B(Sz)  E@?) X E(S,)
2E(S;,)  2E(z) nz::l n
E(z}) n h Ko dtRE[ﬁ(t) +log(%) + log(2]sin(%)])]

4E(z1) 4 Am J_qp cos(ht) — 1
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and the proof is done.

Proof of Corollary 2 The proof is similar to the proof for Corollary 1, so a succinct
version is provided here. The integral region is split into four parts: I; = {¢t : —v/h <
t< —¢/h}, L ={t: —e/h<t< 0}, Iz={t:0<t<e/h},and I, = {t:e/h <
w/h < 0}, where 0 < € << 1. The integrals on regions I; and Iy can be shown
to be zero because they are integrable function integrated on (—oo,—o00) and (oo, )
after taking the limit A | 0. For region > and I3, Taylor expansion can be applied on
log(11/h) + log(2| sin(ht/2)|) = log(ut) + O(ht) and m = —7%=(1+ O(ht)), and
then let € | 0. Because the integrated function is an even function, so the integral on I

and I3 are the same and the proof is done.

5.4 Proof of Theorem 3

Spitzer (1960) provides equation (14):

E(S,,) = E(zy) exp[z P(Sn <0].

i P(S, <0)
n=1 n
o 0o eﬁSnP(S :—kh)
= 1
> 2
n=1 k=0
i [ £(t)
- lﬁl%ﬁ/ﬁ/hdtm 23)
ho (™" &(t) + log(p/h) + log(1 — e'h?)
- M 1 24
K;% 27r/ﬁ/hdt< 1 — e—Bh+iht ) og(u/h) (24)
w/h R(E(T 1 © 1 9 ht (\ t ht
— i/ 4 TED) +10g() +1og(2sin(5))  SEM) —5+5 | syos
2w 2 2tan(ht2) h

From (23) to (24), equations (b) and (d) of Lemma 2 are applied. From (24) to (25), the
Dominant Convergent Theorem is applied and the real part of the function is considered.
tl<e and
feg‘t|<”/h, where 0 < € << mw/h. For the region € < |t| < 7/h, the function is bounded
by an integrable function. For the region || < €, Taylor expansion is applied to show

To apply the Dominant Convergent Theorem, the integral region is split to fl

that it is bounded by an integrable function. The following equations are applied to take
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the real part of the function,

(1 — e (1 — e ) = (1 — cos(ht))? + sin?(ht) = 2 — 2 cos(ht) = 4sin®(ht/2)
R(log(1 — e'"*)) = .5log ((1 — cos(ht))® + sin®(ht)) = log(2sin(ht/2))

I(log(1 — ™)) = tan™! % = —tan" " (cot(ht/2)) = —m/2 + ht/2
1 — cos(ht) _ 1—cos(ht)
(1 — eiht)(1 — e~iht) — 2 —2cos(ht)
sin(ht) _ 2sin(ht/2) cos(ht/2) 1
(1 — etht)(1 — e—iht) 4sin?(ht/2) ~ 2tan(ht/2)’

By equation (14), the proof is done.



