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Abstract: Standard kinetic modeling of dynamic positron emission tomography

(PET) data requires specifying a compartment structure and fitting the appropri-

ate kinetic model using nonlinear least squares algorithms separately for each voxel

in the brain. This approach is not completely satisfactory because of a natural

reluctance researchers have to specifying a particular compartmental model to be

applied to all voxels and, in addition, there are parameter identifiability issues for

all but the simplest models. This paper presents new methodology for modeling

dynamic PET data that works by “borrowing strength” across all voxels, express-

ing each voxel’s data as a linear combination of a small number of components

that are estimated from the data. Though based on a kinetic modeling structure,

it does not require a choice of compartmental system and allows for data-adaptive

choice of model order. The spatial autocorrelation throughout the brain is modeled

with a conditional autoregressive (CAR) model. Estimation of model parameters

is accomplished through iterative optimization based on nonlinear weighted least

squares, and selection of the number of components is based on a modified infor-

mation criterion. This methodology may be applied either at a voxel-level or in

a region of interest (ROI) analysis. Performance of the method is evaluated with

simulated and real data.

Key words and phrases: Conditional autoregressive modeling, kinetic modeling,

voxel.

1. Introduction

One use of positron emission tomography (PET) technology is to determine

the distribution of a target neuroreceptor throughout the brain. Such studies

can help in the investigation of the neuropathology of psychiatric and neurologic

illnesses.

In a typical study, a radioactive ligand developed specifically for the receptor

under investigation is injected into a subject’s bloodstream, and the concentra-

tion of the ligand is measured over time using the PET imaging modality. Each

ligand has its own distinct kinetic behavior in vivo, and modeling these kinetics

is the key to estimation of the density of the target receptor in each location

throughout the brain.

A popular general approach to describe such data is compartmental model-

ing. Typically, a model is fit separately to the time-activity curve (TAC) for each
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voxel (or region of interest (ROI)). This results in an image of estimated kinetic

parameters which, once properly registered, may then be compared across sub-

jects. This requires that researchers specify a particular compartmental structure

and, as may be expected, results are heavily dependent on the particular model

selected. Also, for many ligands, parameters from all but the simplest of kinetic

models are not identifiable when fit to each voxel separately. Our approach is

to estimte kinetic parameters simultaneously across voxels (or across ROIs) in

order to allow for more complex kinetic structure.

2. Kinetic Model with Plasma Input

A common approach to analyze data from PET imaging studies is to fit

compartmental models using a plasma “input function” (Mintun et al. (1984)).

The input function specifies the concentration of the free tracer in the plasma over

time, and models using this input function require that samples from an arterial

line be measured over time during the imaging study. Upon entering the brain,

the ligand particles “drift” among several states of activity (“compartments”) —

e.g., bound to the target receptor, bound to another receptor, or “free”. The

kinetic parameters specify the rate at which particles “move” from one state to

another. This model is sketched in Figure 1. For each compartment k (1 ≤ k ≤
K), the concentration of the ligand at time t is denoted by Ck(t). Concentration

for the plasma compartment (to be modeled independently of the brain data

modeling) is given by Cp(t). The PET imaging modality is unable to distinguish

among the various compartments in the brain, and therefore only the total brain

Figure 1. Generalized tissue model as in Gunn et al. (2001)

.
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concentration CT (t) =
∑K

k=1 Ck(t) can be measured at each voxel. The input

function Cp(t) is measured from the arterial samples drawn during imaging and
modeled separately from the PET data.

If transit rates among the K brain compartments and the plasma com-
partment are constant over time, then the model may be represented by a

linear compartmental system defined in term of its state space representation
(Gunn, Gunn and Cunningham (2001)). Defining x(t) = (C1(t), . . . , CK(t))′ and

ẋ(t) = ((d/dt)C1(t), . . . , (d/dt)CK(t))′, the system is given by

ẋ(t) = Ax(t) + bCp(t), x(0) = 0. (2.1)

Here, A is the K × K state transition matrix made up of linear combinations
of the rate constants describing the transfer of material between compartments,

and b = (r, 0, . . . , 0)′ is a K-vector.
At time t, the total brain concentration is CT (t) = 1′

x(t). The general

solution for (2.1) is given by

CT (t) =

K∑

k=1

βk

(
e−γk · ⊗ Cp

)
(t),

where ⊗ is the convolution operator. The PET macroparameters to be estimated
are the γk’s and βk’s with the restriction that βk ≥ 0 for all k = 1, . . . ,K. Each

element of the transition matrix A and of the vector b is a function of the γk’s
and βk’s. For instance, for K = 1, we have A = γ1 and b = β1.

