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Abstract: Current status data arise when only random censoring time and event

status at censoring are observable. We consider current status data under the cure

model, where a proportion of the subjects are not susceptible to the event of inter-

est. We assume a generalized linear model for the cure probability. For subjects

not cured, the linear and partly linear Cox proportional hazards models are used

to model the survival risk. We propose estimation using the (penalized) maximum

likelihood approach. It is shown that estimates of the parametric regression coeffi-

cients are
√

n consistent, asymptotically normal and efficient. The nonparametric

baseline function and nonparametric covariate effect can be estimated with n1/3

convergence rate. We propose inference for estimates of the regression coefficients

using the weighted bootstrap. Simulation studies are used to assess finite sample

performance of the proposed estimates. We analyze the Calcification data using

the proposed approach.
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1. Introduction

Current status data arise naturally in medical studies where the target mea-
surement is the time of event occurrence, but observations are limited to indica-
tors of whether or not the event has occurred at the time the sample is collected,
i.e., only the current status of each observation with respect to event occur-
rence is observable. Examples of current status data include the demographic
study of age at weaning (Grummer-Strawn (1993)), clinical study of tumor occur-
rence (Gart, Krewski, Lee, Tarone and Wahrendorf (1986)) and HIV transmission
among sexually partners (Jewell and Shiboski (1990)), among many others. Pre-
vious methodological studies include the nonparametric model in Groeneboom
and Wellner (1992), the linear Cox model in Huang (1996), the additive risk
model in Lin, Oakes and Ying (1998), the partly linear accelerated failure time
(AFT) model in Xue, Lam and Li (2004), and the partly linear transformation
model in Ma and Kosorok (2005a). In the aforementioned studies, it has been
assumed that if the followup time is long enough, all subjects will eventually
experience the event of interest.
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In this article, we consider current status data with a cured subgroup, where
individuals in that subgroup are not susceptible to the event. Our research is
motivated by the Calcification study of hydrogel intraocular lenses, which is an
infrequently reported complication of cataract treatment (Yu, Kwan, Chan and
Fong (2001)). In the Calcification study, patients were examined by an ophthal-
mologist to determine the status of calcification at a random time ranging from
0 to 36 months after implantation of the intraocular lenses. Current status data
arise since only the examination time and the calcification status at examina-
tion are available. The longest follow-up was three years, but no new case was
observed after two years. It is pointed out by Yu et al. (2001) that there is not
enough evidence to conclude that the unaffected intraocular lenses will remain
calcification-free after two years. However it is highly likely that some subjects
are subject to much less risk of calcification, i.e., those subjects may consist of a
cured sub-population.

For right censored survival data, studies of cure models include Farewell
(1986), Kuk and Chen (1992), Lu and Ying (2004), Peng and Dear (2000), Li,
Taylor and Sy (2001), Sy and Taylor (2000, 2001), Taylor (1995), Chen, Ibrahim
and Sinha (2004) and Fang, Li and Sun (2005), among others. For interval
censored data with a cured subgroup, Lam and Xue (2005) assume a partly
linear AFT (accelerated failure time) model for susceptible subjects and consider
a sieve maximum likelihood approach; Thompson and Chhikara (2003) propose a
parametric model for the event time and a Bayesian estimator; when correlation
exists among subjects, a parametric model for the event time is investigated in
Bellamy, Li, Ryan, Lipsitz, Canner and Wright (2004); when spatial association
exists among subjects, a frailty model with a Bayesian estimator is proposed in
Banerjee and Carlin (2004).

For current status data with a cured subgroup, we assume that the cure
probability satisfies a generalized linear model with a known link function. For
susceptible subjects, the event time is modeled using linear or partly linear Cox
models (Cox (1972)). We propose using (penalized) maximum likelihood ap-
proach for estimation, and the weighted bootstrap for inference. The assumed
models are more flexible than the parametric models in Bellamy et al. (2004) for
example . Compared with Lam and Xue (2005), the more popular Cox model is
assumed, which is theoretically more challenging due to presence of the nonpara-
metric baseline function. For the partly linear Cox model, we consider a penal-
ized approach, which provides a flexible alternative to the sieve approach in Lam
and Xue (2005). Although the empirical process techniques used to establish
asymptotic properties of the proposed estimates have been mostly developed
in van der Vaart and Wellner (1996), van de Geer (2000), Huang (1996) and
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Ma and Kosorok (2005a,b), implementing them to study the proposed models is
far from trivial. The proposed models, together with their theoretical properties,
provide more insights into interval censored survival study when there exists a
cured subgroup.

