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Abstract: Constructing models for neuroscience data is a challenging task, more

so when the data sets are of hybrid nature, and there exists very little work. The

models have to be physiologically meaningful, as well as statistically justifiable.

Here we introduce various techniques for fitting a model to bivariate hybrid time

series data from the field of neuroscience. As an example, we use a data set on the

local field potentials (which is a continuous time series) and nerve cell firings (which

is a point process) of anesthetized mice. We extend various available methodologies

for modeling nerve cell spike trains to the hybrid set-up, and present a model

that has not been previously explored in neuroscience literature. We illustrate

the fit of the data set by some Markov chain-based models, some models with

crossed dependence including an Inhomogeneous Markov interval type (IMI) model,

some ARMA-type models, and also some state space models. We compare the

proposals with two existing models. We aim to provide an overview of various

possible modeling strategies, and to provide a comparison of the fit and estimation

of different models in terms of various standard model selection criteria like AIC

and BIC. A detailed simulation study is performed to assess the performance of

different models.

Key words and phrases: AIC, BIC, bivariate time series, continuous time series, IMI,

jump Markov linear Gaussian system, hybrid process, Markov model, maximum

log-likelihood, point process.

1. Introduction

A multivariate process, where one component is a continuous time series and

the other is a point process (or a discrete valued time series) is referred to as

a hybrid process. Although not many detailed studies of hybrid models exist,

examples of hybrid situations in neuroscience are numerous. One of the examples

that Willie (1979) discusses is the relation between transmembrane current (a

time series) and the firing of voltage impulses (a point process) by a nerve cell.

In a more recent work, Brown, Frank, Tang, Quirk and Wilson (1998) modeled

spike trains jointly with the location of a rat, treating the location of the rat as

a bivariate Gaussian ranodm vector. See Valentine and Eggermont (2001) and
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Noreña and Eggermont (2002) for some other examples in the neuroscience field

that deal simultaneously with spike trains and local field potentials.

In this paper, we aim to study various models that capture the inter-relation-

ship between spike trains emanating from neurons in the temporal cortex of mice,

which is a part of the auditory cortex, and local field potentials in the vicinity.

The need is for a model that justifiably combines model for a spike train with

for the continuous local field potential values. Toward that, we extend some of

the existing methods for modeling spike train data to hybrid models. The aim

of this work is not to suggest one “best” method, but to provide an overview of

the tools available, and to suggest directions to possible reasonable models.

There are numerous competing methods available for modeling univariate

data, both continuous and discrete, in neuroscience literature. We now provide a

brief overview in this direction. The most basic approach to modeling local field

potential data recorded over time, denoted {X(t)} henceforth, is to employ the

linear model

X(t) = µ+

∫ u

l

a(s)X(t− s)ds+ ǫ(t),

where µ is some constant and a(·) is a suitable filtration, (l, u) represent the past

on which the present process is dependent, and ǫ(·) is some error process. When

the process is observed over discrete time, the above model reduces to

X(t) = µ+

u∑

s=l

a(s)X(t− s) + ǫ(t). (1.1)

This model is known as variable signal plus ongoing activity (VSPOA) model.

References are numerous, see Chen et al. (2006) and the references therein. Other

important approaches include employing wavelet techniques, for which some re-

cent references are Roux et al. (2007) and Vialatte et al. (2007). For a neural

network model, see Quenet and Horn (2003).

A classical approach to modeling a spike train is to employ a threshold on a si-

multaneously observed action potential process, if present (Brillinger and Segundo

(1979) and Brillinger (1988)). As a variation of this model, the action potential

of the nerve cell is modeled as a function of the firing times and then a threshold

is used (Brillinger (1992) and Brillinger, Bryant and Segundo (1976)).

The spike train data are more usually modeled as counting processes, al-

though some recent works explore wavelet techniques (Laubach (2004)). The

simplest case of a counting process is when the “rate”, or the conditional inten-

sity, of the process depends only on time t. Representing the count of spikes at

time t by N(t), the above is equivalent to saying that λ(t) = limδ→0E(N(t +

δ) − N(t)|history till time t), the conditional intensity function of the process,
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depends only on t, see Ventura et al. (2001). The peristimulus time histogram

(PSTH) is often used as an estimate of the time-varying firing rate (Kass and

Ventura (2001)). When large numbers of neurons are considered, the spike times

for the collection of neurons can be modeled as a Poisson process. Sometimes,

as an alternative, nonhomogeneous Poisson models are employed for interspike

intervals (ISI), see Barbieri et al. (2001) and Kass and Ventura (2001). However,

when neuron firing times individual trials are of interest, the joint distribution of

the spikes cannot be obtained from the Poisson models. Such models are usually

inadequate for these situations because they do not account for the refractory

period, a brief period during which the neurons can not fire after a spike-burst.

This requires a more complex model than the memoryless Poisson. Kiang et al.

(1965) modeled the spike train process as a renewal process to account for the

dependence on past. A simple Markovian model to achieve this has

λ(t) = f(t, t− wN (t)), (1.2)

where λ(t) is the conditional intensity function, f is a nonnegative function, wj(t)

is the time of the time of the jth spike burst before time t, and N is the number

of spikes till time t. See Chan and Loh (2007) for examples of various methods

of estimating f . An important subclass of the above model has the multiplica-

tive form (Johnson and Swami (1983), Berry, Warland and Meister (1997) and

Kass and Ventura (2001))

λ(t) = s(t)r(t− wN (t)), (1.3)

where s(t) is the firing function and r(·) is a recovery function. One could take

r(t − wN (t)) to be zero for values of t − wN (t) less than some value, assum-

ing the existence of a constant refractory period (Johnson and Swami (1983)

and Berry, Warland and Meister (1997)). More complicated models include a

weighted fit (Berry, Warland and Meister (1997)) and a spline fit (Kass and Ven-

tura (2001)). In this article we limit our discussion to the constant refractory

period, but in most cases extensions are immediate, at least theoretically.

Sometimes the neural spike trains are assumed to be governed by a

stimulus. The stimulus could be explicit (Wilson and McNaughton (1993)

and Berry, Warland and Meister (1997)) or implicit (Riehle et al. (1997) and

McEchron, Weible and Disterhoft (2001)). For explicit stimuli, a parametric

non-homogeneous Poisson model fit has been used by Brown, Frank, Tang, Quirk

and Wilson (1998). For implicit stimuli, one could fit a state space model, as

in Smith and Brown (2003). The state space models for spike bursts usually as-

sume that the conditional intensity function depends on some hidden latent pro-

cess, that can be continuous (Smith et al. (2003)) or discrete (Schneidman et al.
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(2006)). One possible alternative could be to employ the marked point process

methodology. This method is hugely popular in the field of seismology for earth-
quake modeling (Vere-Jones (1995) and Schoenberg (2004)), but applications

to the field of neuroscience are not available to our knowledge. Other popu-

lar methods include a mixture of Poisson (MP) model (Wiener and Richmond

(2003) and Nakahara, Amari and Richmond (2006)). However, the MP model
does not work well for spike train generation without additional assumptions.

For a recent and more comprehensive review of methods in modeling firing time

data, see Kass, Ventura and Brown (2005).

