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S.1 Calculation of Model Likelihood

In this Section we present the likelihood of the model described in Section 3. We will use the

notation [X] to denote the probability density function of the random variable X, [X](x) to denote

[X] evaluated at x and [X | Y ] to denote the conditional density of X given Y . We wish to write

out the density, or likelihood, for the following collection of random variables that correspond to

targets,

(U ,V,W,X ,Y).

The bold W, X ,and Y denote the collection of those variables for all targets at all times. These

variables will be more formally defined in the following sections. For ease of presentation, we first

restrict the focus to location information. We will incorporate the attribute contribution to the

likelihood later.

In addition, we wish to write out a density for the following collection of random variables that

correspond to false alarms

(N f ,X f ,Yf ), (S.1)
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where N f = (Nf (t1), . . . , Nf (tn)) and the bold X f and Yf denote the collection of the locations

for all false alarms at all times. The overall model likelihood function is then given by

[(U ,V,W,X ,Y), (N f ,X f ,Yf )] = [U ,V,W,X ,Y][N f ,X f ,Yf ],

as the false alarms are assumed to be completely independent of the targets. In the following

sections we will write out the target density, [U ,V,W,X ,Y], and and the false alarm density,

[N f ,X f ,Yf ].

S.1.1 Target Density

Since X and Y are independent given (U ,V,W), we can write the target density as

[U ,V,W,X ,Y] = [U ,V] · [W | U ,V] · [X | U ,V,W] · [Y | U ,V,W]. (S.2)

We will call the conditional densities in (S.2), in order from left to right, the target event density,

observability density, and target location densities respectively. We will describe each of these in

the following sections.

S.1.1.1 Target Event Density

Since the Event Model has independent increments, the Event density can be written as

[U ,V] = [N0]
n∏

j=1

[Ub,j , Ud,j , Us,j , Um,j | N(tj)][Vb,j , Vd,j , Vs,j , Vm,j | N(tj), Ub,j , Ud,j , Us,j , Um,j ],

(S.3)

where recall that N(t) is the number of targets that exist at time t. Also, N0 is the initial number

of targets and is assumed to be Poisson distributed with parameter λ0. Therefore

[N0](k) =
λk

0e
−λ0

k!
.

To write out the exact density for (Ub,j , Ud,j , Us,j , Um,j | N(tj)) is difficult since they are dependent

on each other. The rate of death, λdN(t), for example changes when there is a birth, death, split or
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merger. Suppose Uj = Ub,j +Ud,j +Us,j +Um,j . The exact distribution of (Ub,i, Ud,i, Us,i, Um,i) would

require us to sum over all the permutations of the order that the Uj events could happen in the

interval [tj , tj+1). For each of these permutations, we would have to calculate the probability that

the sum of Uj independent exponential random variables with respective rates (which are generally

different) would be less than ∆tj = tj+1 − tj . Instead, we will approximate this probability by

assuming that the rate of the occurrence of events stays constant during the interval [tj , tj+1). If

we let N̄j = (N(tj) +N(tj+1))/2, which is the average number of targets alive during the interval,

then we can assume that the rate of each of the events during the interval is λ̄b,j = λb, λ̄d,j = λdN̄j ,

λ̄s,j = λsN̄j and λ̄m,j = λm

(
N̄j − 1

)
for birth, death, splitting, and merging events respectively.

With this assumption, the variables (Ub,i, Ud,i, Us,i, Um,i) are independent and P (Ud,j = u) for

example is the probability that the sum of u iid exponential random variables with rate λ̄d,j are

less than ∆tj . This is the same as the Poisson density with parameter λ̄d,j∆tj evaluated at u.

Hence,

[Ub,j | N(tj)] (u) ≈ (λb∆tj)ue−λb∆tj/u!

[Ud,j | N(tj)] (u) ≈ (λ̄d,j∆tj)ue−λ̄d,j∆tj/u! (S.4)

[Us,j | N(tj)] (u) ≈ (λ̄s,j∆tj)ue−λ̄s,j∆tj/u!

[Um,j | N(tj)] (u) ≈ (λ̄m,j∆tj)ue−λ̄m,j∆tj/u!

Under the same assumption that N(t) = N̄j is constant during the interval [tj , tj+1), we have

[Vb,j | N(tj), Ub,j ] (v) ≈ 1

[Vd,j | N(tj), Ud,j ] (v) ≈ (1/N̄j)Ud,j

[Vs,j | N(tj), Us,j ] (v) ≈ (1/N̄j)Us,j

[Vm,j | N(tj), Um,j ] (v) ≈
(

1/
(
N̄j

2

))Um,j
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and we can write (S.3) as

[U ,V] ≈ [N0]
n∏

j=1

[Ub,j ][Vb,j | Ub,j ] · [Ud,j ][Vd,j | Ud,j ] · [Us,j ][Vs,j | Us,j ] · [Um,j ][Vm,j | Um,j ]. (S.5)

S.1.1.2 Observability Density

Recall that Wi(t) represents the observability (0 or 1) of the ith target at time t, i = 1, . . . ,M

where M is the number of targets that existed before time tn. Let W = {Wi(tj) : i = 1, . . . ,M, j =

1, . . . , n} The time of initiation of the ith target is denoted by ξi. Also let the time of termination

of the ith target be given by ζi. For convenience if the ith target is still alive at time tn, we will let

ζi = tn.

The events variables U and V do not specify the exact values of ξi and ζi. They do however

specify which interval between observations they are in. This completely specifies W since its

dependence on U and V is only on whether or not a target exists at the observed time points. In

the sequel, if it is known that ξi is in the interval (tj , tj+1), we will set ξi = tj + ∆tj/2.

The white noise model for W of Section 3.2 assumes probability Pd of observing the ith target

if it exists at a given time, independent of other times. If the target does not exist at time t then

Wi(t) = 0. Under this model, the conditional density of W given the event variables in (S.2) can

be written out using indicator functions to separate the cases when the ith target exists and when

it does not. This density is then given by

[W | U ,V](w) =
M∏
i=1

n∏
j=1

{
I[t1,ξi)∪(ζi,tn](tj)(1− wij) + I[ξi,ζi](tj) ((1− wij)(1− Pd) + wijPd)

}
,

where wij is representing an observed value of Wi(tj).

S.1.1.3 Target Location Density

Since Xi(t) is normally distributed for all t, the observed location of all targets at all time points has

a multivariate normal distribution. Let the times at which the ith target is observable be denoted

by ti = (ti,1, . . . , ti,ni). Also let Xi = (Xi(ti,1), . . . , Xi(ti,ni))
′ and lastly let X = (X ′

1, . . . ,X
′
M )′

be the collection of all observed locations of all targets during the time sequence t1, . . . , tn. Then
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X ∼ N (µX ,ΣX), where we will define µX , and ΣX below.

Recall from Section 3.3 that this mean and covariance will depend on the time of initiation, ξ,

of the targets. We will adopt the convention of the previous section here and set ξi = tj + ∆tj/2

if ξi is known to be in the interval (tj , tj+1). Since µX and ΣX depend on the exact values of ξ,

this will be an approximation to the true density. In order to calculate the exact density, we would

need to integrate out on the joint distribution of X and ξ, given that the ξi’s are in their respective

intervals. Most likely this can only be achieved via numerical approximations.

Also recall from Section 3.3 that we need to condition X on the random variables (D1, . . . , DNm)

and evaluate this density when they are zeros. Let D = (D1, . . . , DNm)′, and we write

D ∼ N (µD,ΣD).

For the collection of both X and D we have

(
X
D

)
∼ N (µ,Σ) (S.6)

where

µ =

(
µX

µD

)
(S.7)

and

Σ =

(
ΣX ΣX,D

Σ′
X,D ΣD

)
.

The mean vectors and covariance matrices will be described in the following. Let µi(t) = E{Xi(t)}

and µDi = E(Di). These functions are given for the IBM model in Section S.2. Then let µi =

(µi(ti,1), . . . , µi(ti,ni) and we can now write the mean vectors in (S.7) as µX = (µ1, . . . ,µm) and

µD = (µD1 , . . . , µDNm
).

Define the matrices Σi,j to be the covariances between all of the observations of target path i

with all of the observations of path j. Specifically the (k, l)th element of this matrix can be written

as

Σi,j(k, l) = Cov(Xi(ti,k), Xj(tj,l)), k = 1, . . . , ni; l = 1, . . . , nj . (S.8)
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Also define the matrices Σi,D and ΣD by their (k, l)th element as follows

Σi,D(k, l) = Cov(Xi(ti,k), Dl) k = 1, . . . , ni; l = 1, . . . , Nm (S.9)

ΣD(k, l) = Cov(Dk, Dl) k = 1, . . . , Nm; l = 1, . . . , Nm. (S.10)

The covariance functions in (S.8), (S.9), and (S.10) for the IBM model are given in Section S.2.

Now we can write the covariance matrix for X as

ΣX =


Σ1,1 Σ1,2 · · · Σ1,m

Σ2,1 Σ2,2 · · · Σ2,m

...
...

. . .
...

Σm,1 Σm,2 · · · Σm,m


and that for (X ,D) as

ΣX,D =


Σ1,D

...

Σm,D


This completes the description of the distribution of (X ,D) given in (S.6).

We can then compute the conditional distribution of X given D = 0, which we will just call the

distribution of X from this point onward. From standard multivariate normal theory we have

X | D = 0 ∼ N (µ∗,Σ∗)

where

µ∗ = µX − ΣX,DΣ−1
D µD and Σ∗ = ΣX − ΣX,DΣ−1

D Σ′
X,D.