We introduce the data structure in Section 2. Linear and partly linear Cox
models are investigated in Sections 3 and 4, respectively. Asymptotic properties
of the maximum likelihood estimate (MLE) and penalized maximum likelihood
estimate (PMLE) are established. Numerical studies, including simulations and
analysis of the Calcification data, are presented in Section 5. The article con-
cludes with a discussion in Section 6. Proofs are provided in the Appendix.

2. Data and Model Settings

Let T be the event time of interest, and C the random censoring. For sim-
plicity, we assume only two covariates Z1 and Z2, with Z = (Z1, Z2)′. For current
status data, one observation consists of X = (C, δ = I(T ≤ C), Z1, Z2). To ac-
count for the possibility of cure, we introduce the unobservable cure indicator U :
U = 0 if the subject is cured (T = ∞), and U = 1 otherwise.

We model the cure probability using a generalized linear model with a known
link function. We are especially interested in the logistic model

P (U = 1|Z) = φ(α′Z̃) =
exp(α′Z̃)

1 + exp(α′Z̃)
. (2.1)

Here α is the unknown regression coefficient, α′ is the transpose of α, and Z̃ =
(1, Z ′)′. Besides the logistic function, φ might be the identify function or the log
function, among others.

For subjects with U = 1, we model the survival risk with the Cox propor-
tional hazards model (Cox (1972)):

Λ(T |Z) = Λ(T ) exp(−f(Z)), (2.2)

where Λ(T |Z) is the conditional cumulative hazard function, Λ(T ) is the unknown
cumulative baseline function, and f(Z) is the covariate effect. We write Λ(T ) as
Λ hereafter. We consider the linear Cox model

f(Z) = β1Z1 + β2Z2, (2.3)

and the partly linear Cox model

f(Z) = β1Z1 + h(Z2), (2.4)
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where β1 and β2 are unknown regression coefficients and h is an unknown smooth
covariate effect. Further flexibility is introduced in (2.4) by allowing for nonpara-
metric covariate effect h.

Assume n i.i.d. observations X1 = (C1, δ1, Z11, Z21), . . . , Xn = (Cn, δn, Z1n,
Z2n) are available.

3. Linear Cox Model

Suppose event time and censoring are conditionally independent. Under the
linear Cox model (2.3), the log-likelihood for a single observation is

l1(X) = δ log(φ(α′Z̃)) + δ log[1 − exp(−Λ(C) exp(−β′Z))]

+ (1 − δ) log{1 − φ(α′Z̃)[1 − exp(−Λ(C) exp(−β′Z))]}, (3.1)

up to a constant. Let β = (β1, β2)′. Based on n i.i.d. observations, the maximum
likelihood estimate (MLE) is

(α̂, β̂, Λ̂) = argmaxα,β,ΛEnl1(X), (3.2)

where En is expectation under the empirical measure Pn.
Denote the true value of (α, β, Λ) by (α0, β0, Λ0). We make the following

assumptions.

A1. (1) T and C are conditionally independent given Z; (2) The support of C

is an interval [lC , uC ] with 0 ≤ lC < uC < ∞.
A2. (1) Z belongs to a bounded subset of R2; (2) The parametric parameter

(α0, β0) belongs to a compact subset of R5; (3) For any α 6= α0, Pr(α′Z̃ 6=
α′

0Z̃) > 0, and for any β 6= β0, Pr(β′Z 6= β′
0Z) > 0.

A3. (1) For lC ≤ T ≤ uC , there exists a constant M such that 0 < 1/M < Λ0 <

M < ∞; (2) Λ0 has strictly positive first order derivative on [lC , uC ].

Define the distance between (α, β, Λ) and (α0, β0, Λ0) as

d((α, β, Λ), (α0, β0,Λ0)) = ‖α − α0‖ + ‖β − β0‖ + ‖Λ − Λ0‖2,

where ‖Λ(c) − Λ0(c)‖2
2 =

∫ uC

lC
(Λ(c) − Λ0(c))2dc. We also assume

A4. For (α, β, Λ) satisfying assumptions A1−A3,

E[l1(α, β, Λ) − l1(α0, β0,Λ0)] ≤ −K1d
2((α, β, Λ), (α0, β0, Λ0))

for a fixed constant K1 > 0.
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Similar assumptions have been made in Huang (1996) and van der Vaart
(1998). We note that in the compactness assumptions, the actual bounds may
remain unknown – they are not needed in the proof or for computation.