Most of the existing works on modeling hybrid data assume some type of
causal structure, some of which are found in Sections 3 and 4. A notable excep-

tion is Jørgensen et al. (1996); it explores the application of state-space modeling

techniques to non-stationary hybrid series. Other notable references for hybrid

models without conditional structures include Andrieu, Davy and Doucet (2003)
and Davis and Ensor (2007); the former uses a particle filtering method to per-

form optimal estimation in jump Markov systems, and the later utilizes a logistic

smooth transition regression model.
Unlike the relationship of spike trains and action potentials, where the for-

mer depends on the later ((Brillinger (1992) and Brillinger, Bryant and Segundo

(1976)), if there does not exist any scientific justification of any causal relation-

ship between spike trains and local field potentials, and hence any model with
a causal structure, whereas simpler to fit, might not explain the data well. In

such a situation, a state-space model would be expected to perform much better

than fitted models like the two above. However, as one aim of this paper is to

give an overview of various modeling techniques for hybrid processes, we also ex-
plore some causal models with the hope that such models may serve as a useful

reference for future hybrid modeling exercises.

We fit the following models to data: (a) some Markov models for spikes

with LFPs conditionally normal; (b) some inhomogeneous Markov interval (IMI)
models for the spike train with an autoregressive (AR) model for the LFP; (c)

some mixture of a discrete AR and a continuous process; and (d) state space

models, fitted using hidden Markov model fitting techniques. Comparison of

the proposed models along with two existing models is based on maximum log-
likelihood, AIC and BIC.

The rest of the paper is organized as follows. In Section 2 we provide some

pertinent background material about the data. Section 3 discusses some Markov

models for such hybrid processes. Some models with crossed dependence, includ-
ing some IMI-type models and some mixture ARMA-type models, are discussed

in Section 4. Section 5 provides some hidden Markov model for hybrid data. Sec-

tion 6 discusses the results of some simulations and compares different models in

terms of AIC and BIC and Section 7 concludes.
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2. Data Description

The area of the auditory cortex in a mouse was demonstrated by Stiebler et al.

(1997) based on neuronal response characteristics. They concluded that the au-

ditory cortex of the mouse is situated in the caudal (toward the back of the head)

half of the parietal cortex area of the mouse brain. The local field potential (LFP)

is supposedly related to the so-called ‘synaptic activity’ of neurons, i.e., the com-

pound electric field generated by the post-synaptic potentials. It is generally

assumed that there exists a threshold of the ‘action potential’ of these synap-

tic activities, where the spikes are related exclusively to supra-threshold activity,

whereas sub-threshold synaptic potentials provide a contribution to LFP. So, one

can think of the LFP as the total spiking activity of all units (neurons) within a

certain region. For a more detailed description, see Kandel, Schwartz and Jessell

(2000).

The data set we analyze consists of local field potential recordings (sampled

continuous time series) and nerve cell firings (point processes) recorded by four

electrodes located in the temporal cortex of anesthetized mice. Some recording

details for the experiments are provided in Villa et al. (1998). The original data

set consists of spike trains and local field potentials (LFP), collected simultane-

ously by electrode placed in the auditory cortex of an anesthetized mouse. The

experiment is a succession of 18 sub-experiments, each of which lasts for approx-

imately 100 seconds, and which are separated by around 20-30 seconds. The

first nine of these are associated with spontaneous firing of the auditory neurons,

whereas the last nine correspond to the application of an auditory stimuli. We

consider only the spontaneous recordings here. The sampling rate of the LFP is

500 samples/sec (Hz). The firing times are recorded to the nearest millisecond

(ms).

3. Fits with Markov Models for Spikes

Basic models for hybrid time series are constructed assuming causal relation-

ships, i.e., assuming that one of the two series drives the others. In this section,

we explore two types of such models. A usual strategy divides the observation

period into small intervals of equal width so that there is at most one spike per

interval (Smith and Brown (2003) and Kass and Ventura (2001)). For this pur-

pose, and also to utilize the LFP observations fully, we observe the increment

of the spike process every 2 ms, which we denote as Y (t) = N(t) − N(t − 1).

Clearly, Y (t) is a binary series.

We begin with a causal structure where the 0-1 valued spike series, denoted

by {Y (t)}, follows a Markov chain and the continuous valued LFP series, which

we denote by {X(t)}, has a distribution dependent on the present and past values
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Figure 1. The Markov model, where each Y(j) = (Y (j), Y (j + 1), · · · ,

Y (j +K − 1)) is a vector of size K and discrete; the Y’s form a stationary

Markov chain and the X ’s, the continuous variables represented by (3.2),

are conditionally normal given the Y’s.

of itself and also of Y . One example of such a model is the jump Markov linear

system (JMLS), where the parameters evolve with time according to a finite state

Markov chain, see Krishnamurthy and Evans (1998) and Doucet and Andrieu

(2001). One popular approach is to assume the system to be Gaussian and the

process to be dependent on its immediate past through a linear system equation

X(t) = aY (t)X(t− 1) + bY (t)ǫ(t), (3.1)

where the Y (t)’s form a finite state Markov chain, and ǫ(t) ∼ N(0, 1). This

system is known as the jump Markov linear Gaussian system (JMLGS) of order

1. It is often of practical interest to relax the assumptions of linearity and

Gaussian distribution, see Andrieu, Davy and Doucet (2003). In the following

section, we discuss some simple extensions of the model (3.1) to neuroscience

data.

3.1. A Markov model

Assume that the sets of 0’s and 1’s occur in blocks, say blocks of size K

for some positive integer K, and the binary process has a lag K dependence

structure, i.e., the distribution of the 0-1 valued variable at a time instant is

assumed to be dependent on the values of previous K time instants, subject to

some restrictions due to the presence of the refractory period. The continuous

variable at time t is conditionally normal given the values of the 0-1 valued

variable at the last K time instants. The model is described by a generalization

of (1.1) (and also of (3.1)) as

X(t) = µj +

u∑

l

aj(s)X(t− s) + σjǫ(t), (3.2)

for suitable choices of l and u, where j is a vector of the values of Y for the

previous K time instants, and ǫ(t) ∼ N(0, 1). We adopt the convention that
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aj(0) = 0, so that for K = 1, l = u = 0, we get the usual Markov chain model for

the discrete series, with continuous variables being conditionally normal given

the value of the discrete variable at a time instant; and for K = 1, l = 0 and

u = 1, we get the JMLGS described in (3.1). Also note that when µj, αj(·) and

σ2
j are independent of j, the two series are independent.

Figure 1 describes the model. Write Y(j) = (Y (j), Y (j+1), . . . , Y (j+K−1))

for j = 1, 2, . . . , S = T −K+1, and assume that the Y(j)’s form a Markov chain.

This Markov chain has only finitely many possible different states. The maximum

possible number is 2K , but the actual number may be less. Some of the states

of the Markov chain would be ruled out due to the presence of the refractory

period; e.g., if K = 2 and the refractory period is two ms (assumed so that the

minimum gap between two consecutive spikes is 4 ms), then the possible states

are 00, 01, 10 and, correspondingly, there are three different states. Also note that

certain transition probabilities, for example p(01 → 01) would have to be 1 in this

model. Hence P10 = P01, where the Pj ’s describe the intial distribution of the

states. These quantities are estimated by the estimated stationary distribution

of the states. Let us denote the number of states by L. The X(j + k − 1)’s are

conditionally normal given Y(j), while the first (K − 1) X values are ignored in

this fit.

There could be various added complexities: X(·) and Y (·) could be multi-

variate; the dependence structure of Y could be more complex, for example a

popular choice would be to choose a variable K, say K(t) = t − wN (t), where

wN (t) is as described in Section 1; or the refractory period could be random. We

now briefly discuss a model with multivariate X(·) and Y (·), and leave the other

situations to the interested reader.

3.2. A Multivariate Markov model

We now describe an alternative Markov model where the states are assumed

multivariate, with spikes over K consecutive time instants forming a Markov

chain: Y(j) = (Y ((j−1)K+1), Y ((j−1)K+2), . . . , Y (jK)) for j = 1, 2, . . . ,M =

[T/K], and X(j) = (X((j − 1)K + 1),X((j − 1)K + 2), . . . ,X(jK))’s, for j =

1, 2, . . . ,M , being conditionally normally distributed given the spike states, which

corresponds to u = 0 in (3.2). See Figure 2 for a pictorial representation of the

model.