A common outcome measure estimated through this type of modeling is the
“total volume of distribution” (V ), which is equal to the integral of the “impulse

response function”:

V =

∫ ∞

0

K∑

k=1

βke
−γktdt =

K∑

k=1

βk

γk
. (2.2)

In (2.1), CT (t) is a continuous measurement but, in practice, the observation
CT (ti), i = 1, . . . , T , corresponding to the tomographic signal, is discrete and

measures the time-averaged value of CT (t) over the time interval (tsi , t
e
i ), i.e.,

CT (ti) =
1

tei − tsi

∫ te
i

ts
i

CT (t)dt.

where ti = (tei + tsi )/2, ts1 = 0 and tsi+1 = tei . Observations taken from this

system are contaminated with additive noise. It is customary to model PET
data contaminated with additive noise as

y(ti) = CT (ti) + ǫ(ti) =

K∑

k=1

βk

(
e−γk · ⊗ Cp

)
(ti) + ǫ(ti), i = 1, . . . , T, (2.3)
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where the measurement error, ǫ(ti), is taken to be uncorrelated with E(ǫ(ti)) = 0,

and var(ǫ(ti), ǫ(tj)) = σ2(ti). As the measurements in PET are actually the

average of counts acquired during scanning intervals, the variances of the mea-

surement noise are inversely proportional to the lengths of the time intervals

(Chen, Huang and Yu (1991)). The general variance structure of PET measure-

ment can be described as

σ2(ti) =
g(CT (ti), ti)

w(ti)
,

where g(.) is a function with positive value, and w(ti) = tei − tsi . Without loss of

generality, we assume g(CT (ti), ti) is a constant value, i.e., g(CT (ti), ti) = σ2 and

σ2(ti) = σ2/w(ti). We note that many choices for the weight function are in com-

mon use in kinetic modeling with PET data (see, e.g., Cobelli, Foster and Toffolo

(2000), and references therein). Our development throughout is appropriate for

any choice of weight function.

As mentioned earlier, Cp may be estimated separately from the PET data

using measured plasma concentrations. Given this estimate of Cp, the βk’s and

γk’s may be estimated from the PET data by “plugging in” the estimate Ĉp

for Cp in (2.3). (We henceforth assume that Cp has been estimated in such a

way, and thus regard Cp as “fixed” and “known”. Resulting inference on kinetic

parameters is understood to be conditional on the measured plasma data.) Thus

in standard kinetic modeling with an input function, parameters are estimated

by minimizing

T∑

i=1

w(ti)

(
y(ti) −

K∑

k=1

βk

(
e−γk · ⊗ Cp

)
(ti)

)2

over all choices of β1, . . . , βK , γ1, . . . , γK using a nonlinear least squares algorithm.

3. Basis Function Methods

Kinetic modeling as described in Section 2 is applied frequently in practice

but, in many applications, alternative approaches that do not require specify-

ing a particular compartmental structure would be favored. The so-called basis

function methods do not require specification of compartmental structure (nor

even the assumption that compartmental structure is the same for all voxels) and

also have the advantage of computational efficiency (kinetic models are typically

fit by nonlinear least squares at relatively high computational cost). This ap-

proach involves creating a library of “basis functions” of the form (e−γk ·⊗Cp)(t)

for a range of γk values. The most challenging problem encountered in applica-

tion of such methods is determining which basis functions are needed for each
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voxel (the model selection problem); once this has been determined, estimation
of coefficients is a linear regression problem.

