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Abstract: Neural spike trains, the primary communication signals in the brain,
can be accurately modeled as point processes. For many years, significant theo-
retical work has been done on the construction of exact and approximate filters
for state estimation from point process observations in continuous-time. We have
previously developed approximate filters for state estimation from point process
observations in discrete-time and applied them in the study of neural systems.
Here, we present a coherent framework for deriving continuous-time filters from
their discrete-counterparts. We present an accessible derivation of the well-known
unnormalized conditional density equation for state evolution, construct a new
continuous-time filter based on a Gaussian approximation, and propose a method
for assessing the validity of the approximation following an approach by Brockett
and Clark. We apply these methods to the problem of reconstructing arm reaching
movements from simulated neural spiking activity from the primary motor cortex.
This work makes explicit the connections between adaptive point process filters for
analyzing neural spiking activity in continuous-time, and standard continuous-time
filters for state estimation from continuous and point process observations.

Key words and phrases: Adaptive estimation, neural data analysis, state-space
models.

1. Introduction

The primary communication signal within the brain is the action poten-
tial. Action potentials are nearly instantaneous voltage discharges that propagate
rapidly across neurons and cause neurotransmitter release and signal propagation
between neurons (Dayan and Abbot| (2001)). The sudden stereotyped nature of
these action potentials suggests that they can be accurately described under a
point process modeling framework (Brillinger| (1992)) and [Brown, Barbieri, Eden
and Frank! (2003)). A sequence of action potentials plotted in time is called a
neural spike train. In addition to communicating with spike trains, neural sys-
tems are dynamic in that individual neurons constantly change their response
properties to relevant stimuli (Brown, Nguyen, Frank, Wilson and Solo| (2001)),
Frank, Eden, Solo, Wilson and Brown| (2002)), and [Frank, Stanley and Brown
(2004))). Furthermore, groups of neurons maintain dynamic representations of
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relevant stimuli in their ensemble firing patterns (Brown, Frank, Tang, Quirk
and Wilson! (1998) and Barbieri, Frank, Nguyen, Quirk, Solo, Wilson and Brown
(2004))). For these reasons, the development of state-space algorithms to charac-
terize the dynamic properties of neural systems from point process observations
has been a productive research area in computational neuroscience.

State-space estimation from continuous-valued observations is a well-developed
area in adaptive filter theory (Haykin| (1996)) and [Jazwinski (I970))). Under this
framework, the behavior of a system is modeled with dynamic state variables that
follow stochastic evolution and are observed through a continuous-valued process
with stochastic disturbances. When both the state and observation models are
linear and Gaussian processes, the conditional densities of the states given the
observations are solutions to recursive filter equations that describe time-varying
Gaussian distributions (Stengel (1994)). In discrete-time, this solution is the
well-known Kalman filter. In continuous-time the recursive filter equations are
stochastic partial differential equations whose solution is given by the Kalman-
Bucy filter. The Kalman and Kalman-Bucy filters are equivalent in that they
provide matching solutions for the mean and variance estimate of the conditional
density at each point in time.

Exact continuous-time point process filtering algorithms, as well as discrete
and continuous-time approximate filters for state estimation from point process
observations, are well known (Elliottl (1990), [Kushner (1990)), and [Snyder and
Millex] (1991)). In particular, formulae for the evolution of both the unnormalized
and normalized conditional density of a state given point process observations
have been derived (Snyder and Miller| (I991)), Twum-Danso (1997) and [Solo
(2000)).

We have previously developed discrete-time, adaptive filter algorithms for
state estimation from point process observations by computing recursively a
Gaussian approximation to the conditional density and the Chapman-Kolmogorov
(one-step) prediction density of the state (Brown, Frank, Tang, Quirk and Wil+
son (1998)), [Smith and Brown! (2003) and [Eden, Frank, Barbieri, Solo and Brown
(2004))). These filters are point process analogues of the Kalman filter, recursive
least-squares, and steepest descent algorithms for Gaussian observations.