The likelihood can be written as

P (X,Y) = P (Y(1))

M∏

t=2

P (Y(t)|Y(t− 1))

M∏

t=1

P (X(t)|Y(t)),



1318 APRATIM GUHA AND ATANU BISWAS

��
��
Y(1)

?
X(1)

-��
��
Y(2)

?
X(2)

-��
��
Y(M)

?
X(M)

Figure 2. The Second Type of Conditional Model. Y = (Y ((j − 1)K + 1),

Y ((j−1)K+2), . . . , Y(jK)) form a Markov chain and X(j) = (X((j−1)K+

1), X((j − 1)K + 2), . . . , X(jK)) are conditionally normal.

and the maximum likelihood estimators can be obtained in the standard way.

3.3. Discussion of Results for the Simple Markov Model

Here we present the fitted models for K = 2 and 3 corresponding to l = 0,

and u = 0, 1, 2. Fits for higher values of K are also investigated but are not found

to improve the model by much, and hence not presented. The other values of l

and u could also be tried if a scientific justification could be established, but here

we discuss only some of the simplest cases. Table 1 summarizes the goodness

of fit of these models in terms of maximum log likelihood, AIC, and BIC. The

best fits are denoted in bold. The fitted parameters for the models are provided

in Tables 2 and 3. In Table 2, YK(t) = (Y (t), Y (t+ 1), . . . , Y (t +K − 1)) for a

fixed K, so that for K = 2, YK takes values (0, 0), (0, 1) and (1, 0). The notation

is simplified by writing, for example, “00” for (0, 0), and dropping the subscript

“K” when there is no scope of confusion. Table 3 provides the fit statistics.

Note that the transition probabilities from states 01, 001, 101 are not reported

because they lead to the state 0 with probability 1. The parameter estimates

corresponding to the state 101 were not obtained because there was only one

instance of it.It may be seen from the fit that immediately after a spike firing,

the LFP values tend to be higher on the average for states 10 and 010 than for

the rest, which points to some causal relationship. We also observe that, on the

basis of BIC, there is little to choose between K = 2 and K = 3, especially for

the case u = 2. This indicates that the LFP values are perhaps not too affected

by the spike firings except for the immediate past.

When the LFP and the spike trains are independent, under the above model,

one has

X(t) = µ+

u∑

l

a(s)X(t− s) + ǫ(t),

which is similar to (3.2) except for the lack of dependence on spike-states. For

comparison, goodness of fit statistics for K = 3 and u = 2, the best model under
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Table 1. Comparison of various goodness of fit statistics for the fitted Markov
models. The best fits are shown in bold. K denotes the degree of dependence

of the spike train on the past.

Markov model for spikes with univariate conditional LFPs

−2 Likelihd AIC BIC −2 Likelihd AIC BIC

K = 2 K = 3

u = 0 587036.0 587062.0 587176.5 586998.6 587036 587203.5

u = 1 562337.9 562365.9 562489.3 562277.3 562317.3 562493.6

u = 2 557479.2 557509.2 557641.4 557413.6 557467.6 557705.6

When the two series are independent

u = 2 557563.5 557579.5 557650 557547.7 557569.7 557666.6

Markov model for spikes with bivariate conditional LFPs

−2 Likelihd AIC BIC

Full model 574269.4 574321.4 574550.6

Same Var.,

varying mean 574320.6 574356.6 574515.3

Ind. case 574329.2 574357.2 574480.6

independence is provided in Table 1. The dependence model does perform better,

although the difference is not very significant, especially in terms of BIC. Hence,

this model perhaps does not improve much from the independence model.

3.4. Discussion of results for the multivariate Markov model

We present only the K = 2 case for simplicity, the models for higher values

of K would be similar. We consider three different settings for the continuous

process: (a) having varying mean and variance depending on the states of the

spike train; (b) having the mean dependent but the variance independent of the

spikes; and (c) fully independent of the spikes. The fit of the model parameters

are presented in Table 4, and the goodness of fit statistics are given in Table 1.

This model performs better than the u = 0 case for K = 2, as well as K = 3 for

the univariate model, but is worse than the rest.

4. Models with Crossed Dependence

In the previous section, we fitted a conditional model which assumes that

the spike train drives the LFP data. Models fitted assuming the opposite con-

ditional direction are also common in neuroscience literature, where the neural

spike trains are assumed to be governed by a stimulus. The stimulus could be ex-

plicit (Wilson and McNaughton (1993) and Berry, Warland and Meister (1997))

or implicit (Riehle et al. (1997) and McEchron, Weible and Disterhoft (2001)).
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Table 2. Fitted parameters for various values of u for the Markov model
fitted in Section 3 for K = 2.

Fitted parameters

Stationary Distribution:P00 = 0.992, P01 = 0.004, P10 = 0.004

Y(t− 1) Transition Probability P (Y (t)|Y(t − 1))
Y (t) = 0 Y (t) = 1

00 0.996 0.004
10 0.995 0.005

LFP model Constant Lag 1 Lag 2 Error
Parameters Terms Coefficients Coefficients Variances

µ00 = -9.92, σ2
00 = 7457.2,

u = 0 µ10 = -11.24, - - σ2
10 = 12139.6,

µ01 = -24.46 σ2
01 = 10279.9

µ00 = -3.74, a00(1) = 0.63, σ2
00 = 4529.3,

u = 1 µ10 = 3.17, a10(1) = 0.59, - σ2
10 = 8615.6,

µ01 = -10.61 a01(1) = 0.50 σ2
01 = 7828.7

µ00 = -4.88, a00(1) = 0.82, a00(2) = -0.30, σ2
00 = 4110.1,

u = 2 µ10 = -1.57, a10(1) = 0.73, a10(2) = -0.30, σ2
10 = 7978.1,

µ01 = -9.44 a01(1) = 0.74 a01(2) = -0.37 σ2
01 = 6740.4

For explicit stimuli, a parametric non-homogeneous Poisson model fit has been

used by Brown, Frank, Tang, Quirk and Wilson (1998). For implicit stimuli, one

could fit a state space model, as in Smith and Brown (2003).

In this section, we study two conditional models where the LFP is consid-

ered as an stimulus for the spike train. The first model is a modification of

Smith and Brown (2003); the second model is a mixture of a discrete ARMA

type process and an AR model.

4.1. Inhomogeneous Markov Interval Models

A drawback of the model fitted by Smith and Brown (2003) is that it does

not consider the refractory period of the neural process. Here, we apply a modifi-

cation as in Johnson and Swami (1983), where the conditional intensity process is

defined by (1.2). Hence, the conditional intensity function of this process depends

only on the last spike. For this Markov property, the processes are sometimes

referred to as inhomogeneous Markov interval (IMI) process (Kass and Ventura

(2001)). Note that in (1.2), when the conditional intensity does not depend on

the second argument, the process becomes an inhomogeneous Poisson process.

An important subclass of the above model is the multiplicative form, defined

previously by (1.3). Smith and Brown (2003) suggest the firing function

s(t) = exp(α0 + α1X(t)), (4.1)
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Table 3. Fitted parameters for various values of u for the Markov model
fitted in section 3 for K = 3.