The library of basis functions must be large enough to allow for a wide
range of kinetic behavior across voxels, but for stable estimation, a relatively

sparse subset of basis functions must be chosen. In the spectral analysis method
introduced by Cunningham and Jones (1993), sparsity is ensured by constraining

the coefficients to be nonnegative. Gunn et al. (2002) address the sparsity issue
by adding an L1 penalty to the coefficient vector in the optimization.

These methods are applied to data by fitting each voxel separately; that is,
the data from each voxel determine the choice of basis functions to be included

in the fit as well as the coefficients of the “selected” basis functions.

4. A Mixture Formulation

We offer an alternative approach to the basis function methods in which
considerably fewer “basis” functions are used to fit data for each voxel, and so

that these functions are determined from all voxels simultaneously. We begin by
observing that if the “true” γk parameters were known, each function

f(ti|γk) =
(
e−γk · ⊗ Cp

)
(ti) (4.1)

may be regarded as a single component function, and the model may be written
as

CT (ti) =

K∑

k=1

βkf(ti|γk).

Thus, with a pre-specified set of K such component functions, the coefficients
{βk} could be estimated using standard nonnegative linear least squares (NNLS)

(Lawson and Hanson (1974)).
In practical application, of course, the γk values will not be known and

therefore must be estimated from the data. In a departure from the basis function

approaches, we propose to fit all voxels at once, requiring that the K component
functions be the same across all voxels.

To accomplish this, we incorporate a mixture representation, following the
general approach taken by O’Sullivan (2006), but requiring that component func-

tions take the parametric form (4.1). Since we fit all voxels simultaneously, we
also incorporate a spatial model to account for correlation between voxels.

Here we lay out our model for the PET data which is based on the require-
ment that the γk values be the same for all voxels but the coefficients may vary

from voxel to voxel. Thus, the model for the jth voxel may be written as

yj(ti) =

K∑

k=1

βjkf(ti|γk) +
ǫj(ti)√

νj
, j = 1, . . . , N, i = 1, . . . , T, (4.2)
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with
∏N

j=1 νj = 1 and

cov(ǫj(ti), ǫk(tl)) =
σ2ρjkδ(ti − tl)√

w(ti)w(tl)
.

Here, νj > 0, j = 1, · · · , N , is a parameter to adjust the difference in variance

among voxels; N is the total number of voxels in the brain; δ(.) is the delta

function; and ρjk represents the spatial correlation between measurements made

on voxel j and voxel k (thus ρjj = 1 for all j). When fitting individual voxels,

it might be reasonable to assume that the variance is constant, i.e., νj = 1 for

all j = 1, . . . , N . However, when this methodology is to be applied to ROI

data, the observations are summary statistics (typically, simple averages) of the

concentrations of voxels in the anatomically defined region. Since ROIs differ

substantially in terms of size (number of voxels), it is necessary to allow for

different variances across ROIs (e.g., νj ∝ nj, where nj is the number of voxels

in the jth ROI). The algorithm presented here also allows for estimation of the

νj’s.

Let Y j represent the jth TAC in the brain for j = 1, . . . , N :

Y j = (yj(t1), yj(t2), . . . , yj(tT ))′.

The T × K matrix Fγ contains the K component functions along its columns:

Fγ =





f(t1|γ1) f(t1|γ2) · · · f(t1|γK)

f(t2|γ1) f(t2|γ2) · · · f(t2|γK)
...

...
...

...

f(tT |γ1) f(tT |γ2) · · · f(tT |γK)




.

Let γ = (γ1, . . . , γK)′, and βj be the vector of coefficients for the jth voxel:

βj = (βj1, βj2, . . . , βjK)′. Then we can express (4.2) in matrix form as

Y j = Fγβj + ν
− 1

2

j Ej = Fγβj + ν
− 1

2

j W− 1

2 U j,

with Ej = (ǫj(t1), . . . , ǫj(tT ))′, U j = (uj(t1), . . . , uj(tT ))′, W = diag(w(t1), . . .,

w(tT )), E(Uj) = 0T×1, and Var(Uj) = σ2IT . This can also be expressed as

√
νjW

1

2 Y j =
√

νjW
1

2 Fγβj + U j.

Defining Zj =
√

νjW
1/2

Y j, Rγ = W 1/2Fγ , β∗
j =

√
νjβj , and B∗ = [β∗

1 |β∗
2 | . . .

|β∗
N ], the model may be expressed concisely as

Z = RγB∗ + U,
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where Z = [Z1|Z2| . . . |ZN ] and U = [U1|U2| . . . |UN ].