Remark 1. For subjects with U = 1, the survival function S should satisfy
S(∞) = 0. We note that under the compactness assumptions in A1-A3, S(uC) >

0. This does not contradict the S(∞) = 0 assumption, as S for T > uC cannot
be estimated. For data analysis, we can set Λ̂ = ∞ for T > max{Cn}. Related
practical issues have been discussed in Li et al. (2001).

Under A1−A4, the proposed model is identifiable. Proof follows from Li
et al. (2001). In data analysis, a cure model should not be suggested unless a
clear level plateau of the survival function is observed (Fang, Li and Sun (2005)
and Taylor (1995)). When the estimated cure probabilities are very close to one
or zero for most subjects, an identifiability problem may exist. In this case,
models with and without the cure proportion assumption should be fitted and
compared (Taylor (1995)).

Remark 2. Compactness assumptions are made in A1-A3 so that the MLE
defined in (3.2) exists. We note that for any finite n, we do not assume the MLE
is unique. However under A4, the MLE is asymptotically unique as n → ∞.

3.1. Finite sample properties

Let C(1), . . . , C(n) be the order statistics of C1, . . . , Cn. Let δ(i), Z(1i), Z(2i)

correspond to C(i). Since only the values of Λ at C(i) matter in the log-likelihood
function, we take the maximum likelihood estimate Λ̂ to be the right-continuous
non-decreasing step function with jump points only at C(i).

Lemma 1. The MLE defined in (3.2) satisfies

∂Enl1
∂α

|α=α̂,β=β̂,Λ=Λ̂ = 0,
∂Enl1
∂β

|α=α̂,β=β̂,Λ=Λ̂ = 0, (3.3)

∑
j≥i

(
δ(j)

1 − exp(−Λ̂(j) exp(−β̂′Z(j)))
−

(1 − δ(j))φ

1 − φ[1 − exp(−Λ̂(j) exp(−β̂′Z(j)))]

)
× exp(−β̂′Z(j)) exp(−Λ̂(j) exp(−β̂′Z(j))) ≤ 0, (3.4)

n∑
i=1

(
δ(i)

1 − exp(−Λ̂(i) exp(−β̂′Z(i)))
−

(1 − δ(i))φ

1 − φ[1 − exp(−Λ̂(i) exp(−β̂′Z(i)))]

)
× exp(−β̂′Z(i)) exp(−Λ̂(i) exp(−β̂′Z(i)))Λ̂(i) = 0, (3.5)
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for i = 1, . . . , n. Equations (3.3) hold simply from the definition of the MLE.
Equations (3.4) and (3.5) can be proved by following Proposition 1.1 of Groene-
boom and Wellner (1992). The proof is omitted here.

3.2. Consistency and rate of convergence

Lemma 2. (Consistency). Under A1−A4, d((α̂, β̂, Λ̂), (α0, β0, Λ0)) = op(1).

The proof of Lemma 2 is in the Appendix. Based on the consistency result,
we can establish the following convergence rate.

Lemma 3. (Convergence rate). Under A1−A4, d((α̂, β̂, Λ̂), (α0, β0, Λ0)) =
Op(n−1/3).

Groeneboom and Wellner (1992) and Huang (1996) prove that, under as-
sumptions similar to A1-A4, the best possible convergence rate for estimates of
the nonparametric baseline function with current status data is n1/3. This is
considerably slower than the n1/2 rate for right censored data, due to the exces-
sive censoring. Lemma 3 shows that the optimal convergence rate can in fact be
achieved under the proposed linear Cox model.