Fitted parameters

Stationary Distribution:
P000 = 0.9889, P100 = 0.0037, P010 = 0.0037, P001 = 0.0037, P101 = 0.00002

Y(t− 1) Transition Probability P (Y (t)|Y(t− 1))
Y (t) = 0 Y (t) = 1

000 0.996 0.004
100 0.995 0.005
010 0.995 0.005

LFP model Constant Lag 1 Lag 2 Error
Parameters Terms Coefficients Coefficients Variances

µ000 = -10.02, σ2
000 = 7446.0,

µ100 = 17.78, σ2
100 = 9765.4,

u = 0 - -
µ010 = -11.24, σ2

010 = 12139.4,
µ001 = -25.50 σ2

001 = 10138.9
µ000 = -3.85, a000(1) = 0.63, σ2

000 = 4519.9,
µ100 = 23.51, a100(1) = 0.52, σ2

100 = 6448.1,u = 1 -
µ010 = 3.17, a010(1) = 0.59, σ2

010 = 8613.7,
µ001 = -11.63 a001(1) = 0.50 σ2

001 = 7630.0
µ000 = -4.97, a000(1) = 0.82, a000(2) = -0.31, σ2

000 = 4100.0,
µ100 = 19.04, a100(1) = 0.64, a100(2) = -0.24, σ2

100 = 6056.0,
u = 2

µ010 = -1.57, a010(1) = 0.73, a010(2) = -0.30, σ2
010 = 7978.1,

µ001 = -10.36 a001(1) = 0.74 a001(2) = -0.37 σ2
001 = 6593.1

using the same notation as in Section 3. As we deal with discrete time, s(t)

could be interpreted as the firing probability at time t; hence, to ensure that

0 ≤ s(t) ≤ 1, we use the logit model

log

(
s(t)

1 − s(t)

)
= α0 + α1X(t) (4.2)

instead of (4.1). Note that if the two series are independent, the firing function

is a constant.

Now, as in Johnson and Swami (1983) and Berry, Warland and Meister (1997),

assume that the recovery function is

r(t) =

{
1 if 0 ≤ t ≤ 2 ms,

0 otherwise.

In the present set-up, this translates to r(t) = 0 for t ≥ 1. More complex

firing and recovery functions could also be accommodated easily, for example

Kass and Ventura (2001) employ a spline model.
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Table 4. The fit of the multivariate Markov model for various situations.

Fitted parameters

Stationary Distribution:P00 = 0.9926, P01 = 0.0018, P10 = 0.0056

Y(t− 1) Y(t) = 00 Y(t) = 01 Y(t) = 10
Transition Probability P (Y(t)|Y(t − 1))

00 0.9926 0.0018 0.0056
10 0.9928 0.0072 0
01 1 0 0

Both mean and variance of the LFP vary over different spike states

Mean

(
−9.60
−10.11

) (
−28.50
−33.26

) (
−26.01
−23.12

)

Variance

(
7468.94 4732.60
4732.60 7453.96

) (
10301.24 5963.09
5963.09 11150.60

) (
10671.39 5236.21
5236.21 10346.82

)

Mean of LFP varies but variance remains same

Mean Same as above process

Variance

(
7493.19 4739.14
4739.14 7477.85

)

Spikes and LFPs are independent

Mean

(
−9.73
−10.22

)

Variance Same as above process

Finally, we assume an autoregressive model for the LFP process:

X(t) = µ+

u∑

l

a(s)X(t − s) +

u∑

l

b(s)Y (t− s) + ǫt,

where we include a spike train term as in Section 3. It was observed that the

spike values from the immediate past have some effect on the LFP values. As in

Smith and Brown (2003), we consider only the special case

X(t) = µ+ aX(t− 1) + b Y (t− 1) + ǫt. (4.3)

The basic structure of the model is given in Figure 3. Note that in case the two

series are independent, the firing function is constant and b = 0 in equation (4.3).

The fit of the IMI model is straightforward, with parameter estimates

(α̂0, α̂1) = (−5.69(0.006),−0.004(7.44 × 10−7))

(β̂0, β̂1, β̂2) = (−3.77(2.05 × 10−5), 7.82(0.005), 0.63(2.69 × 10−9)),

where the values in the parenthesis are the corresponding squared standard errors.

The estimated value of σ2 is 4,558.85. The loglikelihood, AIC and BIC values
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Figure 3. IMI: conditional intensity of Y (t)’s depend on X(t) and X(t− 1);

X(t)’s are normal, depending linearly on X(t− 1) and Y (t− 1)’s.

are presented in Table 5, along with the independence case. Note that here the

independent model performs much worse, which is an indication that this simple

model captures the dependence structure of the data well.

We also considered a more general version of the IMI model, where the firing

function was modified from (4.1) to

s(t) = exp(α0 + α1X(t) + α2Y (t− 1)),

and the LFP’s were again modeled by (4.3). However, after fitting the model

it was observed that the estimate of α2 had a large p-value, and there was no

significant change in the likelihood. Hence, we do not pursue this model.

Table 5. Goodness of fit for the IMI and ARMA models.

−2× Likelihood AIC BIC

IMI model with dependence 562427.2 562439.2 562492.1

ARMA(1,1)-type model 567627.4 567641.4 567703.1

ARMA(2,1)-type model 567627.2 567643.2 567713.7

ARMA(1,3)-type model 567567.6 567589.6 567686.6

The independent case with AR(1) LFP 628682.7 628690.7 628725.9

4.2. A mixture ARMA-type model

Here we propose a new model for the time series of hybrid data. Note that

data at the time point t is to be (Y (t),X(t)), t = 1, 2, . . . , T , where Y (t) is binary

and X(t) is continuous. In this model Y (t) depends on (Y (t− 1),X(t − 1)) and

X(t) depends on (Y (t), Y (t− 1),X(t − 1)). See Figure 4 for an illustration.

Suppose E(Y (t)) = µ, and X(t) has a distribution F such that E(X(t)|Y (t))

= µ0+(µ1−µ0)Y (t) and Var (X(t)|Y (t)) = σ2
0+(σ2

1−σ
2
0)Y (t). Then E(X(t)|Y (t)

= 0) = µ0, Var (X(t)|Y (t) = 0) = σ2
0 , E(X(t)|Y (t) = 1) = µ1, and Var (X(t)|Y (t)
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Figure 4. ARMA type model: Y (t)’s have a discrete ARMA-type structure

and depend on X(t − 1) and Y (t − 1); X(t) is normal, and depends on

X(t− 1), Y (t− 1) and Y (t).

= 1) = σ2
1. Keeping this in mind, we define the mixture model for Y (t) as

P (Y (t+ 1) = 1|Y (t),X(t)) =

(
µ

1 − µ
+ φ[ψ(X(t)) − ψ0]

)
(1 − Y (t)), (4.4)

where ψ is a function which transforms X(t) (which is continuous, possibly with

domain R, the real line) onto [0, 1]. So ψ can be, for example, the cumulative

distribution function (cdf) of some random variable. An obvious choice of ψ is

Φ, the cdf of a standard normal random variable. Here

ψ0 = E[ψ(X(t))|Y (t)] = E[ψ(X(t))|Y (t)=1]Y (t)+E[ψ(X(t))|Y (t)=0](1−Y (t))

is a function of Y (t).

The AR(1)-type model for X(t) (given X(t− 1), Y (t), Y (t− 1)) is

{X(t) − (µ0 + (µ1 − µ0)Y (t))} = ρ {X(t− 1) − (µ0 + (µ1 − µ0)Y (t− 1))} + ǫ(t)

(4.5)

where, given Y (t), ǫ(t) has the same distribution F with mean 0 and variance

σ2
0 + (σ2

1 − σ2
0)Y (t).