The density of X is then just the multivariate normal density with parameters µ∗ and Σ∗. This

will require computing the inverse of Σ∗, which can be done quite efficiently since Σ∗ is a relatively

sparse matrix. Unless path i is a relative of path j, in the sense that one is a by-product of splitting

or merging of the other, they will have 0 covariance. Unfortunately, because of the conditioning

on D, this model cannot be posed in state space form. Hence, the corresponding filters cannot be

used to update the conditional distribution of a new observation given the previous observations.
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S.1.2 False Alarm Density

In a manner similar to target density we can write the density of the false alarm variables from

(S.1) as

[N f ,X f ,Yf ] = [N f ] · [X f ,Yf | N f ] (S.11)

where N f , X f , and Yf will be precisely defined below. It was assumed in Section 3.5 that false

alarms occur at each time frame as iid realizations from a Poisson Process with intensity function

ρ(x, y). Hence N f = (Nf (t1), . . . , Nf (tn)) are iid Poisson distributed random variables with rate

λf =
∫
ρ(x, y)dxdy The corresponding density of N f is then

[N f ](k) =
n∏

j=1

λ
kj

f e
−λf

kj !
.

Now let the x component of the ith false alarm at time t be denoted asXf,i(t) for i = 1, . . . , Nf (t).

Also let X f = {Xf,i(tj) : i = 1, . . . , Nf (tj), j = 1, . . . , n} be the collection of x locations of all false

alarms at all times. Similar notation will be used for Yf . Due to the Poisson process assumption,

the density function for a particular (Xf,i(t), Yf,i(t)) is f(x, y) = ρ(x, y)/λf and hence the density

for (X f ,Yf ) is

[X f ,Yf | N f ](x) =
n∏

j=1

Nf (tj)∏
i=1

ρ(xij , yij)/λf ,

where xij is a dummy variable for the value of Xf,i(tj) and similarly for yij .

S.1.3 Attributes

The attribute variables are assumed iid over time given the Observability variable W, thus the

densities are quite straightforward to calculate. With the presence of attributes, we now have the

following collection of random variables for targets

(U ,V,W,X ,Y,A),
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whereA denotes the collection of all attribute variables. Below we will assumeA = (R(1),R(2),Q(2), I),

which are the smallest radius, largest radius, angle of orientation and intensity for targets respec-

tively. These variables will be formally defined later.

We also have the following collection of random variables that correspond to false alarms:

(N f ,X f ,Yf ,Af ),

where Af = (R(1),f ,R(2),f ,Q(2),f , If ), which are the same variables as above but for false alarms.

The target likelihood function is then given by

[U ,V,W,X ,Y,A] = [U ,V] · [W | U ,V] · [X | U ,V,W] · [Y | U ,V,W] · [A | W].

So we can just multiply [A | W] to the target density without attributes given in (S.2). Technically

A should also be conditioned on U , V, X , and Y as well, but given the way that we modeled

attributes in the previous section, the density of A would still depend only on W, and hence we

dropped the other variables in the notation. Similarly, the false alarm likelihood is given by

[N f ,X f ,Yf ,Af ] = [N f ] · [X f | N f ] · [Y | N f ] · [A | N f ]

so we can just multiply [A | N f ] to the false alarm density without attributes in (S.11). Therefore

the overall density is

[(U ,V,W,X ,Y,A), (N f ,X f ,Yf )] = [U ,V,W,X ,Y,A] · [N f ,X f ,Yf ,Af ]. (S.12)

We can of course incorporate any of these attribute variables separately or add other attributes

in a similar manner. For the collection above though, we have

[A | W] = [R(1),R(2) | W][Q(2) | W][I | W]
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and

[A | N f ] = [R(1),f ,R(2),f | N f ][Q(2),f | N f ][If | N f ].

We will describe these densities in the following sections.

S.1.3.1 Radius Density

Let R1,i(t) and R2,i(t) respectively be the length of minor and major axes of the best fitting ellipse

to target i at time t. We only observe the min and max of these from the data which are R(1),i(t)

and R(2),i(t) respectively. Also let

R(1) = {(R(1)(tj) : 1 ≤ i ≤M, 1 ≤ j ≤ n}

and similarly for R(2), where recall M in the total number of targets that existed before time tn.

Recall that R1,i(t) and R2,i(t) are assumed to be distributed as independent log-normals for all

t. The density for (R(1),i(t), R(2),i(t)) does not depend on time so we will write it as [R(1),i, R(2),i].

This density is similar to that for order statistics and is given by

[R(1),i, R(2),i](r, s) = {[R1,i](r)[R2,i](s) + [R1,i](s)[R2,i](r)} I{r≤s} (S.13)

where [R1,i] and [R2,i] are log-normal densities with parameters (µR1,i , σ
2
R1,i

) and (µR2,i , σ
2
R2,i

)

respectively as described in Section 3.4.

Since the radii of path i at time tj are independent of the radii at other times or of other targets,

the density for (R(1),R(2)) is

[R(1),R(2) |W ](r, s) =
M∏
i=1

∏
{j:Wi,j=1}

[R(1),i, R(2),i](ri,j , si,j),

where ri,j and si,j are the arguments for the values of R(1),i(tj) and R(2),i(tj) respectively.

For false alarms, we will use similar notation. Let (R1,f,i(t) and R2,f,i(t)) be the length of minor

and major axes of the best fitting ellipse to the ith false alarm at time t. We observe the min and
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max of these which are R(1),f,i(t) and R(2),f,i(t) respectively. Also let

R(1),f = {(R(1),i(tj) : 1 ≤ j ≤ n, 1 ≤ i ≤ Nf (tj)},

and similarly for R(2),f .

The density for false alarms is very similar to that above, but all false alarms at all times are

assumed to have the same distribution so

[R(1),f,i(t), R(2),f,i(t)] = [R(1),f,i′(t), R(2),f,i′(t)] = [R(1),f , R(2),f ]

where

[R(1),f , R(2),f ](r, s) = {[R1,f ](r)[R2,f ](s) + [R1,f ](s)[R2,f ](r)} I{r≤s}

and [R1,i] and [R2,i] are respectively log-normal densities with parameters (µR1,f
, σ2

R1,f
) and (µR2,f

, σ2
R2,f

).

So the density of (R(1),f ,R(2),f ) is

[R(1),f ,R(2),f | N f ](r, s) =
n∏

j=1

Nf (tj)∏
i=1

[R(1),f , R(2),f ](ri,j , si,j)

where ri,j and si,j are the arguments for the values of R(1),f,i(tj) and R(2),f,i(tj) respectively.

S.1.3.2 Angle of Orientation Density

For target orientation or angle, we will use the following notation. Let Q2,i(t) be the angle of

orientation of the axis corresponding to R2 of the best fitting ellipse to target i at time t. We

actually observe Q(2),i(t) which is the angle that corresponds to R(2),i(t). Also let

Q(2) = {Q(2)(tj) : 1 ≤ i ≤M, 1 ≤ j ≤ n}.

Consider for now a given target’s orientation at a fixed time Q(2),i(t). We will drop the subscript

i and argument t for now and write this asQ(2) to make notation less cumbersome. When R(2) = R2,

Q(2) = Q2. However, when R(2) = R1, Q(2) = bQ2 + π/2cpi where bxcy is x mod y.
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Hence, the distribution of Q(2) given (R(1), R(2)) is a mixture distribution that takes the value

of Q2 with probability γ and bQ2 + π/2cπ with probability 1− γ, where

γ = P (R1 < R2 | R(1), R(2))

=
[R1](R(1))[R2](R(2))

[R1](R(1))[R2](R(2)) + [R1](R(2))[R2](R(1))
. (S.14)

Thus the conditional density of Q(2),i is

[Q(2),i | R(1), R(2)](q) = γ[Q2,i](q) + (1− γ)[Q2,i](bq + π/2cπ), (S.15)

where [Q2,i] is the von Mises density on [0, π) given by

[Q2,i](q) =
eβicos(q−αi)

πΨ0(βi)
I[0,π)(q).

Here Ψ0(x) is a modified Bessel function of the first kind of order 0. As with the radii, Q(2),i(t) is

independent over time and of other targets so the conditional density of Q(2) is

[Q(2) | W,R(1),R(2)](q) =
M∏
i=1

∏
{j:Wi,j=1}

[Q(2) | R(1),i(tj), R(2),i(tj)](qi,j) (S.16)

where qi,j are the arguments for the values of Q(2),i(tj).

Again the situation for false alarms is very similar. We will let Q(2),f,i(t) be the angle of

orientation corresponding to R(2),f,i(t) and

Q(2),f = {Q(2),i(tj) : 1 ≤ j ≤ n, 1 ≤ i ≤ Nf (tj)}.

Let [Q2,f ] be the same density as in (S.15) only with parameters αf and βf in place of αi and βi.

False alarms are iid so

[Q(2),f (t) | W,R(1),R(2)](q)
n∏

j=1

Nf (tj)∏
i=1

[Q(2),f | R(1),f,i(tj), R(2),f,i(tj)](qi,j).
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S.1.3.3 Intensity Density

Let Ii(t) be the intensity of target i at time t. Also let

I = {Ii(tj) : 1 ≤ i ≤M, 1 ≤ j ≤ n}.

For any target the density of Ii(t) does not depend on time so we will write it as [Ii]. Recall from

Section 3.4 that [Ii] is assumed to be a log-normal density with parameters (µIi , σ
2
Ii

). The density

of I is then

[I | W](ι)
M∏
i=1

∏
{j:Wi,j=1}

[Ii](ιi,j)

where as usual ιi,j are the arguments for the values of Ii(tj).

For false alarm intensity, we again assume the same density [If ] for all false alarms which is

log-normal with parameters (µIf
, σ2

If
). The density of If is then

[I | W](ι)
n∏

j=1

Nf (tj)∏
i=1

[If ](ιi,j).