3.3. Fisher information

The score functions for α and β are the first order derivatives of the log-
likelihood function:

l̇1α = φ̇

(
δ

φ
− (1 − δ)g1

1 − φg1

)
Z̃,

l̇1β = −
(

δ

g1
− (1 − δ)φ

1 − φg1

)
Λexp(−β′Z) exp(−Λexp(−β′Z))Z,

where φ̇ is the derivative of φ and g1(β,Λ) = 1 − exp(−Λexp(−β′Z)). Let
A = {a :

∫ uC

lC
a(c)dc = 0; a ∈ L2(P ); for u small enough Λu = Λ + ua satisfies

A3}. Then

l̇1Λ(a) =
(

δ

g1
− (1 − δ)φ

1 − φg1

)
exp(−β′Z) exp(−Λ exp(−β′Z))a = l̃1Λa.

Project the score functions of α and β onto the space generated by l̃1Λa. The
efficient scores for α and β are

U1α = l̇1α − l̃1Λ
P(l̇1α l̃1Λ|C)
P(l̃1Λ l̃1Λ|C)

and U1β = l̇1β − l̃1Λ
P(l̇1β l̃1Λ|C)
P(l̃1Λl̃1Λ|C)

.

Write I1 = P{(U1α, U1β)′(U1α, U1β)} and assume
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A5. I1 is positive definite and component-wise bounded.

Lemma 4. (Fisher Information). Under A1−A5, I1 is the efficient information
matrix for (α, β).

3.4. Asymptotic normality

Lemma 5. (Asymptotic normality). Under A1−A5,
√

n(α̂ − α0, β̂ − β0) →d N(0, I−1
1 (α0, β0, Λ0)).

Lemma 5 indicates that the regression parameters are still
√

n estimable,
despite the slow convergence rate of the cumulative baseline estimate. More-
over, the proposed MLE is asymptotically efficient, in the sense that any regular
estimator has asymptotic covariance matrix no less than I−1

1 .

3.5. Inference

Inference for (α̂, β̂) can be based on the asymptotic normality result in
Lemma 5 and a plug-in variance estimate. Numerical studies (omitted here)
show that the plug-in estimate can be unreliable unless the sample size is very
large. As an alternative, we consider the following weighted bootstrap, which is
computationally intensive but may be preferred for data with small to medium
sample sizes.

Lemma 6. (Weighted bootstrap). Let w1, . . . , wn be n i.i.d. realizations of
positive random weights generated from a known distribution with E(w) = 1 and
var(w) = 1. The weighted MLE is

(α̂∗, β̂∗, Λ̂∗) = arg max
α,β,Λ

∑
i

wil1(Xi).

Then, conditional on the observed data, (α̂∗− α̂, β̂∗− β̂) has the same asymptotic
variance as (α̂ − α0, β̂ − β0).

Lemma 6 is a straightforward application of Theorem 2 in Ma and Kosorok
(2005b). For data analysis, we first generate B (for example B = 500) realizations
of random weights. We propose using exp(1) distributed weights. For each
realization of the random weights, the weighted MLE defined in Lemma 6 is
computed. Repeat the weighted estimation B times. The sample variance of the
weighted estimates provides an honest estimate of the variance of the MLE.

Remark 3. Any choice of weights satisfying the mean and variance requirements
leads to asymptotically the same variance estimate. Very small differences are
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observed for data analysis using different weights. It is not clear whether the
ordinary bootstrap holds for the proposed model. We refer to Ma and Kosorok
(2005b) for more detailed discussions.

4. Partly Linear Cox Model

Under the partly linear model, the log-likelihood for a single observation is

l2(X) = δ log(φ(α′Z̃)) + δ log[1 − exp(−Λexp(−(β1Z1 + h(Z2))]

+(1 − δ) log{1 − φ(α′Z̃)[1 − exp(−Λexp(−(β1Z1 + h(Z2)))]}. (4.1)

With a slight abuse of notation, we write β1 as β. Let the true value of h be h0.
In our study, we assume h is smooth, more specifically a spline function.

See assumption B1 below. Smoothness has also been assumed in Lam and Xue
(2005). We propose using a penalty to control the smoothness of h, while a
sieve approach was used in Lam and Xue (2005). An advantage of the penalized
approach is that the degree of smoothness is controlled by a single number.

We consider the penalized maximum likelihood estimate (PMLE)

(α̂, β̂, ĥ, Λ̂) = argmaxα,β,h,ΛEnl2(X) − λ2
nJ2(h), (4.2)

where λn is the data-dependent tuning parameter, J2(h) =
∫
Z2

(h(s0)(Z2))2dZ2 is
the penalty on smoothness, and h(s0) is the sth

0 derivative of h. In data analysis,
one commonly takes s0 = 2.