Under this model, we have E(Y (t + 1)|Y (t)) = (µ/(1 − µ))(1 − Y (t)), and

E(Y (t)Y (t + 1)) = 0, and (Y (t), Y (t + 1)) 6= (1, 1) for all t. Note that, under

the model (4.4) and (4.5), the maximum likelihood estimates are very difficult

to obtain. Hence we propose some moment estimates of the parameters, which

are consistent. We obtain the log-likelihood by plugging these estimates into the

log-likelihood. We assume F to be the normal cdf to find the log-likelihood. To

find the moment estimates, we proceed as follows. Routine derivation gives, for

s ≥ 1,

E(Y (t+s)|Y (t)) = E[c(1−E(Y (t+s−1)|Y (t)))] = · · · = c(1−c)s−1+(−1)scsY (t),
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for c = µ/(1 − µ). Further,

Cov (X(t),X(t + s))

= Cov (µ0 + (µ1 − µ0)Y (t), µ0 + (µ1 − µ0)Y (t+ s)) + E[ρs(σ2
0 + (σ2

1 − σ2
0)Y (t))]

= (µ1 − µ0)
2µ

[
c(1 − c)s−1 + (−1)scs − µ

]
+ ρs(σ2

0 + (σ2
1 − σ2

0)µ), (4.6)

Var (X(t)) = (µ1 − µ0)
2µ(1 − µ) + σ2

0 + (σ2
1 − σ2

0)µ. (4.7)

From (4.6) and (4.7) we get the autocorrelation function of {X(t)} as

ρX
t,t+1 =

−(µ1 − µ0)
2µ2 + ρ(σ2

0 + (σ2
1 − σ2

0)µ)

(µ1 − µ0)2µ(1 − µ) + σ2
0 + (σ2

1 − σ2
0)µ

.

The parameter φ appears in the cross-correlation like ρXY
t,t+1. Writing ψ∗

0 = E(ψ0)

and µ0 + (µ1 − µ0)µ = µ∗, we have

E(X(t)Y (t+ 1)) = E[X(t) E(Y (t+ 1)|X(t), Y (t))]

= µµ∗ + φ [E(X(t)ψ(X(t))) − ψ∗

0µ∗] ,

and we obtain

ρXY
t,t+1 =

φ [E(X(t)ψ(X(t))) − ψ∗

0µ
∗]√

µ(1 − µ)
√

(µ1 − µ0)2µ(1 − µ) + σ2
0 + (σ2

1 − σ2
0)µ

.

The parameters can be estimated in the following way: (i) Obtain µ̂ from the

proportion of Y (t) = 1; (ii) obtain µ̂1, σ̂
2
1 from the X(t)’s for which the corre-

sponding Y (t) = 1; (iii) get the estimates µ̂0, σ̂
2
0 from the X(t)’s for which the

corresponding Y (t) = 0; (iv) obtain ρ̂ from the sample value of ρX
t,t+1 plugging

in the estimates of µ, µ1, σ
2
1 , µ0 and σ2

0 , obtained above; (v) obtain φ̂ from the

sample value of ρXY
t,t+1 using the estimates obtained above.

From the data we obtain µ̂ = 0.0037, µ̂1 = −24.4620, σ̂2
1 = 101.37642,

µ̂0 = −9.92, σ̂2
0 = 86.462, ρ̂ = 0.6251, and φ̂ ≃ 0. Note that φ̂ ≃ 0 implies that

the Yt’s do not depend on the Xt−1’s, so far the given model is concerned. In the

independence case, the model reduces to the independent IMI model discussed

in the previous section.

4.3. Higher order ARMA-type models

The above model can be further extended by modeling X(t) and Y (t) using

(X(t− i), Y (t− i)), i = 1, 2, . . .. For example, we can write

P (Y (t) = 1|Y (t− 1),X(t − 1), Y (t− 2),X(t − 2), . . .)

=
(
cp

{
1+

p∑

i=2

(Y (t−i)−µ)
}

+φ[ψ(X(t−1),X(t−2), . . .)−ψ0]
)
(1−Y (t−1)), (4.8)
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{
X(t) − µ0 −

q∑

i=1

µiY (t− i)

}
= ρ

{
X(t− 1) − µ0 −

q∑

i=1

µiY (t− 1 − i)

}
+ ǫ(t),

(4.9)

where cp is so chosen that E(Y (t)) = µ. The model (4.8) can be looked as

an AR(p)-type mixture model for Y , and the model (4.9) can be looked as an

MA(q)-type model for X. Their suitable combination might give ARMA-type

models for Y and X.

Note that the model discussed in Subsection 4.2 is ARMA(1,1)-type. We

also tried ARMA(2,1)-type model and ARMA(1,3)-type model with our data,

and the results are given in Table 5.

4.4. A modified ARMA model

The ARMA model does not seem to fit the data very well compared to some

other models, as is evident from Table 10. However, a very slight modification

to the ARMA models, to make the correlation parameter also dependent on

the value of the spike process, improves results significantly. In that case, the

continuous variable is defined as

{X(t) − (µ0 + (µ1 − µ0)Y (t))}

= (ρ0 + (ρ1 − ρ0)Y (t)) {X(t− 1) − (µ0 + (µ1 − µ0)Y (t− 1))} + ǫ(t) (4.10)

where, given Y (t), ǫ(t) has the same distribution F with mean 0 and variance

σ2
0 + (σ2

1 − σ2
0)Y (t). The parameters could be fitted by a version of the E-M

algorithm. Alternatively, one can consider combining the discrete ARMA model

for Y (t) with the following JMLGS type-equation:

X(t) = (a0 + (a1 − a0)Y (t)) + (b0 + (b1 − b0)Y (t))X(t − 1) + ǫ(t), (4.11)

where ǫ(t) is distributed as before. It may be noted that (refar1-xxx) is only a

very slight modification of (4.10), as it can be re-written as

{X(t) − (µ0 + (µ1 − µ0)Y (t))}

= (ρ0 + (ρ1 − ρ0)Y (t)) {X(t− 1) − (µ0 + (µ1 − µ0)Y (t))} + ǫ(t). (4.12)

The fit of this model can be achieved combining the method to fit the parameters

of the discrete process with that for the Markov chains described in Section 3.

The fit, presented in Table 10, appears much improved.

5. State Space Models for Hybrid Data

The state-space models are widely used in many fields of science and engi-

neering. In these models, there are two sets of equations: one is a set of state
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equations that defines the evolution of the process through time, and the other

defines how the observed or the measured values are governed by the process.

These processes are also known as latent process models, and, when the evo-

lution of the process is Markov, they are often referred to as hidden Markov

models. They have been used extensively for analysis of continuous-valued data

(Ljung and Söderström (1987), Roweis and Ghahramani (1999) and Gharamani

(2001)), and less so for discrete data (Camproux et al. (1996), Smith and Brown

(2003) and Srinivasan and Brown (2007)).

When there is reason to believe that some implicit stimuli controls the spike

train, a state space model is often fitted, as in Smith and Brown (2003) and

Smith et al. (2003). The state space models for spike bursts usually assume

that the conditional intensity function depends on some hidden latent process,

which can be continuous (Smith and Brown (2003), Smith et al. (2003)), or dis-

crete (Schneidman et al. (2006)). The hidden process is often assumed to have a

Markovian structure. When the state space is assumed to be discrete, the usual

procedure is to consider the number of hidden states to be finite, and estimate

the number of states using some suitable criteria. The LFP is often thought of

as a combination of the firing of multiple neurons in the background, and hence

it is natural to assume it to be governed by the same stimuli controlling the spike

bursts for single units. Therefore, in absence of any scientific evidence in favor

of causal structures, a state space model seems justifiable for a hybrid process as

considered in this paper.