S.2 Mean and Covariance Calculations

Here we calculate the mean functions E{Xi(t)}, E(Di) and the covariance functions Cov(Xi(s), Xj(t)),

Cov(Xi(s), Dj), and Cov(Di, Dj). Recall in Section S.1.1.3 that these are calculated before condi-

tioning on any merging events.

Let

B = {i : target i is an initial target or a birth}

S = {i : target i is the result of a splitting event}

M = {i : target i is the result of a merging event}

Also let n(B), n(S) and n(M) be the number elements in these sets respectively. The location

equations for a target resulting from birth, splitting and merging events from (3.3), (3.7) and (3.5)
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are given here again for convenient reference as

Xi(t) =



Xi(ξi) +X ′
i(ξi)(t− ξi) + σiGi(t− ξi) for i ∈ B

Xpi,1(ξi) + ψs,i +
[
X ′

pi,1
(ξi) + ψ′s,i

]
(t− ξi) + σiGi(t− ξi) for i ∈ S

1
2

(
Xpi,1(ξi) +Xpi,2(ξi)

)
+ ψm,i+ for i ∈M[

1
2

(
X ′

pi,1
(ξi) +X ′

pi,2
(ξi)
)

+ ψ′m,i

]
(t− ξi) + σiGi(t− ξi)

where we are assuming that Gi(t) is an IBM. Also recall that we actually observe

X∗
i (tj) = Xi(tj)+εj for each time point tj . We give the target velocities for the three cases as well,

X ′
i(t) =



X ′
i(ξi) + σiBi(t− ξi) for i ∈ B

X ′
pi,1

(ξi) + ψ′s,i + σiBi(t− ξi) for i ∈ S

1
2

(
X ′

pi,1
(ξi) +X ′

pi,2
(ξi)
)

+ ψ′m,i + σiBi(t− ξi) for i ∈M.

Lastly we recall the expression for the variable Di = Xdi,1
(ξdi,3

)−Xdi,2
(ξdi,3

)+ψd,i, i = 1, . . . , n(M).

We will use the following notation to denote the means and covariance of path locations and

velocities

µi(t) = E{Xi(t)} (S.17)

µ′i(t) = E{X ′
i(t)}

γ∗i,j(s, t) = Cov(X∗
i (s), X∗

i (t)) (S.18)

γi,j(s, t) = Cov(Xi(s), Xj(t))

γ′i,j(s, t) = Cov(Xi(s), X ′
j(t))

γ′′i,j(s, t) = Cov(X ′
i(s), X

′
j(t))

γi(s, t) = Cov(Xi(s), Xi(t))

γ′i(s, t) = Cov(Xi(s), X ′
i(t))

γ′′i (s, t) = Cov(X ′
i(s), X

′
i(t))

Note that for the purposes of likelihood calculation, we are only interested in the functions
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given in (S.17) and (S.18) above. However, the expressions for these two functions will depend on

the others, so in the following, we will need to derive expressions for all of these functions.

S.2.1 Mean Functions

We can express the mean functions for location for the three cases of birth, splitting and merging

events as a recursive formula,

µi(t) =



µX0 + (t− ξi)µX′
0

if i ∈ B

µpi,1(ξi) + (t− ξi)µ′pi,1
(ξi) if i ∈ S

1
2µpi,1(ξi) + 1

2µpi,2(ξi) + t−ξi

2

(
µ′pi,1

(ξi) + µ′pi,2
(ξi)
)

if i ∈M.

Eventually this recursion will lead back to a parent target which is an initial target or a birth, at

which point the recursion will terminate. We can also express the mean velocities for the three

cases in a similar manner,

µi(t) =



µX′
0

if i ∈ B

µ′pi,1
(ξi) if i ∈ S

1
2

(
µ′pi,1

(ξi) + µ′pi,2
(ξi)
)

if i ∈M.

Of course the mean of Di can be written as

E(Di) = µdi,1
(ξdi,3

)− µdi,2
(ξdi,3

).

S.2.2 Covariance Functions

Now we will consider the calculation of the covariance functions. First note that

γ∗i,j(s, t) = γi,j(s, t) + σ2
Xe
I{i=j}I{s=t}.
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Also, for Cov(Xi(s), Dj) and Cov(Di, Dj) we have

Cov(Xi(s), Dj) = γi,dj,1
(s, ξdj,3

)− γi,dj,2
(s, ξdj,3

)

Cov(Di, Dj) = γdi,1,dj,1
(ξd1,3 , ξdj,3

)− γdi,1,dj,2
(ξd1,3 , ξdj,3

)− γdi,2,dj,1
(ξd1,3 , ξdj,3

) +

γdi,2,dj,2
(ξd1,3 , ξdj,3

),

so we just need to derive an expression for γi,j(s, t). This will require the following definition. Let

two paths i and j be connected if one is a by-product of a splitting and/or merging of the other.

Define the indicator δi,j to be

δi,j =

{
1 if path i is connected to path j

0 otherwise.

It is clear that γi,j(s, t) = 0 whenever δi,j = 0, since paths are independent unless they are connected.

Consider now calculating the covariance function γi,j(s, t) when δi,j = 1, i < j and j ∈ S:

γi,j(s, t) = Cov
(
Xi(s) , Xpj,1(ξj) + ψs,j +

[
X ′

pj,1
(ξj) + ψ′s,j

]
(t− ξj) + σjGj(t− ξj)

)
= γi,pj,1(s, ξj) + (t− ξj)γ′i,pj,1

(s, ξj). (S.19)

Using this same idea, we can calculate the case for δi,j = 1, i < j and j ∈ M as well. If i < j and

j ∈ B then necessarily δi,j = 0. This is true because if i < j and j ∈ B, then because of the way

we have organized the indices, ξi ≤ ξj . Hence if j ∈ B then there is now way that path j or any

of its children could have split or merged to create path i since it existed already before path j.

Furthermore, path j resulted from a birth so there is also no way that it could be created from path

i or any of its children. Since we always decompose the larger index into the contribution from its

parents, we will eventually converge to the covariance of a parent(s) that is a birth or initial target

and the recursion will terminate.
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Hence we have

γi,j(s, t) =



γi(s, t) if i = j

γi,pj,1(s, ξi) + (t− ξi)γ′i,pj,1
(s, ξi) if δi,j = 1, i < j, j ∈ S

1
2

(
γi,pj,1(s, ξi) + γi,pj,2(s, ξi)

)
+ t−ξi

2

(
γ′i,pj,1

(s, ξi) + γ′i,pj,2
(s, ξi)

)
if δi,j = 1, i < j, j ∈M

γj,i(t, s) if δi,j = 1, i > j

0 otherwise.
(S.20)

We can also calculate γ′i,j(s, t) in the same manner as in (S.19). Although, now we cannot use

the symmetry of the function if i > j. So consider calculating γ′i,j(s, t) for the case when δi,j = 1,

i > j and i ∈ S. We still need to decompose the larger index into its parents, and we write this as

γ′i,j(s, t) = Cov
(
Xpi,1(ξi) + ψs,i +

[
X ′

pi,1
(ξi) + ψ′s,i

]
(s− ξi) + σiGi(s− ξi) , X ′

j(t)
)

= γ′pi,1,j(ξi, t) + (s− ξi)γ′′pi,1,j(ξi, t).

The other cases are similar and γ′i,j(s, t) can be written as

γ′i,j(s, t) =



γ′i(s, t) if i = j

γ′i,pj,1
(s, ξi) if δi,j = 1, i < j, j ∈ S

1
2

(
γ′i,pj,1

(s, ξi) + γ′i,pj,2
(s, ξi)

)
if δi,j = 1, i < j, j ∈M

γ′pi,1,j(ξi, t) + (s− ξi)γ′′pi,1,j(ξi, t) if δi,j = 1, i > j, j ∈ S

1
2

(
γ′pi,1,j(ξi, t) + γ′pi,2,j(ξi, t)

)
+ s−ξi

2

(
γ′′pi,1,j(ξi, t) + γ′′pi,2,j(ξi, t)

)
if δi,j = 1, i > j, j ∈M

0 otherwise.

We can calculate γ′′i,j(s, t) in the same way as in (S.20), since we again have symmetry in the
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function:

γ′′i,j(s, t) =



γ′′i (s, t) if i = j

γ′′i,pj,1
(s, ξi) if δi,j = 1, i < j, j ∈ S

1
2

(
γ′′i,pj,1

(s, ξi) + γ′′i,pj,2
(s, ξi)

)
if δi,j = 1, i < j, j ∈M

γ′′j,i(t, s) if δi,j = 1, i > j

0 otherwise.

Now for the function γi(s, t). We can use the same technique in (S.19) but decompose both

arguments to the covariance since they are the same path. For example, if target i is a birth or an

initial target, then we have

γi(s, t) = Cov
(
Xi(ξi) +X ′

i(ξi)(s− ξi) + σiGi(s− ξi) , Xi(ξi) +X ′
i(ξi)(t− ξi) + σiGi(t− ξi)

)
= σ2

X0
+ (s− ξi)(t− ξi)σ2

X′
0
+ σ2

i Cov(Gi(s− ξ), Gi(t− ξ)), (S.21)

where for an IBM

Cov(Gi(s), Gi(t)) =
(s ∧ t)2(s ∨ t)

2
− (s ∧ t)3

6
.