Remark 4. It can be shown that ĥ defined in (4.2) is a spline function. Espe-
cially, suppose h̃ maximizes the penalized log-likelihood function. Then there
exists a spline function ĥ, such that ĥ(Z2i) = h̃(Z2i) for i = 1, . . . , n, and
J(ĥ) ≤ J(h̃) (Wahba (1990)).

4.1. Consistency and rate of convergence

Define the distance between (α, β, h, Λ) and (α0, β0, h0, Λ0) as

d((α, β, h, Λ), (α0, β0, h0, Λ0)) = ‖α − α0‖ + ‖β − β0‖ + ‖h − h0‖2 + ‖Λ − Λ0‖2,

where ‖h−h0‖2
2 =

∫
Z2

(h(Z2)−h0(Z2))2dZ2. Beyond A1-A3, we also assume the
following.

B1. (1) h0 ∈ Hs0 , the Sobolev space indexed by the order of derivative s0 ≥ 1;
(2) P(h0(Z2)) = 0; (3) h0 is uniformly bounded.

B2. For any (α, β, h, Λ) satisfying assumptions A1-A3 and B1,

E[l2(α, β, h, Λ) − l2(α0, β0, h0, Λ0)]≤−K2d
2((α, β, h, Λ), (α0, β0, h0, Λ0)),

with a fixed constant K2 > 0.
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An assumption similar to B1 is in Ma and Kosorok (2005a). Assumption B2
corresponds to A4. If for the tuning parameter λn we can assume

B3. λn = Op(n−1/3),

then the following result holds.

Lemma 7. (Consistency and rate of convergence). Under A1−A3 and B1−B3,
d((α̂, β̂, ĥ, Λ̂), (α0, β0, h0, Λ0)) = Op(n−1/3) and J(ĥ) = Op(1).

Lemma 7 shows that with presence of the nonparametric covariate effect,
Λ0 can still be estimated with the optimal convergence rate. In Lam and Xue
(2005), it is shown that the nonparametric covariate effect can be estimated at
the optimal ns0/(2s0+1) convergence rate. However, under the partly linear Cox
model, h0 can only be estimated at the n1/3 rate. The overall entropy is driven by
the entropy of Λ, resulting in an overall rate of n1/3. We note that assumption B3
is different from the commonly assumed λn = Op(n−s0/2s0+1) (Wahba (1990)).
Modifying this assumption cannot improve the convergence rate of ĥ, as can be
seen from the proof.

4.2. Fisher information

Due to presence of the second nonparametric parameter h, standard infor-
mation calculation based on orthogonal projection cannot be used. As an al-
ternative, we apply the non-orthogonal projection (Sasieni (1992)). The score
functions for α and β are

l̇2α =
[

δ

φ
− (1 − δ)g2

1 − φg2

]
φ̇Z̃, l̇2β =

[
δ

g2
− (1 − δ)φ

1 − φg2

]
g3Λ0Z1,

where g2(α, β, h, Λ) = 1 − exp[−Λexp(−(βZ1 + h(Z2)))], and g3(α, β, h, Λ) =
− exp(−(βZ1 + h(Z2))) exp[−Λexp(−(βZ1 + h(Z2)))]. Let l̇2αβ = (l̇2α, l̇2β)′.

For η ∼ 0, take hη = h + ηξ(Z2) such that hη still satisfies assumption
B1. Denote the space generated by such ξ as B. The score operator for h is
l̇2h(ξ) = [(δ/g2) − ((1 − δ)φ)/(1 − φg2)]Λg3ξ.