5.1. Hidden Markov model fit for hybrid data

For modeling spike trains using state space models, the common practice is to

consider a discrete set of time points for ease of notation for filtering, smoothing

and application of the EM algorithm to fit the model (Smith and Brown (2003)),

although continuous-time models could also be used. When modeling hybrid

data, we prefer the discretization of the time for the same reasons. Further,

note that the models used by Smith and Brown (2003) and Smith et al. (2003)

do not model the refractory period, and hence, although these models are good

for spike counts, they may not be very useful for the spike generation process

unless additional assumptions are made to accommodate the refractory period,

making the models complicated. Here, to motivate the usefulness of the state

space models, we assume the state space to be discrete; this simplification helps

us to allow for the refractory period in our model without making it complex.

As is demonstrated later in this section, the fit of the state space model works

well for the LFP and spike train data. The continuous state space models could

also be extended to allow for the refractory period. We intend to address this in

future work.
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Figure 5. A general hidden Markov model: S1(t) and S2(t) are the hidden

states corresponding to X(t) and Y (t) respectively.

We now describe a method for fitting hidden Markov models to the hybrid

data set. We start by assuming that there are KX possible different hidden states

controlling the continuous process, andKY possible different hidden states for the

discrete process. For any time instant t, we denote by the pair (S1(t), S2(t)) :=

S(t) the hidden states of the two processes at time t, respectively. See Figure 5

for an illustration. For the brain data example, the various hidden states can be

thought of as the presence/absence of different stimuli from outside, or different

parts of, the body. For a preliminary analysis, assume that Xt has a normal

distribution with certain mean and variance depending on the latent process

only through the present, i.e., is conditionally independent of the past values of

X and Y the hidden states given the present state. Let us denote the mean and

variances given state S(t) by µS1
(t) and σ2

S1
(t) respectively:

p(X(t)|S(t)) = N(X(t);µS1
(t), σS1

(t)). (5.1)

Notice that there are KX possibly different values of the means and the variances.

We also assume that Y (t)|S(t) has an intensity function similar to (1.3),

λ(t) = sS(t)(t) rS(t)(t− wN (t)),

where sS(t)(t) is a firing function, and rS(t)(·) is a recovery function. As in Section

4.2, again put

rS(t)(t) =

{
1 if 0 ≤ t ≤ 2 ms,

0 otherwise,

which effectively means that the recovery function is independent of the state,

and hence can be denoted as r(t). Assume farther that the firing function at

time t is a constant given S2(t), i.e., sS(t)(t) = sS2(t). Since we deal with discrete

time, λ(t) can be thought of as the probability P (Y (t) = 1|S(t)).

For ease of notation, write the probability of the configuration (S(1), . . . ,S(T );

X(1), . . . ,X(T ); Y (1), . . . , Y (T )) as P (S,X ,Y), where S = (S(1), . . ., S(T )) etc.
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We write the transition matrix for the Markov chain as A := {a(u, v) : u, v =

1, . . . ,KX ×KY }, where a(u, v) = P (S(t+ 1) = v|s(t) = u) independent of t. We

also assume A to be aperiodic and irreducible, which ensures some nice asymp-

totic properties (Bickel, Ritov and Rydén (1988)), as well as numerical stability

(Jordan (2002)). If the initial distribution is π, then

P (S,X ,Y) = π(s(1))

T−1∏

t=1

a(S(t),S(t+ 1))

T∏

t=1

p(X(t)|S1(t))p(Y (t)|S2(t)). (5.2)

As the states are hidden, the likelihood of the data set (X,Y) is of more actual

use than (5.2), and is given by

P (X ,Y) =
∑

S(1)

· · ·
∑

S(T )

π(S(1))

T−1∏

t=1

a(S(t),S(t+1))

T∏

t=1

p(X(t)|S1(t))p(Y (t)|S2(t)).

The maximum likelihood estimators of the parameters can be calculated recur-

sively using a suitable modification of the Baum-Welch algorithm for the hybrid

data structure. The derivations are similar to those of Jordan (2002).

When the two processes are independent, one has

P ((S1(t+ 1), S2(t+ 1))|(S1(t), S2(t))) = P (S1(t+ 1)|S1(t)) P (S2(t+ 1)|S2(t))

for all t = 1, T − 1.

The full model is computationally intensive, as the transition matrix is of size

KX ×KY and hence, even for moderate values of KX and KY the model involves

hundreds of parameters. A simpler approach takes the same hidden states for the

two time series, when it is reasonable to assume that the same stimuli act as the

“hidden states” for the spike trains as well as the LFP. Figure 6 summarizes this

reduced model. Most of the illustrative results presented here use this model,

referred to as a “conditional model”; the complete model described first is called

the “full model”.
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Figure 6. A representation of a hidden Markov model where the hidden
states for both processes are the same.
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5.2. Results and discussion

Analyses are performed for models corresponding to the restricted caseKX =

KY := K. We perform and compare fits for values K = 2, 3, 4 and 5 for

the various HMM models. The case K = 2 is found to perform much worse

than the K = 3 case and hence we omit it from our discussion. The fits seem

to ‘improve’ with larger K, but the improvement diminishes with increasing

values of K. The full models have numbers of parameters of order K4 (the exact

number is K4−1+3K), and hence the fit for the full models are computationally

intensive; with five states the model takes about three hours to fit using a dual

core 3.6 GHz workstation, when the convergence criteria used is that the change

in loglikelihood values drop below 0.01. However, the numbers of parameters

for both the independent and the conditional models are only of the order K2,

(the exact numbers are 2(K2 − 1) + 3K and K2 − 1 + 3K, respectively,) and

are estimated very quickly. For example, models with K = 10 (fitted model not

provided here) take only about ten minutes to fit for both the conditional and

independent models when using the same machine.

Table 6. Fitted values for a three-state hidden Markov model where LFP

and spikes are conditionally interdependent.

Parameter State I State II State III

Restricted Conditional Model

mean -99.69 -1.97 98.35

sd 55.6 43.8 63.8

pr 0.0051 0.0027 0.0041

Independence case

mean -99.57 -1.83 98.57

sd 55.62 43.81 63.73

pr 0.0025 0.0037 0.0050

For the sake of brevity, we do not provide the fit for the full models here. The

loglikelihood values for some fitted models are provided in Table 7. It is found

that, in the independence case for any value of K, the fit for the spikes is not very

good, and the fit for the LFP is very close to the fit for the conditional model;

for an illustration refer to Table 6 where the fits for K = 3 are reproduced. The

fits for the LFP are almost identical, but the fits for the spikes are very different.

The transition matrices are not presented here, but they also follow the same

pattern.

It may be argued that the simple model assumed here for the spikes does

not work very well without added complexities, provided to a degree by the con-

ditional models. It may also be seen from Table 7 that the full model with four
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Table 7. A comparison of the fit for various hidden Markov models. The
fit of the five state conditional model with conditionally AR(1) continuous

component performs the best among the fitted models.

Model −2× logli- AIC BIC

kelihood

HMM(3 states each for LFP and
spikes, full model) 568641.9 568819.9 569604.4

HMM(4 states each for LFP and

spikes, full model) 562684.3 563218.3 565571.7

HMM(5 states each for LFP and

spikes, full model) 558665.4 559943.4 565575.6

HMM(3 states each, LFP and spikes indep) 571764.4 571814.4 572034.8

HMM(4 states each, LFP and spikes indep) 567880.8 567964.8 568335

HMM(5 states each, LFP and spikes indep) 565490.1 565616.1 566171.4

HMM(3 states, conditional independence) 571756 571790 571939.8

HMM(4 states, conditional independence) 567867.4 567921.4 568159.4

HMM(5 states, conditional independence) 565472.9 565550.9 565894.6

HMM(3 states, conditional independence, AR(1)) 558837.8 558873.8 559032.5

HMM(4 states, conditional independence, AR(1)) 556378.4 556434.4 556681.2

HMM(5 states, conditional independence, AR(1)) 555843 555923 556275.5

states performs better than the full model with five states in terms of BIC, al-

though in terms of AIC the model with five states is best. One can also see that

the conditional model with just six states, which takes about four minutes to fit,

is actually better in terms of BIC than the “best” full model. Hence, as far as the

three competing hidden Markov models are concerned, the conditional indepen-

dence models seem best in this case. Among the conditional models, however,

BIC improves with increasing number of states, which may be an indication that

a model with a continuous latent process as in Smith and Brown (2003) would

be more appropriate.