If target i is a split then we have

γi(s, t) = Cov
(
Xpi,1(ξi) + ψs,i +

[
X ′

pi,1
(ξi) + ψ′s,i

]
(s− ξi) + σiGi(s− ξi) ,

Xpi,1(ξi) + ψs,i +
[
X ′

pi,1
(ξi) + ψ′s,i

]
(t− ξi) + σiGi(t− ξi)

)
= γpi,1(ξi, ξi) + σ2

Xs
+ (t+ s− 2ξi)γ′pi,1

(ξi, ξi) + (s− ξi)(t− ξi)
(
γ′′pi,1

(ξi, ξi) + σ2
X′

s

)
+

σ2
i Cov(Gi(s− ξ), Gi(t− ξ)) (S.22)

and the calculation is very similar for a merging event. The general form for γi(s, t) is then given
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by

γi(s, t) =



σ2
X0

+ (s− ξi)(t− ξi)σ2
X′

0
+ σ2

i Cov(Gi(s− ξ), Gi(t− ξ)) if i ∈ B

γpi,1(ξi, ξi) + σ2
Xs

+ (t+ s− 2ξi)γ′pi,1
(ξi, ξi)+

(s− ξi)(t− ξi)
(
γ′′pi,1

(ξi, ξi) + σ2
X′

s

)
+ σ2

i Cov(Gi(s− ξ), G′
i(t− ξ)) if i ∈ S

1
4

(
γpi,1(ξi, ξi) + γpi,2(ξi, ξi) + 2γpi,1,pi,2(ξi, ξi)

)
+ σ2

Xm
+

s+t−2ξi

4

(
γ′pi,1

(ξi, ξi) + γ′pi,2
(ξi, ξi) + γ′pi,1,pi,2

(ξi, ξi) + γ′pi,2,pi,1
(ξi, ξi)

)
+

(s−ξi)(t−ξi)
4

(
γ′′pi,1

(ξi, ξi) + γ′′pi,2
(ξi, ξi) + 2γ′′pi,1,pi,2

(ξi, ξi)
)

+

(s− ξi)(t− ξi)σ2
X′

m
+ σ2

i Cov(Gi(s− ξ), Gi(t− ξ)) if i ∈M.

Using the same strategy as in (S.21) and (S.22) we can calculate γ′i(s, t) as

γi(s, t) =



(s− ξi)σ2
X′

0
+ σ2

i Cov(Gi(s− ξ), G′
i(t− ξ)) if i ∈ B

γ′pi,1
(ξi, ξi) + (s− ξi)

(
γ′′pi,1

(ξi, ξi) + σ2
X′

s

)
+ σ2

i Cov(Gi(s− ξ), G′
i(t− ξ)) if i ∈ S

1
4

(
γ′pi,1

(ξi, ξi) + γ′pi,2
(ξi, ξi) + γ′pi,1,pi,2

(ξi, ξi) + γ′pi,2,pi,1
(ξi, ξi)

)
+

s−ξi

4

(
γ′′pi,1

(ξi, ξi) + γ′′pi,2
(ξi, ξi) + 2γ′′pi,1,pi,2

(ξi, ξi)
)

+ (s− ξi)σ2
X′

m
+

σ2
i Cov(Gi(s− ξ), G′

i(t− ξ)) if i ∈M.

For the IBM,

Cov(Gi(s), G′
i(t)) = E

{(∫ s

0
Bi(u)du

)
Bi(t)

}
=

∫ s

0
E {Bi(u)Bi(t)} du

=
∫ s

0
(u ∧ t)du

=
(s ∧ t)2

2
+ t(s− s ∧ t).
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Lastly, we can use the same strategy to calculate γ′′i (s, t),

γi(s, t) =



σ2
X′

0
+ σ2

i Cov(G′
i(s− ξ), G′

i(t− ξ)) if i ∈ B

γ′′pi,1
(ξi, ξi) + σ2

X′
s
+ σ2

i Cov(G′
i(s− ξ), G′

i(t− ξ)) if i ∈ S

1
4

(
γ′′pi,1

(ξi, ξi) + γ′′pi,2
(ξi, ξi) + 2γ′′pi,1,pi,2

(ξi, ξi)
)

+ σ2
X′

m
+

σ2
i Cov(G′

i(s− ξ), G′
i(t− ξ)) if i ∈M

and this completes the description of the covariances.

S.3 Further Details for the Tracking Estimate

In this section we give the details behind the calculation of the conditional density

[U ,V,P | Z = z](u, v, p) (S.23)

used to achieve our tracking estimate in (4.9).

In (S.12) of Section S.1 we have written out the density for

(U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af )

which is the collection of all of the variables in the model of Section 3. Here the script letter

denotes the collection of those variables for all targets at all times. For example, X = {(Xi(tj) :

j = 1, . . . , n; i = 1, . . . ,m} is the collection of all x-coordinate values for each target at all times it

was observed; see Section S.1.1.3.

Recall that W is the observability variable and Y is the y-coordinate. We also let A denote

the collection of all attribute variables we wish to include. For example we might have A =

(R(1),R(2),Q(2), I), which are the smallest radius, largest radius, angle of orientation and intensity

for targets respectively. Recall that the variable Nf (t) is the number of false alarms at time t

so that N f = (Nf (t1), . . . , Nf (tn)) contains the number of false alarms at each time point. The

remaining variables X f , Yf , and Af are the collection of x and y coordinates for false alarms and
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attributes for false alarms respectively.

We will use the density for (U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ) to calculate the density in (S.23).

Notice that there is a one–to–one mapping

g : (P,Z) → (W,X ,Y,A,N f ,X f ,Yf ,Af ,Z).

So for a given Z, the information contained in P and (W,X ,Y,A,N f ,X f ,Yf ,Af ) is the same.

Let

g∗ : (P,Z) → (W,X ,Y,A,N f ,X f ,Yf ,Af )

be the function g without the last variable in its output. Then we can write

[U ,V,P | Z](u, v, p | z) = P{U = u,V = v,P = p | Z = z}

= P{U = u,V = v, (W,X ,Y,A,N f ,X f ,Yf ,Af ) = g∗(p, z) | Z = z}

= [U ,V, (W,X ,Y,A,N f ,X f ,Yf ,Af ) | Z](u, v, g∗(p, z) | z). (S.24)

It is assumed that the distribution of Z given (U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ) is point uni-

form on the possible permutations of the values of (X ,Y,A,X f ,Yf ,Af ) within each time tj , so

[Z | U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](z | u, v, w, x, y, a, nf , xf , yf , af ) =
1∏n

j=1mj !
IB(z), (S.25)

where

B = {z : g∗(p, z) = (w, x, y, a, nf , xf , yf , af ) for some p}.

So we can calculate the likelihood of (U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ,Z) by multiplying the like-

lihood given in (S.12) by that in (S.25). To then obtain the density in (S.24), note that for a given

value of Z = z,

[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af | Z] ∝ [U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ,Z]

and also realize that for a given z, there are a countable number of arguments
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αi = (ui, vi, wi, xi, yi, ai, nf,i, xf,i, yf,i, af,i) that will make

[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af | Z](αi | z) > 0.

There is actually a finite number of values of (X ,Y,A,X f ,Yf ,Af ) since they must be a permutation

of the values in Z at each time. But there could be as many as a countable number combinations

of births, deaths, splitting and merging events that could be represented by U and V. This means

that we must have

[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af , | Z](αi | z) =
[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ,Z](αi, z)∑∞
j=1[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ,Z](αj , z)

=
[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](αi)∑∞
j=1[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](αj)

,

where the second equality comes from the fact that the contribution of Z to the density is a constant

by (S.25). Now by equation (S.24) we have

[U ,V,P | Z](u, v, p | z) =
[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](u, v, g∗(p, z))∑∞

j=1[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](uj , vj , g∗(pj , z)))
,

where {(uj , vj , pj) : j = 1, 2, . . . } is an enumeration of the possible tracking solutions.

As discussed in Section 4 we also wish to calculate the conditional density of (U ,V,P) given

Z = z and the event (U ,V,P) ∈ K, where K = {(ui, vi, pi) : i = 1, . . . ,K}. This is given by

[U ,V,P | Z, (U ,V,P) ∈ K](u, v, p | z) =
[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](u, v, g∗(p, z))∑K

j=1[U ,V,W,X ,Y,A,N f ,X f ,Yf ,Af ](uj , vj , g∗(pj , z))
.

S.4 Full Description of the Modified MHT Algorithm

As mentioned in Section 4.3, when we receive a new set of observations, Zj = (Z1(tj), . . . , Zmj (tj)),

at time tj we will assume that each observation Zi(tj) is either:

1. an observation from an existing target track,

2. the first observation from a target resulting from birth,
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3. the first observation from a target resulting from split,

4. the first observation from a target resulting from merger, or

5. a false alarm.

Existing tracks that do not receive a new observation to continue the track at time tj must either

1. go missing (stay missing), or

2. terminate.

At time t1 we consider all combinations of each observation treated as an initial target observa-

tion or a false alarm. Now assume that we have a set of solutions (hypotheses) for the observations

through time tj−1. We then take the new observations, Zj , at time tj and form updated solutions

based on all possible combinations of the possibilities listed above. We then hold on to only a

subset of these new solutions (those with the highest likelihood) to use to form solutions at the

next time step, tj+1. The actual number of solutions to make it through to the next time will vary.

Let max{Lj} be the likelihood of the best solution at time tj . At each time, tj , we hold on to all

solutions that have likelihood greater than cmax{Lj} where c < 1 is a user-defined parameter. In

the interest of speed, we also set a limit, Ks, for the maximum number of solutions that make it

through to the next time. The control parameters c and Ks will vary depending on the complexity

of the problem. In the problems of Sections 5 and 6 these were set to c = e−10 and Ks = 200.

Of course it is very inefficient to examine all possible combinations at each time, so we form

gates for each of the tracks. A gate is a prediction region for a new observation from a track at

time tj given the previous observations assumed to be part of the track. In Sections 5 and 6 we

used a confidence level of pg = 0.9999 for the gate or prediction region. We then limit the possible

observations for inclusion into a track to only those that fall into the gate for that track.