If we assume that the T rows of U are iid multivariate normal random vectors

with mean 0N and variance covariance matrix Σ with (i, j) element equal to ρijσ
2,

then the likelihood function for the data can be expressed (see, e.g., Rencher

(2002)):

L(B∗, γ,Σ|Z) = (2π)−
TN

2 |Σ|−T

2 exp

{
− 1

2
tr

(
(Z − RγB∗)Σ−1(Z − RγB∗)′

)}
.

For a given value of Rγ and Σ, the likelihood is maximized at B̂∗=arg min{βk}

tr((Z − RγB∗)Σ−1(Z − RγB∗)′). Since {βk} has to be nonnegative B̂∗ can be

obtained by fitting separately for each TAC in the brain using the NNLS method.

It remains to maximize the profile likelihood

L(γ,Σ, B̂∗|Z) = (2π)−
TN

2 |Σ|−T

2 exp
{
− 1

2
tr(Σ−1Û ′Û)

}
(4.3)

over γ and Σ, where Û is the matrix of residuals: Û = Z − RγB̂∗.

We model the covariance structure Σ among voxels using a conditional au-

toregressive (CAR) model. This model is useful in this situation because it

involves only one parameter to be estimated, and because the computationally

simple form for the inverse of the covariance matrix makes maximum likelihood

estimation feasible even for very large data sets. This CAR model is simi-

lar in spirit to the autoregressive model considered by O’Sullivan (2006) and

Maitra and O’Sullivan (1998). In the CAR model, the conditional expectation

of Zj given the observations at its neighbors is Rγβ∗
j plus a weighted sum of

the mean-centered responses of its neighbors. Definining Z−j to be the ma-

trix resulting from eliminating the jth column of Z, we model the data as, for

j = 1, . . . , N ,

E(Zj |Z−j) = Rγβ∗
j + ρ

N∑

i=1

φji(Zi − Rγβ∗
i ), j = 1, . . . , N ;

Var (Zj |Z−j) = σ2IT ,

The parameter ρ determines the magnitude of the spatial neighborhood effect,

and the φji are weights that determine the relative influence of location i on the

location j with φjj = 0 for all j. Thus the ith row of Z has variance

σ2(IN − ρΦ)−1, (4.4)

where Φ = {φij}N×N is the proximity matrix. The spatial correlation structure

is expressed in terms of Φ. One common choice is to define a neighborhood
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Figure 2. Illustration of spatial connectedness (contiguity) for a regular

lattice for (a) 2D space and (b) 3D space.

about each voxel and set φij = φji = 1 if i and j are in the same neighborhood

(and 0 otherwise). In a typical 2-D lattice, one voxel has 8 neighbors, while

a voxel has 26 neighbors in a typical 3-D lattice (Figure 2). In practice, one

can select an appropriate weight function based on the model fit and how well

the model accounts for autocorrelation in the residuals. Requiring the variance-

covariance matrix in (4.4) to be non-singular imposes constraints on Φ and ρ. If

θmax and θmin are the largest and smallest eigenvalues of Φ, and if θmin < 0 and

θmax > 0, then 1/θmin < ρ < 1/θmax (Haining (1990)). Often, the elements of

Φ are standardized by dividing each entry in Φ by its row sum, in which case

θmax=1. In brain imaging applications, it is reasonable to assume the spatial

neighborhood effect, ρ, satisfies 0 ≤ ρ < 1. With this parameterization of Σ, the

profile likelihood function (4.3) becomes L(γ, σ2, ρ|Z). This is maximized with

respect to σ2 at σ̂2 = (TN)−1tr((I − ρΦ)Û ′Û), yielding the profile log-likelihood

logL(γ, ρ|Z) = constant +
T

2
log(|I − ρΦ|) − TN

2
log(tr[(I − ρΦ)Û ′Û ]). (4.5)

For a given choice of model complexity K, maximum likelihood estimation of

ρ and γ can be accomplished by a two-stage optimization method. Given a value

of ρ, an estimate of γ may be found using a standard nonlinear least squares

technique (Dennis (1977)) to minimize the last term in (4.5). We then choose

the optimal ρ̂ using a simple (one-dimensional) grid-search algorithm.