For the baseline Λ, consider Λu = Λ + ua(c), with u ∼ 0 and a ∈ A. The
score operator for Λ is l̇2Λ(a) = −[(δ/g2) − ((1 − δ)φ)/(1 − φg2)]g3a = l̃2Λa.
Step 1. We first project l̇2αβ onto the space generated by the l̇2Λ(a). We need to
find a “direction” a∗ ∈ A such that l̇2αβ − l̇2Λ(a∗)⊥l̇2Λ(a) for all a ∈ A. This is
equivalent to requiring E[(l̇2αβ − l̃2Λa∗)l̃2Λa] = 0. Using the standard projection
approach, we can see that a∗ = [(E(l̇2αβ l̃2Λ|C))/(E(l̃2Λl̃2Λ|C))]. Hence we have
l̇2αβ − l̇2Λ(a∗) = l̇2αβ − l̃2Λ[(E(l̇2αβ l̃2Λ|C))/(E(l̃2Λ l̃2Λ|C))].
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Step 2. We now project l̇2h(ξ) onto the space generated by l̇2Λ(a), using calcu-
lations similar to those in Step 1. Denote the least favorable direction as b∗ ∈ A
and we have l̇2h(ξ) − l̇2Λ(b∗) = l̇2h(ξ) − l̃2Λ[(E(l̇2h l̃2Λ|C))/(E(l̃2Λ l̃2Λ|C))].
Step 3. We project the space generated by l̇2αβ− l̇2Λ(a∗) onto the space generated
by l̇2h(ξ) − l̇2Λ(b∗), which is equivalent to finding ξ∗ ∈ B such that

E

{([
l̇2αβ − l̃2Λ

E(l̇2αβ l̃2Λ|C)
E(l̃2Λ l̃2Λ|C)

]
−

[
l̇2h(ξ∗) − l̃2Λ

E(l̇2h(ξ∗)l̃2Λ|C)
E(l̃2Λ l̃2Λ|C)

])

×
(

l̇2h(ξ) − l̃2Λ
E(l̇2h(ξ)l̃2Λ|C)
E(l̃2Λl̃2Λ|C)

)}
= 0 (4.3)

for any ξ ∈ B. Let l̇2 = [l̇2αβ − l̃2Λ((E(l̇2αβ l̃2Λ|C))/(E(l̃2Λl̃2Λ|C)))] − [l̇2h(ξ∗) −
l̃2Λ((E(l̇2h(ξ∗)l̃2Λ|C))/(E(l̃2Λl̃2Λ|C)))]. We assume the following.

B4. There exists ξ∗ ∈ B such that (4.3) is satisfied and I2 = E(l̇2 l̇′2) is positive
definite and component-wise bounded.

Lemma 8. (Fisher Information). Under A1−A3, B1−B2 and B4, I2 is the
efficient information matrix for (α, β).

4.3. Asymptotic normality and inference

Lemma 9. (Asymptotic normality and efficiency). Under A1−A3 and B1−B4,√
n(α̂ − α0, β̂ − β0) →d N(0, I−1

2 ).

Despite the slower than standard convergence rate of ĥ, the estimate of (α, β)
is still asymptotically normal and efficient.

Remark 5. We note that the Fisher Information matrix I2 for the partly linear
Cox model does not have a closed form. A plug-in variance estimate does not
seem feasible. However, as noted in Ma and Kosorok (2005b), the weighted
bootstrap is still valid for penalized estimates with more than one nonparametric
parameters.

5. Numerical Study

5.1. Computational algorithm

Under the partly linear model, the proposed PMLE requires maximization
over multiple parametric parameters and two nonparametric parameters subject
to constraints, which cannot be realized using any existing software. For esti-
mating the spline function h, we take the sieve approach proposed in Xiang and
Wahba (1997), that states that an estimate with the number of basis functions
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growing at the rate of n1/5 can achieve the same asymptotic precision as the full
space. For data analysis, we suggest at least 20 basis functions. In our study,
we choose equally spaced knots, and utilize B-spline basis functions. Once the
basis functions are chosen, maximization over the nonparametric h becomes a
parametric maximization problem. Maximization over α, β and the regression
coefficients in h can be achieved via the Newton-Raphson method, or using func-
tions like optim in R.

Maximization over the non-decreasing baseline function Λ is achieved with
the pool-adjacent-violator (PAV) approach, investigated in Barlow, Bartholomew,
Bremner and Brunk (1972). Application of the PAV in current status data study
can also be found in van der Laan and Jewell (2001).

Simultaneous maximization over all parameters is difficult. So we consider
the following iterative procedure.

1. Initialize α̂, β̂ and ĥ at zero.
2. With the current estimate of (α, β, h), maximize over Λ using the PAV ap-

proach.
3. With the current estimate of Λ, maximize over (α, β, h) using the optim func-

tion in R.
4. Repeat Steps 2 and 3 until convergence.

Research code written in R is available upon request. Our limited numerical
studies show that convergence is usually achieved in 20 iterations. For a dataset
with sample size 400, one estimation takes less than 2 minutes.