We can also do a similar form of gating for observations that we are considering to be the first

observations of new tracks resulting from the split of an existing track. We can form a prediction

region for (Xi(tj), Yi(tj))+(ψX,s, ψY,s). Recall that ψX,s is the random error term for the amount the

child’s x-location will be different from the parent’s at the time of split and similarly for ψY,s. This
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can be accomplished by simply adding σ2
Xs

and σ2
Ys

to the x and y components of the conditional

variance for the prediction of a new observation in a track. We can then form the prediction region

or gate using this inflated variance. We only consider pairs of new observations within this region

to possibly be a split pair from the existing track.

For a possible merging event, we can also form a similar region. We can compute the prediction

region for the difference between a pair of existing tracks plus a random ψd term, for example

(X1(tj) − X2(tj), Y1(tj) − Y2(tj)) + (ψX,d, ψY,d). Recall ψX,d is the random distance between the

parents at the time of a merging event. If the prediction region for this quantity includes zero, we

will consider possibility that these targets are the parents in a merging event.

Now suppose targets 1 and 2 can be considered as parents for a possible merging event. We

must also find an observation to possibly be the first observation of the track that they merge into.

So we must form another prediction region for 1/2(X1(tj)+X2(tj), Y1(tj)+Y2(tj))+ (ψX,m, ψY,m).

We would then only consider new observations within this region to be from a new track resulting

from the merging of tracks 1 and 2. Note that these prediction regions assume that the merging

event takes place at tj when it really would have taken place at some time in the interval (tj−1, tj),

but this seems to be adequate provided the time points are not too spread out.

The prediction regions described above can be calculated efficiently via the Kalman Filter by

ignoring the dependency resulting from merging and splitting. That is, the first observation is

assumed fixed and the others are calculated assuming the model given in (3.3) and independent

of other tracks. It is possible to improve these regions by using the innovations algorithm to

compute the conditional distribution of new observations from a track taking into account the

previous splitting and merging. This would also be more time consuming however, since the actual

covariances take longer to compute than those under the assumed independence of tracks.

In addition to gating, we can usually separate the entire tracking problem into several smaller

tracking problems that are “disjoint” from each other. That is, there are often situations where the

area (in space and time) that one group of targets occupies does not intersect the area that another

group of targets occupies. These groups of observations can be identified with a simple heuristic

approach and the algorithm described above can then be applied to each group separately.
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We now discuss a way to improve upon the approximate solution provided by the MHT. Suppose

we are running the algorithm on a fixed number, n, of time points, and we obtain the set of likely

solutions for the last time tn. Consider the following situation. The solution that would eventually

be optimal (have the highest likelihood) at time tn has a likelihood that is not very high early

on in the algorithm when considering only a subset of all the times. We can only hold on to a

limited number of possible solutions at each time, so it is possible that the optimal solution will be

discarded at an earlier time less than tn and thus never recovered.

In this case however, the MHT will likely produce a solution that is close to the optimal one.

We can improve the set of solutions obtained at the last time, tn, by a greedy exchange algorithm

similar to that described by Sethi and Jain (1987). This basically considers making several simple

changes to a solution. If a change results in an increased likelihood, then make the change. This

process continues until there are no more beneficial changes to be made.

There are many other changes that we could consider making to improve the performance of

the algorithm, but from initial results of the MHT, it seemed to do a very good job of classifying

the splitting and merging events correctly according to likelihood, as well as identifying the correct

correspondences of observations within tracks. However, where it seemed to struggle the most, was

to form short tracks that were made up only of false alarms. This is likely because it had to discard

the correct solution, before it realized it would have to pay a penalty when it eventually killed this

incorrect track after a short time. In any case, the greedy exchange algorithm we use here only

considers the possibility of changing short tracks (≤ k observations) into false alarm observations.

For the results in Sections 5 and 6 we set k = 3. Considering other possible changes in the greedy

exchange step would only improve results.

So for each of the solutions produced when the MHT finishes, we will go through and consider

changing any track with less than 4 observations to a collection of false alarm observations. If one

of these changes improve the likelihood, then we will keep it.
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S.5 Details on Parameter Estimation

In this section we describe how we estimate the parameters of the model given in Section 3. In

most cases these estimates are the maximum likelihood estimates (MLE’s). In some cases however,

the MLE would be too computationally expensive to compute, and we will use other reasonable

choices for estimates.

Also for first few time points of the MHT algorithm, some of the estimates given here cannot be

computed because there are two few data points. In these cases, we need an initial guess for some

of the parameter values. Here we simply used the midpoint (or geometric midpoint for variance

parameters) of the parameter limits for an initial guess until enough data was available to estimate

these parameters.

S.5.1 Parameters of the Event Model

The Event Model parameters are λ0, λb, λd, λs and λm. There is also the false alarm rate pa-

rameter, λf . For the Event Model parameters one can calculate approximate MLE’s based on the

approximate likelihood given in Section S.1.1.1. The MLE for λ0 is obviously

λ̂0 = N0,

where recall N0 is the initial number of targets.

Now consider the estimation of the death rate, λd. From the approximation in (S.4) we can

consider the Ud,j for j = 1, . . . , n as independent Poisson observations with parameter N̄jλd,j∆tj .

Recall that N̄j is the average number of targets alive in the interval [tj , tj+1). Denote the collection

of N̄j ’s by N̄ . Then the contribution to the likelihood in (S.5) from Ud is

[
Ud | N̄

]
(u) =

n∏
j=1

(N̄jλd,j∆tj)uje−N̄jλd,j∆tj

uj !
.
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So the derivative of the log likelihood is

d

dλd
log
[
Ud | N̄

]
(u) =

n∑
j=1

uj

λd
− N̄j∆tj . (S.26)

Setting (S.26) equal to zero gives

λ̂d =

∑n
j=1 Ud,j∑n

j=1 N̄j∆tj
.

In a similar fashion the approximate MLE’s of λb, λs and λm can be shown to be

λ̂b =

∑n
j=1 Ub,j∑n
j=1 ∆tj

λ̂d =

∑n
j=1 Us,j∑n

j=1 N̄j∆tj

λ̂d =

∑n
j=1 Um,j∑n

j=1(N̄j − 1)∆tj
.

Lastly, consider estimation of the false alarm rate, λf . The number of false alarms at each time

Nf (tj) is Poisson with parameter λf so the MLE for λf is

λ̂f =

∑n
j=1Nf (tj)

n
.

S.5.2 Parameters of the Observability Model

If we assume the simple iid model for missing observations, then the MLE for the observability

model parameter, Pd, is the ratio of the number of times the targets were observable to the number

of times they existed

P̂d =

∑M
i=1

∑n
j=1Wi(tj)I[ξi,ζi](tj)∑M

i=1

∑n
j=1 I[ξi,ζi](tj)

.

S.5.3 Location Parameters

The derivative of the location density is difficult to compute analytically because of the matrix

algebra involved. Exact MLE’s would then require a time consuming iterative method. We therefore

decided to use alternatives to the MLE’s for the location parameter estimates. We will present these

estimates for the x-coordinate parameters. The estimates for the y-coordinate parameters will be
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the same with the obvious notational changes.

S.5.3.1 White Noise Variance

We will first consider estimation of the white noise error variance σ2
Xe

. For the IBM model, the

observed location for a path is

X∗
i (tj) = Xi(ξi) + tX ′

i(ξi) + σ2
i

∫ tj−ξi

0
Bi(s)ds+ εi,j .

So if we make a derivative approximation, we have

Di,j

∆tj
=
X∗

i (tj+1)−X∗
i (tj)

∆tj
≈ X ′

i(ξi) + σ2
iBi(tj − ξi) +

1
∆tj

(εi,j+1 − εi,j).

If we then take the consecutive differences of the Dj/∆tj we have

D2
i,j =

Di,j+1

∆tj+1
− Di,j

∆tj

≈ σ2
i (Bi(tj+1 − ξi)−Bi(tj − ξi)) +

1
∆tj∆tj+1

(∆tjεi,j+2 − (∆tj+1 + ∆tj)εi,j+1 + ∆tj+1εi,j) .

The covariance of consecutive D2
j ’s is given by

Cov(D2
j , D

2
j+1) ≈ Kjσ

2
Xe
,

where

Kj = −∆tj(∆tj+1 + ∆tj+2) + ∆tj+2(∆tj + ∆tj+1)
∆tj∆t2j+1∆tj+2

.

Hence a method of moments estimate for the measurement error variance is

σ̂2
Xe

=
1
N

M∑
i=1

∑
j∈Oi

D2
i,jD

2
i,j+1

Kj
, (S.27)
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where Oi is the set of indices, j, that we have four consecutive times tj , tj+1, tj+2, tj+3 where the

ith target is observable,

Oi = {j : Wi(tj) = Wi(tj+1) = Wi(tj+2) = Wi(tj+3) = 1}

and N =
∑

i n(Oi) is the total number of terms in the sum in (S.27).

S.5.3.2 IBM Variance Scalar

For the estimate of the variance scalar σ2
i for the ith target, we will make use of the estimate for σ2

Xe

and use a local linear regression to estimate Xi(tj)’s given the observations X∗
i (tj) = Xi(tj) + εi,j .

Once we have an estimate for the Xi(tj)’s, we can form an estimate for σ2
i .

The criterion for selection of the bandwidth h will based on the following rule presented on

pages 100-101 of Schimek (2000). Dropping the subscript i, we have n observations X∗(tj) and we

wish to estimate X(tj). Denote this estimate as m̂(tj , h). Then as described in Schimek (2000),

the prediction risk is

E

 n∑
j=1

(X∗(tj)− m̂(tj , h))2

 = E

 n∑
j=1

(X(tj)− m̂(tj , h))2

+ σ2
Xe

(n− 2tr(S)) (S.28)

so
1
n

n∑
j=1

(X∗(tj)− m̂(tj , h))2 ≈
1
n

n∑
j=1

(X(tj)− m̂(tj , h))2 +
σ̂2

Xe

n
(n− 2tr(S)).