A key choice to be made in the fitting of such models is that of K, the

number of components. In applications, we may be guided in our choice of K by

a criterion that seeks to balance fidelity to the data with model complexity, such

as a modified Akaike Information Criterion (AIC):

AICK = −2 ln(maximized likelihood) + 2p,
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Here p = K ∗N +K− q is the effective number of parameters with q = #{(j, k) :
βij = 0}. Determining the penalty for effective model complexity in this way
agrees with the approach taken by Efron et al. (2004) and Zou, Hastie, and
Tibshirani (2007), who studied the issue of penalized regression and variable
selection.

The algorithm for fitting voxelwise data can be summarized as follows.
• For each K = 1, . . . , B

− For each choice of ρ = (0, 0.01, 0.02, 0.03, . . . , 0.99):

∗ Maximize log L(γ, ρ|Z) over all choices of γ using a nonlinear least
squares technique:
· For each choice of γ, estimate {βjk} using nonnegative least squares

fitting.
· Compute log(L(γ, ρ|Z)) using current values of γ and {βjk}.

− Choose the value of ρ that maximizes the profile log-likelihood, log(L(γ, ρ)).
− Calculate AICK based on the profile log-likelihood.

• Choose the value K that minimizes AICK .
• Set final estimates of ρ, γ and {βjk} to be those that maximize the log-

likelihood for the chosen K.

If equal variability among voxels is assumed, then all νj would be set to one.
Otherwise (particularly important in ROI analyses), the fitting algorithm would
include estimating the νj ’s iteratively based on

ν̂j ∝
T∑

i=1

w(ti)

(
yj(ti) −

K∑

k=1

β̂jkf(ti|γk)

)2

,

subject to the constraint
∏N

j=1 ν̂j = 1.
Estimators of the outcome measure (2.2) can be obtained for each voxel as

V̂j =

K∑

k=1

β̂jk

γ̂k
, j = 1, . . . , N.

It is important to emphasize that, although the mixture approach fits all of
the voxels or ROI’s using the same basis functions, the method does not require
that all voxels or ROI’s have the same compartmental configuration. For some j
and k, the estimated coefficients β̂jk may be zero.

A ROI analysis is based on the assumption that the signal intensities within
each anatomical region are similar, and therefore the modeling is performed on
the mean of all voxelwise data within each ROI across time. Although there
might be a spatial contiguity between two ROIs, most of the voxels between two
ROIs are not close and therefore the spatial correlation between concentrations
measurements made between any two ROIs is weak. To model all ROIs in the
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brain, one would apply (4.2) with yj(ti) representing the average signal intensity
of the jth ROI at time ti and ρjk = 0 if j 6= k. Therefore, for a given K, the
number of the basis functions, the algorithm for fitting the data is simplified to
a one-stage procedure as there is no need to estimate ρ.

5. Simulation Studies and Application to Data

In this section we describe the results of application of the proposed modeling
approach to both simulated and real datasets. Parameters for the simulation
study were set to match those from a data application in a study of the serotonin
1A receptor using the [C-11]WAY-100635 tracer. For both the voxel-level and
the ROI-level simulations, we generated data at 20 times points (three 20-second
frames, three 60-second frames, three 2-minute frames, two 5-minute frames, and
nine 10-minute frames). Data were simulated voxel-by-voxel (and ROI-by-ROI)
according to a two-tissue kinetic model, with the kinetic parameters determined
from fits to data. Thus, it is important to note that in these simulations, the
mixture model is not the “correct” model, as the two components in the “true”
model vary across voxels/ROIs. Further details of the imaging protocol, used to
guide our simulations, are given in Parsey et al. (2006).