The proposed PMLE involves the tuning parameter λn. Asymptotically,
we assume λn satisfies B3. For data analysis, we propose setting λn = τ ×
n−1/3, where τ = 0.1, 0.2, . . . , 10.0. We propose using five-fold cross validation
(Wahba (1990)) and searching over τ to determine its optimal value (and hence
the optimal λn). Our limited numerical study shows that optimal tunings can
usually be found in the searching interval.

5.2. Simulation study

We conduct simulation studies to assess the finite sample performance of the
proposed estimates. For each model, we consider sample size n = 200 and 400.
We assume φ is the logistic regression function, and take the cumulative baseline
function Λ0(T ) = T . Inference is based on the proposed weighted bootstrap with
exponential weights and B = 500. We consider the following four models.

Model 1. α0 = (0, 1, 1) and β0 = (1,−1); Z1 = 0 or 2 with probabilities 1/2;
Z2 ∼ Unif [0, 2]. The censoring time is truncated exp(0.5) distributed with
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Table 1. Simulation study: summary statistics based on 500 replicates. sd:
standard deviations of α̂ and β̂; ŝd: standard deviations of α̂∗−α̂ and β̂∗−β̂.

α1 α2 β1 β2

Model 1

n = 200 bias 0.006 0.054 0.021 0.049

sd 0.056 0.177 0.128 0.181

ŝd 0.055 0.186 0.110 0.165

n = 400 bias 0.007 0.036 0.004 -0.025

sd 0.041 0.125 0.091 0.130

ŝd 0.035 0.129 0.088 0.129

Model 2

n = 200 bias 0.034 0.037 0.009 -0.067

sd 0.121 0.185 0.155 0.157

ŝd 0.114 0.187 0.158 0.154

n = 400 bias 0.017 0.031 0.014 -0.041

sd 0.085 0.133 0.111 0.106

ŝd 0.087 0.122 0.113 0.101

Model 3

n = 200 bias 0.033 0.023 -0.070 –

sd 0.131 0.175 0.127 –

ŝd 0.118 0.165 0.112 –

n = 400 bias 0.022 0.012 0.032 –

sd 0.093 0.113 0.092 –

ŝd 0.104 0.123 0.088 –

Model 4

n = 200 bias 0.048 -0.003 -0.044 –

sd 0.154 0.153 0.131 –

ŝd 0.144 0.162 0.119 –

n = 400 bias 0.024 0.016 -0.031 –

sd 0.113 0.103 0.099 –

ŝd 0.108 0.111 0.091 –

an upper bound of 7. The probability of cure is 0.17; for subjects not cured,
the censoring rate is 0.40.
Model 2. α0 = (0, 1, 1) and β0 = (1,−1); Z1 ∼ Unif [0, 2] and Z2 ∼
Unif [0, 2]. The censoring distribution is the same as in Model 1. The prob-
ability of cure is 0.15; for subjects not cured, the censoring rate is 0.35.
Model 3. α0 = (0, 2, 1) and β0 = −1; Z1 = 0 or 2 with probabilities 1/2;
Z2 ∼ Unif [−1, 3]; h0(Z2) = sin(πZ2). The censoring time is truncated exp(1)
distributed with an upper bound of 4.5. The probability of cure is 0.17; for
subjects not cured, the censoring rate is 0.30.
Model 4. α0 = (0, 2, 1) and β0 = −1; Z1 ∼ Unif [0, 2]; Z2 ∼ Unif [−1, 3];
h0(Z2) = sin(πZ2). The censoring is the same as in Model 3. The probability
of cure is 0.10; for subjects not cured, the censoring rate is 0.30.
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Figure 5.1. Simulation study (Model 4, sample size 400). Upper left: his-
togram of the second component of α̂; Upper right: histogram of β̂; Lower
left: estimate of h0, mean estimate and point-wise 95% confidence interval;
Lower right: estimate of Λ0, mean estimate and point-wise 95% confidence
interval. The solid lines are the true values.

Models 1 and 2 are linear Cox models, while Models 3 and 4 have non-
parametric covariate effects. In Models 1 and 3, one covariate has a discrete
distribution, whereas in Models 2 and 4 both covariates are continuously dis-
tributed.

Summary statistics based on 500 replicates are shown in Table 1. We can
see there that the estimates have small biases. The standard deviations of the
estimates shrink as the sample size increase from 400 to 800 by approximately

√
2.