Since it is our goal to minimize the estimation risk which is the first term on the right side of (S.28),

we will use the bandwidth, h, that minimizes the quantity

R(h) =
1
n

n∑
j=1

(X∗(tj)− m̂(tj , h))2 −
σ̂2

Xe

n
(n− 2tr(S)).

We will only use this approach to estimate Xi(tj) if there are more than k observations for the ith

path. We set k = 6 in practice.

Now we turn to the problem of estimating σ2
i . We can do this in the following way. From the
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above discussion, we now have an estimate, X̂i(tj), for Xi(tj) and

X̂i(tj) ≈ Xi(0) + tX ′
i(0) + σ2

iGi(tj),

where Gi(t) is an IBM, Gi(t) =
∫ t
0 Bi(s)ds. The consecutive difference quotient is

D̂i,j

∆tj
=
X̂i(tj+1)− X̂i(tj)

∆tj
≈ X ′

i(0) +
σ2

i

∆tj
(Gi(tj+1)−Gi(tj)).

And taking consecutive differences of the D̂i,j/∆tj ’s gives

D̂2
i,j =

D̂i,j+1

∆tj+1
− D̂i,j

∆tj
≈ σ2

i

∆tj∆tj+1
(∆tjGi(tj+2)− (∆tj + ∆tj+1)Gi(tj+1) + ∆tj+1Gi(tj)) .

The variance of D̂2
i,j is then

Var(D̂2
i,j) ≈ Cjσ

2
i ,

where Cj is given by

Cj =
1

(∆tj∆tj+1)2

[
∆t2j

t3j+2

3
+ (∆tj + ∆tj+1)2

t3j+1

3
+ ∆t2j+1

t3j
3
−∆tj(∆tj + ∆tj+1)

(
t2j+1tj+2 −

t3j+1

3

)

−∆tj∆tj+1

(
t2j tj+2 −

t3j
3

)
−∆tj+1(∆tj + ∆tj+1)

(
t2j tj+1 −

t3j
3

)]
.

Hence a method of moments estimate for σ2
i is

σ̂2
i =

1
N

∑
j∈Oi

(D2
i,j)

2

Cj
(S.29)

where here Oi is the set of indices, j, that we have three consecutive times tj , tj+1, tj+2 where the

ith target is observable,

Oi = {j : Wi(tj) = Wi(tj+1) = Wi(tj+2) = 1}

and N =
∑

i n(Oi) is the total number of terms in the sum in (S.29).
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Again, we only estimate σ2
i in this way if we have greater than k = 6 observations for the ith

path. If the ith path has less than k observations, then we let σ2
i equal the weighted average of the

σ2
i estimates of the other paths.

S.5.3.3 Initial Conditions Parameters

To estimate the initial conditions parameters, µX0 , σX0 , µX′
0
, and σX′

0
, we will also take advantage

of the local regression fits X̂i(t). We can use the local regression to estimate Xi(ξi). Let ti,j be the

jth time at which the ith path is observed for j = 1, . . . , ni. We can then estimate X ′
i(ξi) as

X̂
′
i(ξi) =

X̂i(ti,1)− X̂i(ξi)
ti,1 − ξi

.

If the ith path has fewer than k = 6 observations, then we can simply let X̂i(ξi) = Xi(ti,1) and

X̂
′
i(ξi) = (Xi(ti,2)−Xi(ti,1))/(ti,2 − ti,1).

Let B = {i : target i is a an initial target or a birth}, and let n(B) be the number elements in

B. We can construct estimates for the initial conditions parameters as

µ̂X0
=

1
n(B)

∑
i∈B

X̂i(ξi)

σ̂2
X0

=
1

n(B)

∑
i∈B

(
X̂i(ξi)− µ̂X0

)2

µ̂X′
0

=
1

n(B)

∑
i∈B

X̂
′
i(ξi)

σ̂2
X′

0
=

1
n(B)

∑
i∈B

(
X̂
′
i(ξi)− µ̂X′

0

)2
.

S.5.3.4 Splitting and Merging Parameters

Here we will construct estimates for the parameters involved in the initial conditions of splitting

or merging events, σXs , σX′
s
, σXm , σX′

m
, and σXd

. In order to do this we need estimates for Xi(ζi)

and X ′
i(ζi). We can also use the local regression to estimate Xi(ζi) and in a similar manner we can

estimate X ′
i(ξi) as

X̂
′
i(ζi) =

X̂i(ζi)− X̂i(ti,n)
ζi − ti,n

.
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Adopt the convention of Section 3.3 and denote the indices of the parents of target i (if it has

any) as pi,1 and pi,2. Recall that σXs is the variance of

ψs,i = Xpi,1(ξi)−Xi(ξi)

and σX′
s

is the variance of

ψ′s,i = X ′
pi,1

(ξi)−X ′
i(ξi)

for any path i that is the child of a splitting event. If we let S = {i : target i is the child of a splitting event}

and n(S) be the number elements in S, then we can construct estimates for these parameters as

σ̂2
Xs

=
1

n(S)

∑
i∈S

(
X̂pi,1(ζpi,1)− X̂i(ξi)

)2

σ̂2
X′

s
=

1
n(S)

∑
i∈S

(
X̂
′
pi,1

(ζpi,1)− X̂
′
i(ξi)

)2
.

Similarly, σXm is the variance of

ψm,i =
1
2
Xpi,1(ξi) +

1
2
Xpi,2(ξi)−Xi(ξi)

and σX′
m

is the variance of

ψ′m,i =
1
2
X ′

pi,1
(ξi) +

1
2
X ′

pi,2
(ξi)−X ′

i(ξi)

for any path i that is the child of a merging event. So letM = {i : target i is the child of a merging event}

and we can construct estimates of these parameters as

σ̂2
Xm

=
1

n(M)

∑
i∈M

(
1
2
X̂pi,1(ζpi,1) +

1
2
X̂pi,2(ζpi,2)− X̂i(ξi)

)2

σ̂2
X′

m
=

1
n(M)

∑
i∈M

(
1
2
X̂
′
pi,1

(ζpi,1) +
1
2
X̂
′
pi,2

(ζpi,2)− X̂
′
i(ξi)

)2

.
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Lastly, σXd
is the variance of

ψd,i = Xpi,1(ξi)−Xpi,2(ξi)

for any path i that is the child of a merging event. So its estimate is given by

σ̂2
Xm

=
1

n(M)

∑
i∈M

(
X̂pi,1(ζpi,1)− X̂pi,2(ζpi,2)

)2
.

S.5.4 Size Parameters

Estimation of the size parameters µR1,i , σR1,i , µR2,i , and σR2,i is complicated by the restriction that

mean size must be conserved. Let the size of a target i be defined to be Si(t) = R1,i(t)R2,i(t) as in

Section 3.4. So the constraints are that

E(Si) + E(Si+1) = E(Spi,1) (S.30)

if targets i and i+ 1 are the children of a splitting event and

E(Si) = E(Spi,1) + E(Spi,2) (S.31)

if target i is the child of a merging event.

A brief overview of the plan here is to first estimate the mean size for each target, E(Si), under

the constraints above. Then estimate the scale parameter, σ2
Si

, for Si. We will use these to obtain

an estimate for the shape parameter, µSi , of Si. Lastly, we can then estimate the parameters µR1,i ,

σR1,i , µR2,i , and σR2,i by maximum likelihood under the constraints that µR1,i + µR2,i = µSi and

σ2
R1,i

+ σ2
R2,i

= σ2
Si

. This procedure will ensure that the mean size is conserved by these parameter

estimates.

Again let ti,j be the jth time at which the ith path is observed for j = 1, . . . , ni. Notice

that for size we do not have the ambiguity problem that can occur with the radii. For example

S = R1R2 = R(1)R(2), so estimating the actual parameters of the size, Si, is not complicated by

32



only observing the order statistics of the radii. To first estimate the E(Si), we used a weighted

least squares approach. The weights are to be inversely proportional to the sample variance of

the observations for Si. Let Var(Si) denote the sample variance of the Si(ti,j) observations for

j = 1, . . . , ni. Then we wish to find the values of E(Si) that minimize

M∑
i=1

ni∑
j=1

1
Var(Si)

{Si(ti,j)− E(Si)}2 (S.32)

subject to the constraints in (S.30) and (S.31). This is carried out using the Lagrangian Multiplier

method. Denote the resulting minimizers of expression (S.32) as Ê(Si).

We will then estimate the scale parameter for Si, σ2
Si

= σ2
R1,i

+ σ2
R2,i

by the unconstrained

MLE. This is just the sample variance of the log(Si(ti,j)) observations for j = 1, . . . , ni. Denote

this estimate as σ̂2
Si

. Notice that since Si is log-normal

E(Si) = e
µSi

+ 1
2
σ2

Si ,

where µSi = µR1,i + µR2,i is the shape parameter of Si. So once the estimates Ê(Si) and σ̂2
Si

are

obtained, we can let

µ̂Si
= log{Ê(Si)} −

1
2
σ̂2

Si
.