5.1. ROI-level simulations

In the first simulation study, data were generated from a two-tissue kinetic
model separately for each of 74 regions with the “true” kinetic parameters taken
to match those estimated for an actual data set. For this simulation, the kinetic
parameters (see (2.2)) had a range of 0.0232 to 0.0452 for β1, 0.0271 to 0.0519
for β2, 0.0052 to 0.0530 for γ1, and 0.0229 to 0.4939 for γ2. Because the regions
have widely differing sizes, the variance for each region is chosen to match the
data set as well, with σ ranging from 0.0075 to 0.0429. The weights were set as
w(ti) = tei − tsi .

Results are displayed in Figure 3, with the top left-hand panel representing
data from one simulated set of ROIs and the other panels showing the results
from 100 such datasets. For the ROI data displayed in the upper left panel, the
modified AIC criterion chooses the 4-component model. Estimation of V for the
kinetic model is somewhat unstable, especially for the regions with high binding,
for the region-by-region kinetic model. (Even though this is the “correct” model,
fitting a two tissue model is often problematic, and thus in practice some con-
straints are imposed in order to reduce the number of number of free parameters
for each region (Parsey et al. (2000)). Spectral analysis tends to overestimate
V for low values of V . The mixture model, despite being fit to data generated
from the “wrong” model, does reasonably well at estimating V , particularly for
the regions with larger V (which in many applications are the regions of greatest
interest).
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Figure 3. ROI data generated from the two tissue kinetic model separately
for each region. Upper left: raw ROI data time-activity curves; upper right:
performance of estimated V using standard two tissue kinetic modeling over
100 simulated data sets; lower left: performance of estimated V using spec-
tral analysis; lower right: performance of estimated V using mixture mod-
eling.

5.2. Voxel-level simulations

Second, we simulated one transaxial slice of PET data consisting of 6,283

voxels. In agreement with the actual data, the noise level was set to σ = 0.1
with the weights set as in Section 5.1. Since the spatial neighborhood effect for

voxelwise data is typically quite high, the corresponding parameter, ρ, was set to
0.9. The “true” kinetic parameters had a range of 0 to 0.0943 for β1, 0 to 0.4143

for β2, 0.005 to 0.022 for γ1, and 0.025 to 1.732 for γ2.
Results are shown in Figure 4. The plot on the the upper left shows the

simulated data for minute 55. The AIC plot indicates a four-component mixture
model, and the corresponding V̂ values tend to be quite close to their corre-

sponding true V values. The mixture approach, choosing model order based on
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AIC, provides approximately unbiased estimates. Compared with the commonly
used spectral analysis, the mixture modeling gives smaller bias and a smaller

standard error in terms of estimating V̂ . The two panels at the bottom of Figure
4 show the four estimated basis functions and the image of estimated V based

on the mixture model. Although the estimated TAC of each voxel is a linear
combination of four component functions, most voxels have an estimated coeffi-

cient of 0 for at least one component function. For this simulated data set, the
average number of non-zero coefficients per voxel is 2.7. The estimated spatial

neighborhood effect was ρ̂ = 0.91, quite close to the true value ρ = 0.9.

Figure 4. Results from the voxel-level simulation study. Upper left: raw
simulated data at time 55; upper right: AIC as a function of number of
components; center left: True V vs. V̂ using spectral analysis; center right:
true V vs. V̂ using mixture modeling; lower left: estimated components of
the mixture model; lower right: image of V̂ using mixture modeling.
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Figure 5. Upper left: TAC data for all ROIs; upper right: AIC as a function

of number of components; lower left: the four components estimated by the

mixture model; lower right: estimated V based on traditional two tissue

kinetic model vs. estimated V based on a four-component mixture model.

5.3. Application to data

To illustrate the methodology applied to data in which the “truth” is not

known, we fit the proposed mixture model to data from one male control subject

with the tracer [C-11]WAY-100635, part of the study reported in Parsey et al.

(2006). There are 74 ROIs available, and we applied both a two-tissue kinetic

model and the mixture model to each.

The data and model fitting are summarized in Figure 5. As with the simu-

lated data, the AIC plot indicated that a four-component mixture model is best.

The mixture model tended to give a higher estimate of V as compared to the

traditional two-component kinetic model.