The weighted bootstrap estimates of standard errors are close to the estimates’
standard deviations.

In Figure 5.1, we show the simulations plots for Model 4 with sample size
400. The top panels show the histograms of estimated α (the second component)
and β. We can see that the estimates have distributions close to normal. In the
bottom panels, we show the point-wise means of estimated h and Λ; we also show
the point-wise 95% confidence intervals. The point-wise confidence intervals are
informal and provided simply to show the variations of the estimates. We can
see that the mean ĥ matches the true h0 very well, with small variation. The
estimated h is less satisfactory when it is close to boundaries and there are fewer
data points.
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5.3. Calcification study

In the Calcification study, patients were examined at times ranging from 0
to 36 months after the hydrogel intraocular lenses implantation. The severity of
calcification was graded on a discrete scale ranging from 0 to 4, with severity ≤ 1
classified as “not calcified”. The clinical factors of scientific interest include gen-
der, incision length, and age at implantation. The dataset contains 379 records.
We exclude the one record with a missing measurement. Of n = 378 subjects,
48 experienced calcification.

Let Z1 = incision length, Z2 = gender (male), Z3 = age/10, and Z =
(Z1, Z2, Z3). We assume the logistic model

prob(not cure) =
exp(α1 + α2Z3)

1 + exp(α1 + α2Z3)
. (5.1)

For subjects susceptible to calcification, the conditional cumulative hazard sat-
isfies the linear Cox model

Λ(T |Z) = Λ(T ) exp(−(β1Z1 + β2Z2 + β3Z3)), (5.2)

or the partly linear Cox model

Λ(T |Z) = Λ(T ) exp(−(β1Z1 + β2Z2 + h(Z3))). (5.3)

The proposed MLE and PMLE are used for estimation. Inference is based on
the weighted bootstrap with 500 realizations of random exponential weights.

Under (5.1) and (5.2), the MLEs are α̂1 = −0.998(0.078), α̂2 = 0.074(0.077),
β̂1 = −0.352(0.126), β̂2 = 0.230(0.114), and β̂3 = 0.211(0.075), where the values
in parentheses are the corresponding bootstrap standard deviation estimates. We
can see that older people are less likely to be cured, although for those who are
not cured, older people have a smaller risk of calcification. Such results appear
contradictive. However, we note that the age effect in the cure model is not sig-
nificant, so its effect on the cure rate is not conclusive. All three covariates being
considered have significant effects on the survival risk for susceptible subjects:
increase in incision length, being female, and decrease in age lead to an increase
in calcification hazard.

We also consider models (5.1) and (5.3). With the five-fold cross valida-
tion, τ = 0.5 (hence λn = 0.5n1/3) is selected. The PMLE estimates are α̂1 =
−1.004(0.079), α̂2 = −0.040(0.032), β̂1 = −0.228(0.111), and β̂2 = 0.399(0.094).
We can see that the estimates are considerably different from their counterparts
under the linear Cox model. This is partly caused by the fact that the age effect
is significantly different from linear (Figure 5.2). We also show the estimated
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Figure 5.2. Calcification data under the partly linear model. Estimation of
h0 and Λ0 (with lowess smoother).

cumulative baseline (with its lowess smoother) in Figure 5.2. Under (5.1) and
(5.3), we see that older people are more likely to be cured, although this effect
is not significant. For susceptible subjects, increase in incision length and being
female lead to an increase in calcification hazard. The effect of age on calcifica-
tion risk is nonlinear – it first increases with age and then decreases, with a local
minimum at age 71.

6. Remarks

Our focus has been on linear and partly linear models. A more flexible model
has f(Z) = h1(Z1) + h2(Z2). If we make the assumption that h1 is also a spline
function, then we can consider a doubly penalized estimate, with penalties on
the smoothness of both h1 and h2. Asymptotically, as long as S(uC) < 1, the
proposed approach holds. However we note that for finite sample sizes, testing
the existence of the cured subgroup may be essential (Maller and Zhou (1992)).
We postpone this discussion to a future study. For the Calcification data analysis,
we only consider two specific Cox models and one link function. These models are
motivated by Lam and Xue (2005). For any practical data analysis, robustness
of the estimates and performance under model misspecification are of interest,
but beyond the scope of the present paper.
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