The standard error values for the estimates are not provided here. Theo-

retically, when the process {S(t),X(t), Y (t)} is stationary, the standard error

estimates could be based on the asymptotic normal distribution of the maximum

likelihood estimates of the parameters, where the asymptotic variance is provided

by the Fisher information matrix I (Bickel, Ritov and Rydén (1988)). However,

due to the complexity of the algorithm used, direct estimation of the informa-

tion matrix is hard. One can alternatively use replication-based estimates for

the variance of parameters in that case. The methods are similar to those of

Brillinger and Guha (2007).

It may be observed from Table 10 that the conditional model does not work

as well as other simpler models for the given data set. We note that, except for
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this model, all other models assume a direct dependence of X(t) on X(t − 1),

and hence we investigate the relatively more complex model with

p(X(t)|S(t)) = N(X(t);µS1
(t) − ρ(X(t − 1) − µS1

(t− 1)), σS1
(t)). (5.3)

This model allows X(t) to depend directly on X(t − 1), i.e., conditional on the

hidden states, X(t) is is assumed to be an autoregressive process of order 1

(AR(1)). In addition to the models discussed before, we also provide the fit

for this model for K = 3-5 in Table 7. The fit for this model is much better,

strengthening our claim that the LFP values have a strong lagged dependence

structure.

6. Simulations

In this section, we provide the results from a simulation study to compare dif-

ferent models. In particular, we simulated six models: two hidden Markov models

with three hidden states, with a conditional independence structure where, in one

case, the continuous process has the lagged dependence structure of an AR(1)

order (HMMAR) and, in the other case, is conditionally independent (HMMCI);

the Markov chain model with K = 3 and u = 2; an IMI process; and two

ARMA-type processes, one where the continuous process evolves following (4.5)

(ARMA), and the other in which the continuous process evolves as in (4.11)

(ARMA-JMLGS).

For all models, the simulations were carried out 1,000 times with parameters

fitted to the mouse auditory cortex data from Section 2, and the observation

number equal to that of the original data set, 49,722. In addition, we fit two

existing models: a model similar to that of Smith and Brown (2003), referred to

as the “Smith-Brown” (SB) model; and a JMLGS of order 1.

The simulations were repeated with a smaller sample size of 5,000, and all

parameters as before except for a change in the parameters for the point process

part; as for the original process the firing rate was very low (about 0.4%). The

fits are assessed by AIC and BIC as before, and are reported in Tables 8 and 9.

From them, it may be seen that both hidden Markov models perform significantly

better than the rest when there is a hidden Markov structure, even if they are

misspecified among themselves (in terms of whether the continuous process is

conditionally IID or AR(1)). However, in all other cases they do not perform very

well, especially the HMMCI. The ARMA model’s performance is consistently

the worst. One possible explanation is the simplified plug-in algorithm that we

use; it might be improved by adapting the more efficient but time-consuming

innovations algorithm (see Brockwell and Davis (1991)). The estimate we use

can be regarded as the initial estimate of the innovations algorithm, and may be

sub-optimal.
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Table 8. A comparison of the fit based on 1,000 simulations for various

types of models fitted to simulated data of length 49,722, and with param-

eters equal to those fitted to the original data. The AIC and BIC reported

are averaged over the 1,000 simulations; the values in parentheses give the

standard errors of the AIC values; the BIC standard errors are equal to that

of the corresponding AIC standard errors.

Fitted Model HMM:3 HMM:3 Markov IMI ARMA ARMA- JMLGS SB

Simulated states states spikes (1,1) JMLGS

Model cond.ind. AR(1) K:3,u:2

HMM: AIC 560544 564779 565126 565737 567213 565722 565717 565738

3 state (11.4) (11.3) (11.5) (11.3) (11.3) (11.7) (11.8) (11.8)

BIC 560694 564938 565682 565790 567275 565801 565797 565791

HMM: AIC 560733 556927 559599 559614 560970 559599 559600 559615

3 st (13.4) (14.8) (14.1) (14.0) (14.0) (14.0) (14.0) (14.0)

AR(1) BIC 560883 557086 559837 559667 561032 559678 559679 559668

Markov AIC 574850 562421 557427 562394 567608 562364 562371 562395

K=3 (11.1) (12.3) (11.2) (12.3) (12.0) (12.3) (12.3) (12.3)

u=2 BIC 575000 562579 561900 562446 567669 562443 562450 562448

AIC 571450 562486 562470 562460 567680 562461 562460 562461

IMI (10.8) (10.6) (10.6) (10.7) (12.6) (10.7) (10.7) (10.7)

BIC 571600 562644 562708 562512 5677412 562540 562539 562514

ARMA AIC 592842 587066 587047 587041 592267 587024 587036 587043

(1,1) (27.7) (10.9) (9.6) (9.6) (10.9) (9.6) (9.6) (9.6)

BIC 592992 587224 587285 587093 592329 587103 587116 587096

ARMA AIC 592925 587143 587113 587124 592337 587094 587109 587126

JM- (38.6) (9.4) (9.6) (9.6) (10.8) (9.6) (9.6) (9.6)

LGS BIC 593074 587301 587315 587177 592399 587174 587188 587179

The Markov chain model appears to be the most robust among all; it out-

performs all misspecified models in most simulation, except for the IMI model

with a small sample size, where the JMLGS performs the best. The two “existing

models”, SB and JMLGS, perform reasonably well, but are usually outperformed

by the respective “improved versions”: the IMI and the ARMA-JMLGS mod-

els. The improvements, especially from the SB model to the IMI model do not

appear very significant at first glance, but the standard errors of the difference

of AIC values for various models are of order 10−2, and hence the improvements

are significant. Further, keeping in mind that the only changes in these models

are made for the point process part whose contribution to the likelihood function

is very small, the importance of the modifications can be understood.

Note that we performed detailed simulation studies with several other pa-

rameter combinations and data lengths, and the findings were similar. Hence,

we do not report them all.
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Table 9. A comparison of the fit based on 1,000 simulations for various types

of models fitted to simulated data of length 5,000 and with spike firing rate

10 times that of the original data, other parameters equal to those fitted to

the original data. The AIC and BIC reported are averaged over the 1,000

simulations; the values in parentheses are the standard errors.