Finally, we can estimate the parameters µR1,i , σR1,i , µR2,i and σR2,i by maximum likelihood

under the constraints that µ̂R1,i
+µ̂R2,i

= µ̂Si
and σ̂2

R1,i
+σ̂2

R2,i
= σ̂2

Si
. If we set µR2,i = µSi−µR1,i and

σ2
R2,i

= σ2
Si
−σ2

R1,i
, this is equivalent to the estimation of µR1,i and σR1,i with µR1,i unconstrained and

σR1,i confined to the interval (0, σ̂2
Si

). Recall from equation (S.13) that this likelihood is a product

of sums, and we will therefore need an iterative method to maximize it. Thus this estimation is

carried out using a Newton Raphson algorithm. Notice however that this is only a two dimensional

maximization and we can use the unconstrained MLE’s assuming R1 = R(1) for the parameters as

starting points. The optimization can therefore be carried out quite quickly. This is the reason

we chose to first reduce the problem to a two dimensional estimation for each target instead of

applying a Newton Raphson approach to the entire problem to begin with.
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S.5.5 Orientation Parameters

For the estimation of the angle of orientation parameters, αi and βi, we again use maximum

likelihood. Recall from (S.14) and (S.15) that the likelihood for the Qi(tj) depends on the R(1),i(tj),

R(2),i(tj) and their corresponding parameters µR1,i , σR1,i , µR2,i , and σR2,i . So we can substitute the

parameter estimates µ̂R1,i
, σ̂R1,i , µ̂R2,i

, and σ̂R2,i from Section S.5.4 into the density for Q given

in (S.16). We then again use Newton Raphson to find the values of αi and βi that maximize the

likelihood given in (S.16).

S.6 Detailed Simulation Results

In this section, we present some results of the tracking algorithm on simulated data. For all of

these simulations, the data, Z, is assumed to come from the model given in Section 3. The random

motion component, Gi(t) is an integrated Brownian Motion for all targets. The parameters used

to simulate the different cases will be given below. All of the simulations use common location

parameters. These values were meant to make the target tracks produced from the model behave

like the storm tracks of Section 6. So in all of the realizations we set, µX0 = −113, σ2
X0

= 100,

µX′
0

= 1.5, σ2
X′

0
= .1, σ2

i = 0.1 for all i, σ2
Xs

= .5, σ2
X′

s
= .01, σ2

Xm
= .125, σ2

X′
m

= .01, σ2
Xd

= 1,

σ2
Xe

= 0, µY0 = 37.5, σ2
Y0

= 100, µY ′
0

= 0, σ2
Y ′
0

= 2, η2
i = .1 for all i, σ2

Ys
= .5, σ2

Y ′
s

= .5,

σ2
Ym

= .125, σ2
Y ′

m
= .01, σ2

Yd
= 1, and σ2

Ye
= 0, where µX0 , σ

2
X0
, . . . , σ2

Xe
are defined in Section 3.3.

The parameters µY0 , σ
2
Y0
, . . . , σ2

Ye
are the counterparts for the y-coordinate. Also σ2

i and η2
i are

the variance scalars multiplied to Gi(t) in equations (3.3), (3.5), and (3.7) for Xi(t) and Yi(t)

respectively.

All of these simulations allow for false alarms to appear at each time with rate λf = 8.0 so we

can expect about 8 false alarms at each time. We also set the probability of detection Pd = 0.95.

The parameters λ0, λb, λd, and λs, and λm are different for each simulation and will be described

for each case.

For the parameter estimation, we restricted the parameter values to the followings sets λ0 ∈

[0, 25], λf ∈ [0, 25], λb ∈ [0.001, .25], λd ∈ [0.001, .15], λs ∈ [0.001, .15], λm ∈ [0.001, .15], Pd ∈

[0.5, 1.0], µX0 ∈ [−120,−85], σ2
X0

∈ [500, 1000], µX′
0
∈ [0, 5], σ2

X′
0
∈ [0.001, 5.0], σ2

i ∈ [0.001, 10.0],
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σ2
Xs

∈ [0.001, 1.5], σ2
X′

s
∈ [0.0, 1.0], σ2

Xm
∈ [0.001, 0.5], σ2

X′
m
∈ [0.0, 1.0], σ2

Xd
∈ [0.001, 5.0], σ2

Xe
∈

[0.0, 1.0], µY0 ∈ [25, 50], σ2
Y0
∈ [500, 1000], µY ′

0
∈ [−5, 5], σ2

Y ′
0
∈ [0.5, 10.0], η2

i ∈ [.001, 10.0], σ2
Ys
∈

[0.001, 1.5], σ2
Y ′

s
∈ [0.0, 1.0], σ2

Ym
∈ [0.001, 0.5], σ2

Y ′
m
∈ [0.0, 1.0], σ2

Yd
∈ [0.001, 5.0], and σ2

Ye
∈

[0.0, 1.0].

There are six cases that we considered here:

(i) Birth only For this simulation we set λ0 = 2.0, λb = 0.20 so that we would have an average

of approximately 2 births in a time interval [0, 9]. We then set λd = λs = λm = 0 so we

could isolate the tracking algorithm’s ability to identify birth events. We also restricted the

simulation to the set of realizations that have at least one birth event.

(ii) Death only In these simulations, we set λ0 = 4.0, λd = 0.10. This makes for an average of

about 2.5 deaths in the time interval and we restricted our focus to the set of realizations

that had at least one death. We then set λb = λs = λm = 0.

(iii) Splitting only In the splitting only simulations, we forced there to be exactly one target

that split into two targets at a random uniformly distributed time in the interval (1.0, 8.0).

(iv) Merging only In a similar manner to the splitting only simulations, the merging only simu-

lations, have exactly one merger by two targets at a uniformly distributed time in the interval

(1.0, 8.0).

(v) Completely Random These are completely unrestricted realizations from the model with

event parameters set as λ0 = 4, λb = 0.1, λd = .02, λs = 0.06, and λm = .08.

(vi) Completely Random w/ Size These are the same realizations as in case (v) but now with

size information to be used in the tracking algorithm. The radius variables R(1) and R(2) are

being used along with location here to compute the likelihood.

For each realization we would generate two random variables z1 ∼ N (0.6, .01), z2 ∼ N (0.8, .01)

and set µR1,i = z1 ∧ z2, µR2,i = z1 ∨ z2. We then set the log-normal scale parameters,

σ2
R1,i

= σ2
R2,i

= 0.025 for all i. In the parameter estimation, parameter limits for size were set

for µS,i = µR1,i +µR2,i and σ2
S,i = σ2

R1,i
+σ2

R2,i
. The parameter limits for µS,i were set to be the
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min and max of the observed values of the log sizes, µS,i ∈ [min{log(Si,j)},max{log(Si,j)}]

and σ2
S,i ∈ [0.001, 1.0]. Also recall that µS,i is also restricted by merging and splitting so that

the mean size of the parent(s) adds to the mean size of the child(ren). The radius parameters

were otherwise free in the maximum likelihood estimation.

We set the false alarm size parameters to µR1,f
= 0.00, µR2,f

= 0.25, and σ2
R1,f

= σ2
R2,f

= 0.25.

This produces false alarms that are smaller than targets on average, but possibly similar in

size to small or medium size targets.

For each case we generated N = 100 realizations. These simulations take place on the time

interval [0, 9] with ∆tj = 1 for all j so that t = (0, 1, . . . , 9). An example of a realization from the

completely random (CR) model was given in Figure 5 in the main article. We wish to investigate

the same hypotheses 1-4, posed in the previous section now with the presence of clutter (i.e., false

alarms).

In these simulations we have the following hypotheses we wish to investigate.

1. The percentage of births, deaths, splits, and mergers labeled correctly in each of the first four

simulations respectively, will be roughly equal to the rates of correctly labeled events in the

full model realizations of simulation (v).

2. Since birth is symmetric to death in reverse time, we would expect that the rate of correctly

labeled births would be similar to that of correctly labeled deaths.

3. Since also splitting is symmetric to merging in reverse time, we would expect that the rate of

correctly labeling these two events would be similar.

4. The results with additional size information in simulation (vi) should be an improvement over

those in simulation (v).

S.6.1 Simulation Results for Cases (i)-(vi)

The simulation results of each of the six cases are given as the columns of Table S.1. In the following

we describe each of the summary statistics that make up the rows of Table S.1.
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Birth Death Split Merge CR CR w/Size
% Best Est Correct 72.0 60.0 61.0 82.0 67.0 92.0

% Births Correct 94.8 - - - 83.1 100.0
% Deaths Correct - 79.2 - - 70.2 95.7
% Splits Correct - - 93.0 - 87.0 100.0

% Mergers Correct - - - 97.0 90.7 98.7
% Targets Correct 99.3 99.0 98.9 99.9 99.0 99.8

% FAs Correct 97.4 95.2 97.4 99.5 99.2 99.6
% Falling in 95% CS 94.0 79.0 86.0 98.0 81.0 96.0

(5%) 0.015 0.000 0.001 0.059 0.000 0.068
Prob of True (25%) 0.292 0.090 0.074 0.598 0.207 0.996

(50%) 0.850 0.685 0.746 0.947 0.996 0.996
(5%) 0.315 0.209 0.294 0.363 0.265 0.790

Prob of Best Est (25%) 0.614 0.508 0.583 0.695 0.582 0.996
(50%) 0.906 0.877 0.891 0.947 0.996 0.996
(5%) 0.881 0.610 0.831 0.938 0.856 1.000

Track Purity (25%) 1.000 1.000 1.000 1.000 0.956 1.000
(50%) 1.000 1.000 1.000 1.000 1.000 1.000
(5%) 0.903 1.000 0.997 1.000 0.869 1.000

Prob of Target (25%) 1.000 1.000 1.000 1.000 1.000 1.000
(50%) 1.000 1.000 1.000 1.000 1.000 1.000
(5%) 0.922 0.705 0.897 0.922 1.000 1.000

Prob of FA (25%) 1.000 1.000 1.000 1.000 1.000 1.000
(50%) 1.000 1.000 1.000 1.000 1.000 1.000

Table S.1: Results of 100 Realizations With Clutter

% Best Est Correct This is the percentage of times that (Û , V̂, P̂) from (4.12) was equal to the

correct solution (U ,V,P).

% Births Correct Percentage of all birth events in the simulation that were labeled correctly by

the estimate, (Û , V̂, P̂).

% Deaths Correct Percentage of all death events in the simulation that were labeled correctly

by the estimate.