6. Discussion

The methodology described in this paper offers a useful alternative to the

usual approach of estimation in PET studies, in which voxels or ROIs are fit one

at a time. By allowing more components but requiring constant γk values across

regions/voxels, the model is flexible but estimation of parameters is quite stable.

Our proposed methodology is related to basis function alternatives to kinetic

modeling (Cunningham and Jones (1993) and Gunn et al. (2002)), in which a set
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of basis functions of the form (4.1) with a range of γk values is created and some

constraints are used to ensure sparsity of the solution. Our approach is to use

fewer component functions of the same form, but requires that they be constant

for all voxels. Compared with our model, that of O’Sullivan (2006) is considerably

more general, as he estimates the mixture components nonparametrically. In our

particular application, both flexibility and stability are realized by combining

these approaches, applying the mixture modeling strategy of O’Sullivan (2006),

but with parametrically specified component functions.

One useful way to compare models is in terms of the number of parameters

required to fit a dataset, with preference given to more parsimonious models. In

application of mixture modeling, K parameters determining the shape of each

component must be determined, and then K coefficients are estimated for each

voxel. Relative model parsimony is achieved because many of the (voxel-specific)

coefficients are estimated as zero. In kinetic modeling, on the other hand, the

number of parameters to be estimated depends entirely on complexity of the

kinetic model selected, e.g., a two-tissue model requires two shape parameters

and two coefficients to be estimated for each voxel. In the simulation described in

Section 5.2, the total number of non-zero coefficients averaged 2.7 per voxel for the

mixture model. A one-tissue kinetic model would require exactly two parameters

per voxel; a two-tissue model would require exactly four. Noting the difference

in the types of parameters that must be estimated in each of these strategies we

observe that, in terms of model parsimony, mixture modeling represents a savings

as compared to the two-tissue model. Our primary motivation for the mixture

modeling approach is our belief that many of the shape parameters that must be

estimated for each voxel in a kinetic modeling analysis are essentially equal, and

thus by combining all voxel data together and incorporating this assumption into

the model, more stable estimates of these common parameters may be obtained,

and that it can be done with fewer parameters. Basis function methods (see, e.g.,

Gunn et al. (2002)) that automatically estimate model complexity do so in an

approximately unbiased way, but since these methods are applied separately for

each voxel, they may not achieve similar gains in parsimony relative to standard

kinetic modeling.

Computationally, the fitting of the mixture model is reasonably fast, cer-

tainly competitive with other methods requiring nonlinear optimization. For a

data set consisting of 229,005 voxels and 20 time points, it took about 30 min-

utes on a Power Mac G5 (dual 2.5GHz) computer. On the same machine, it

took less than a minute for each complete (one subject) ROI-level analysis in the

simulations.

For application to voxel data, computational savings may be realized by not

requiring that all voxels be used to estimate the (common) γk values, rather that
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a relatively small sample of voxels be taken and the mixture model fit to these for

such estimation. Once the component functions are determined, the coefficient

parameters βj,k may be estimated very quickly for all voxels. Our experience
suggests that the estimation is stable with as few as 5% voxels selected at random

(in a study of about 200,000 voxels).

Fitting all voxels at once, as we propose to do, and computing a likelihood

function necessitates specifying a spatial model for the original PET data. Spatial

relationships among test statistics have been taken into account in the context of
controlling the familywise error rate for quite some time (see, e.g., Friston et al.

(1991)). In estimation of kinetic parameters in neuroreceptor mapping, fitting

is typically done separately for each voxel and thus binding parameters can be

estimated without explicitly modeling the spatial covariance of the data. We find

that the CAR model described in Section 4 provides a flexible spatial model that

is appropriate for PET data. Others have taken differing approaches to modeling
spatial correlation of brain imaging data in various contexts (see, e.g., Bowman

(2007), Katanoda, Matsuda and Sugishita (2002), Turkheimer et al. (2003) and

Maitra and O’Sullivan (1998), among others).

Standard errors of outcome measures may be computed be using an asymp-

totic approach or a bootstrap method (Ogden and Tarpey (2006)). The boot-

strap method requires more computation.
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