Fitted Model HMM:3 HMM:3 Markov IMI ARMA ARMA- JMLGS SB

Simulated states states spikes (1,1) JMLGS

Model cond.ind. AR(1) K:3,u:2

HMM: AIC 57,450 57,886 57,928 57,994 58,140 57,978 57,978 58,003

3 state (5.2) (5.1) (4.8) (4.8) (4.9) (4.8) (4.8) (4.8)

BIC 57,560 58,004 57,990 58,033 58,186 58,037 58,037 58,042

HMM: AIC 57,374 56,985 57,249 57,270 57,399 57,253 57,255 57,276

3 st (6.2) (6.2) (6.1) (6.3) (6.2) (6.3) (6.3) (6.4)

AR(1) BIC 57,485 57,102 57,425 57,309 57,444 57,312 57,314 57,315

Markov AIC 59,112 58,178 57,559 58,151 58,632 58,126 58,131 58,164

K=3 (5.1) (5.4) (5.0) (5.4) (5.1) (5.4) (5.4) (5.5)

u=2 BIC 59,222 58,295 58,092 58,190 58,678 58,185 58,189 58,203

AIC 59,596 58,829 58,810 58,801 59,384 58,807 58,805 58,855

IMI (5.1) (4.2) (4.6) (4.6) (4.9) (4.6) (4.6) (4.7)

BIC 59706 58,946 58,986 58,840 59,430 58,866 58,863 58,894

ARMA AIC 61,044 60,445 60,417 60,424 60,954 60,410.7 60,411.4 60,446

(1,1) (5.5) (4.0) (4.0) (4.0) (4.4) (4.0) (4.0) (4.1)

BIC 61155 60,563 60,593 60,463 61,000 60,469 60,470 60,485

ARMA AIC 61,037 60,445 60,416 60,434 60,945 60,414 60,416 60,449

JM- (5.9) (4.0) (4.0) (4.0) (4.3) (4.1) (4.1) (4.1)

LGS BIC 61,148 60,563 60,565 60,473 60,990 60,473 60,475 60,488

7. Discussions of Results

In this article, we have discussed various methods of fitting parametric mod-

els to bivariate hybrid neuroscience data. The examples provided are mostly

modifications of existing methodologies. We have provided examples of existing

techniques to model hybrid structures when causal directions exist: a Markov

model for spikes assuming the LFP depends on them, an IMI model and some

mixed ARMA-type models assuming spikes depend on the LFP; and also as-

suming they do not, we fitted a state space model with a hidden latent process

with discrete states. These are not necessarily the best models that could be

fit to the particular dataset considered, for example, a non-parametric fit of the

auto-intensity function showed an increased intensity near firing times, and this

has not been modeled. The models that we show in this work are more like

building blocks: they are simple, fast to fit, practical, and can be extended to

more complex models with ease.
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We have employed three model comparison statistics in the previous chap-

ters: log likelihood, AIC and BIC. There are standard results that allow us to

compare nested models, say for example the two IMI model fits with and with-

out lagged spike predictors for spikes, where the difference in twice log likelihood

follows an approximate χ2-distribution with degrees of freedom equal to the dif-

ference in number of parameters (McCullagh and Nelder (1989)). Similar tests

are available for hidden Markov models under certain regularity conditions, see

Giudici et al (2000) for details. However, it is well known that, in general, log like-

lihood is not a good measure for comparing models, essentially non-nested ones.

In Table 10 we only use AIC and BIC, commonly accepted as reasonable measures

of goodness of fit of neuroscience models (Brown et al. (2003), Barbieri et al.

(2001) and Brown, Barbieri Ventura, Kass and Frank (1998)). However, AIC

and BIC also have their limitations, especially for point processes like spike trains,

and various alternatives have been suggested, including an application of a time

rescaling theorem for point processes (Brown, Barbieri Ventura, Kass and Frank

(1998) and Kass, Ventura and Brown (2005)), and entropy-based measures

(Nakahara, Amari and Richmond (2006) and Schneidman et al. (2006)). The

former, at least in its present form, might not be very useful for hybrid pro-

cesses, but the entropy-based methods could be extremely useful.

With the continuous time scale, unless some sort of conditional independence

is assumed (for example see Smith and Brown (2003)), extension of the model

for multiple spike trains becomes very complicated, see Brown, Kass and Mitra

(2004). However, in many discrete time cases, the extensions, although compu-

tationally extensive when the number of neurons is large, would be immediate.

For example, the Markov model for spikes used in Section 3 could be extended

to multiple spike trains just by suitably increasing the number of values of the

discrete variable: for example, when two neurons are present, define a discrete

variable taking values 0, 1, 2 or 3, respectively, when none, first, second or both

neurons fire. It is true that this model becomes computationally difficult very

quickly unless some sort of additional conditions are assumed, but nevertheless

it is still a method that could be utilized.

One major drawback of using the AIC and BIC for hybrid processes is that

the point processes receive very little weight. For example, look at the comparison

of the IMI models with and without refractory period. The improvement of the

model appears to be very small; due to the small contribution of the point process

part to the likelihood, caused partly by the low firing rate of the spike train.

However, the introduction of a refractory period does improve upon the existing

model, and it might be argued that for a spike train with higher firing rate,

the improvement would be more pronounced, as seen in the simulations. The

simulations also indicate that this small improvement is statistically significant.
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The simulations from Section 6 suggest that when the hidden Markov mod-

els hold, they outperform all the other models by far, otherwise they do not

perform well. One other major problem with the hidden Markov models is that

they often have a complicated likelihood function, more so when the number of

states to be fitted is high, and often the iterated algorithm used to fit the model

converges to a local maximum. This means that many initial values need to be

tried before getting a good fit, a significant computational cost. This problem

is more pronounced for the model with AR(1)-type complexity, also because the

Baum-Welch algorithm needs to be modified for this case to accommodate the

AR(1) structure, and the trade-off for the improved model is a slower convergence

rate compared to the other conditional hidden Markov model. In comparison,

the simple Markov models, even though they have large number of parameters,

provide quick and good fits, and might be useful when an on-line model fit is

needed.

To a lesser extent, the SB model suffers from the same problem as the hid-

den Markov model; it can diverge unless proper initial values are chosen. Also,

considering the log link for the rate function (see (4.1)) means that, theoretically,

the fitted rate could be more than 1, which cannot be allowed. Hence, using a

logit link function appears to be a reasonable choice. Although for the fit to the

original data the improvements in the modified IMI fit is not very pronounced,

it is much more visible in simulations with a higher spike-firing rate.

The ARMA model fitted using the algorithm described in Section 4.2 suffers

from some estimation bias, and does not perform well even when it is the true

model. Applying a more complicated, EM-type iterative algorithm similar to the

innovations algorithm (see Brockwell and Davis (1991)) improves the outcome,

but it is computationally intensive. One other alternative is to fit the modified

model of Section 4.4 (described in Table 10 as the ARMA-JMLGS model), whose

fit is less computationally intensive, yet more accurate.

The Markov model with K = 3 and u = 2 seems to fit quite well. This model

has the largest number of parameters but, unlike some others, the fit is achieved

very quickly even using a large number of parameters. However, a model that

is “best” in terms of AIC and BIC might not be the best hybrid model. The

Markov chain structure assumed here is overly simplistic, and cannot be easily

modified to allow for a randomized recovery function. The ARMA-type model

can accommodate more complicated recovery functions; it allows the transition

probabilities to be random, and to depend on the continuous process, which

appears more reasonable in many situations.

In conclusion, it may be said that there is no single “best” model for all hybrid

neuroscience processes, but the models discussed here, and suitable modifications,

can be used in many situations that arise with real life neuroscience data.



AN OVERVIEW OF MODELING TECHNIQUES FOR HYBRID BRAIN DATA 1337

Table 10. A comparison of the fit for various types of models fitted to the
hybrid data. The last two are existing models.

Model #para- AIC BIC

meters

HMM(3 states, cond. ind.) 17 571,790 571,939.8

HMM(5 states, cond. ind.) 39 562,182.4 563,319.5

HMM(3 states, cond. ind., LFP AR(1)) 18 558,873.8 559,032.5

HMM(5 states, cond. ind., LFP AR(1)) 40 555,923 556,275.5

Markov spikes (K = 3, u = 2) 27 557,467.6 557,705.6

IMI model for spikes with AR(1) LFP 6 562,439.2 562,492.1

ARMA(1,1)-type model 7 567,641.4 567,703.1

ARMA(1,1)-JMLGS combined 9 562,404.2 562,483.5

JMLGS Model 9 562,404.6 562,483.9

Smith-Brown Model 6 562,441.3 562,494.2
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