% Splits Correct Percentage of all splitting events in the simulation that were labeled correctly

by the estimate.

% Mergers Correct Percentage of all merging events in the simulation that were labeled correctly

by the estimate.
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% Falling in 95% CS We form a 95% confidence set of solutions for each realization. This is the

percentage of times that the 95% confidence set contained the correct solution.

Prob of True This is the estimated posterior probability that the correct solution, (U ,V,P),

is correct calculated using (4.13). These three rows are respective quantiles from the 100

realizations for these probabilities

Prob of Best Est This is the estimated probability that the estimate (Û , V̂, P̂) in (4.9) is correct

given the data, again presented by the quantiles.

Track Purity These three rows are quantiles for the overall track purity for each realization. The

overall track purity is defined in the paragraph below.

% Targets Correct This is the percentage of all targets at all times in the simulation that were

labeled correctly as targets by the estimate (Û , V̂, P̂).

% FAs Correct Percentage of all false alarms in the simulation that were labeled correctly by

the estimate.

Prob of Target This is the probability given the data that a given target at the last time step

should be labeled a target. The three rows are the quantiles of these probabilities over all of

the targets in the last time step in all of the realizations.

Prob of FA This is the same as “Prob of Target” only for false alarms.

We present a definition of track purity that is slightly different than that given by Mori, Chang,

Chong, and Dunn (1986). In the correct solution, (U ,V,P), consider a given track i composed of

observations produced by target i. Of all the tracks that make up the estimate (Û , V̂, P̂), find the

track i′ that contains the most observations in common with track i in (U ,V,P). The track purity

for track i is defined to be the proportion of the observations that make up track i that are also

part of track i′ in the estimate (Û , V̂, P̂). The overall track purity is then the weighted average (by

number of observations in the track) of individual track purities.

For example if (U ,V,P) had two tracks; track 1 with 5 observations and track 2 with 10

observations. And the estimate, (Û , V̂, P̂), has three tracks; track 1, track 2, and track 3. Where
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track 1 in (Û , V̂, P̂) is identical to track 1 in (U ,V,P). Track 2 in (Û , V̂, P̂) is the first 7 observations

of track 2 in (U ,V,P) and track 3 in (Û , V̂, P̂) is the last 3 observations of track 2 in (U ,V,P).

Then the track purity for track 1 is 1.0. The track purity for track 2 is 0.7 and the overall track

purity is [5(1.0) + 10(0.7)]/15 = 0.8.

Now refer back to the four hypotheses we posed earlier. Recall that the first hypothesis states

that the first four simpler simulations will translate their error rates to the more complicated CR

model case. From Table S.1 we can see that the percentage of births labeled correctly in the birth

only simulation (94.8%) is somewhat higher than that in the CR model (83.1%). The percentage

of deaths labeled correctly in the death only case (79.2%) is also a bit higher than that for the

CR model (70.2%). The percentage of splits correct in the splitting only case is closer to the CR

model, (93.0%) versus (87.0%). Lastly the percentage of mergers correct in the merging only case

is also slightly higher than in the CR model, (97.0%) to (90.7%). So it appears that these rates for

the first four simulations are in general a little bit higher than those for the CR model simulation.

For the second hypothesis, the percentage of births correct in the birth only case (94.8%) is

again a bit higher than the percentage of deaths correct in the death only case (79.2%). This is

again likely due to deaths near the end of the time window and high death rate resulting in shorter

tracks. In fact, the fifth percentile for track purity in the death only case is only 0.610 here which

leads us to believe there are a few instances where the algorithm decided to label a short track as

clutter instead of paying the price for a death.

For the third hypothesis, the percentage of splits correct in the splitting only case (93.0%) is

again quite similar to the percentage of mergers correct in the merging only case (97.0%). So again

there is a good indication that third hypothesis is correct.

Recall that the last hypothesis says that the size information will improve the results. This

was not abundantly clear in the simulations without clutter. However, in the presence of clutter,

the size information adds quite a bit of discernment power. The percentage of correct estimates

jumps from 67.0% for the CR model without size to 92.0% for the CR model with size. Also if

we look at the probability given the data that the correct solution is correct we see that these

are substantially higher when we include size. Lastly, the coverage of the 95% confidence sets is
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significantly improved from 81.0%, to 96.0% when we use size in the algorithm.

The coverage of the 95% confidence sets for these simulations (94.0%, 79.0%, 86.0%, 98.0%,

81.0%, and 96.0% for simulations 1-6 respectively) dropped off some from the simulations without

clutter. One explanation for this, referring back to (4.10), is that these sets assume that that the

correct answer is in the collection of solutions we obtained from the MHT algorithm. If it is not

always in this collection, then of course our distribution of solutions given in (4.10) will not be

correct. Also, since we estimate parameters for each of the possible solutions, this also introduces

some bias. Overall though, these confidence sets and probabilities provide us with at least a rough

guide as to how confident we should be in the estimated solution(s).

Notice that although the estimate is not always the correct solution for these simulations, the

track purity values are always high. Only 5% of track purities for any of the cases was below 0.88

with the exception of the death only simulation which had 5% below 0.610. The percentages of

Targets correct and false alarms correct were also uniformly high. These were usually around 99%

for most cases and never lower than 95.2% for any of the simulations.

S.6.2 Decreasing Time Increments

The set of simulations considered in the section uses a model identical to that of the CR model

realizations with clutter of Section S.6.1. Here however, we use three different time increments,

∆t = 1.0, ∆t = 0.5, and ∆t = 0.1. The conjecture here is that there is a convergence of the

estimate to the correct solution as the time increment approaches zero.

From Table S.2 we can see that the estimation does improve substantially as ∆t becomes

smaller. We see a dramatic improvement in the number of correct estimates. The percentage goes

from 67.0% for the ∆t = 1.0 case, to 79.0% for the ∆t = 0.5 case, to 99.0% for the ∆t = 0.1 case.

Also for the probability of the correct solution given the data, 25% of the ∆t = 1.0 probabilities

are less than 0.207, but only 5% of the ∆t = 0.1 probabilities are less than 0.834. It appears as

though there is a convergence of this estimate to the correct solution.
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CR, ∆t=1.0 CR, ∆t=0.5 CR, ∆t=0.1
% Best Est Correct 67.0 79.0 99.0

% Births Correct 83.1 88.2 100.0
% Deaths Correct 70.2 91.1 98.2
% Splits Correct 87.0 95.7 100.0

% Mergers Correct 90.7 97.7 100.0
% Targets Correct 99.0 99.7 100.0

% FAs Correct 99.2 99.9 100.0
% Falling in 95% CS 81.0 90.0 100.0

(5%) 0.000 0.006 0.834
Prob of True (25%) 0.207 0.622 0.994

(50%) 0.996 0.970 0.996
(5%) 0.265 0.499 0.836

Prob of Best Est (25%) 0.582 0.803 0.994
(50%) 0.996 0.974 0.996
(5%) 0.856 0.940 1.000

Track Purity (25%) 0.956 1.000 1.000
(50%) 1.000 1.000 1.000
(5%) 0.869 0.999 1.000

Prob of Target (25%) 1.000 1.000 1.000
(50%) 1.000 1.000 1.000
(5%) 1.000 1.000 1.000

Prob of FA (25%) 1.000 1.000 1.000
(50%) 1.000 1.000 1.000

Table S.2: Results of 100 Realizations With Decreasing ∆t

S.7 Detection Algorithm

The problem of target or object identification in images has been studied quite thoroughly. It is not

our goal to make a contribution in this area, hence a detailed description of these techniques will

not be given. We simply describe the details of the particular identification technique we chose to

use on the storm tracking problem. For a good summary of other imaging techniques, see Rosenfeld

and Kak (1982).

Recall, the goal of the detection algorithm is to go through each image and record the location

of each target (storm) that it finds. In our case, we will record the size and orientation of the

storms as well.

An image consists of intensity values Ii,j for each of the pixels. We start by thresholding the

intensities at a value α. At this point, all pixels with intensities Ii,j < α will be set to zero. We
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then consider all of the pixels with Ii,j > α and we wish to group these pixels together to make up

the targets.

Simply stated, all pixels with Ii,j > α that are “connected” to each other are part of the same

target. There are two common definitions of connected pixels. Two pixels are 4-connected if they

share one of their 4 sides with each other. Two pixels are 8-connected if they share a common side

or corner. We have found that the 4-connected definition works well for the storms problem, but

certainly the best one to use is problem dependent.

We now have a collection of targets, defined by their corresponding cluster of pixels. To specify

location, size and orientation of the targets, we fit an ellipse to each target (cluster of pixels). This

can be accomplished by estimating a bivariate Gaussian distribution for each target and using the

99% contour of the density.

The mean and covariance of the Gaussian distribution used to fit an ellipse to a given target

are given by the following. Suppose xi,j , yi,j , are the coordinates of the center of pixel i, j. The

moments for a given target are given by

µ̂x =
∑ Ii,jxi,j∑

Ii,j

and similarly for µ̂y, σ̂x, σ̂y, and σ̂xy where the sum is taken over the pixels (i, j), that compose

that target.

The location of the target is then given by (µ̂x, µ̂y). The length of the radii R(1) and R(2) of the

target are given by the minor and major axes of the 99% contour ellipse. The angle of orientation

Q(2) is also obtained from the ellipse. Refer to Figure 4 for an illustration of this.

For this application, the pixel intensities ranged anywhere from 0.00 to 150.00 mm/hour of

rainfall which roughly equates to 0.0 to 6.0 inches of rain per hour. Most pixels that made up

storms had intensities between 1.00 and 10.00 mm/hour. We used a threshold of α = 0.10 with

the 4-connected definition. In addition, we are only considering mesoscale systems here, which are

storms with R2 > 1◦. All other storms are discarded, so this could be considered a second stage of

thresholding.

42