The remainder of this paper is organized as follows. In Section 2, we define
the continuous and discrete-time state and observation models, and in Section
3 we provide an elementary derivation of the unnormalized conditional density
equation. Section 4 highlights the effect of spike observations on the conditional
density. Section 5 discusses exponential representations of the solution to the
conditional density equation and suggests a method for predicting the accuracy
of approximate Gaussian filters. In Section 6, we derive a new continuous-time
Gaussian approximate filter for state estimation from point processes. This fil-
ter is a point process analogue to the Kalman-Bucy filter. In Section 7, these
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continuous-time filtering algorithms are applied to the problem of reconstruct-
ing a hand trajectory from simulated neural spiking activity from the primate
primary motor cortex. In this example, we fit physiologically motivated neural
models to the simulated data, and subsequently show that a Gaussian approxima-
tion to the conditional density of the state leads to accurate trajectory estimates.
Using the approximate filter derived in Section 6, we reconstruct a sample tra-
jectory from simulated ensemble spike train activity from motor cortical neurons
in response to reaching movements.

2. Continuous and Discrete-Time State and Observation Models

To construct continuous-time analogues of our point process estimation al-
gorithms, we express the stochastic models on which they are built, one for the
state evolution and one for the observations process, in equivalent discrete and
continuous-time forms.

The state evolution model used in the development of standard continuous-
time estimation procedures, such as the Kalman-Bucy filter, takes the form of a
Wiener-driven stochastic process

dz(t) = Ax(t)dt + Bdw(t), (2.1)

where at any time ¢, x(t) is a state vector of dimension n, w(t) is a standard
multivariate Wiener process, and A and B are constant n X n matrices defining
the drift and scale parameters of the process, respectively.

To describe the discrete-time filters, we partition an observation interval,
[0,7], into {t; : 0 < t; < --- <ty < T}. All pertinent model components, in-
cluding the state model and observation values, are then measured or estimated
at these specified times. To obtain a discrete-time expression for the state transi-
tion equation, we use the fact that the solution to (2.1) is a time-varying Gaussian
process, and stochastically integrate this Wiener-driven process to compute the
mean and variance of this density as a function of the discretization times. This
yields the stochastic difference equation

xp = Fraxp_1 + e, (2.2)

where zy, = x(tx), Fr = exp(A(ty — tx—1)) and ¢ = Li’“_l exp(A(ty — 7))dw(t)
is a zero-mean Gaussian random variable with variance Qy = ftt:_l exp(A(ty —
7))BB'(exp(A'(t), — 7)))dr.

Next, we define discrete and continuous-time models for the observation
process. In continuous-time we define the conditional intensity function for the
ith neuron in an ensemble of C' neurons as

N(HH) = Tim Pr(ith neuron spikes in (¢,¢ + At]|Hy)
At—0 At

(2.3)
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where Hy is the history of the spiking activity of the entire ensemble up to time t.
The conditional intensity function provides a complete description of the point
process distributions (Daley and Vere-Jones| (2003)). We can therefore formulate
parametric models for these conditional intensity functions that fully describe
the firing properties of each neuron in time. In general, the conditional inten-
sity models can be a function of external or biological signals, the neuron’s own
previous spiking history, or the activity of other neurons within the ensemble
(Truccolo, Eden, Fellows, Donoghue and Brown| (2005])). By expressing the con-
ditional intensity as a function of the state process (i.e., writing down a model of
the form A (t|H;) = g(t,z(t), H;) for some function g), we define the probability
distribution of spiking activity as a function of the state. Since by (2.3), the
conditional intensity implicitly defines the conditional probability of a spike in
a small time interval, it is also appropriate for describing the stochastic model
for the spiking process in discrete time, in which case we write )\}; in place of
N (tk|Htk)'

The observations must also be expressed in continuous and discrete-time
forms for the appropriate estimation paradigm This is easily done by considering
the counting process in continuous-time, N*( fo dN*(u), which counts the
total number of spikes observed from the zth neuron in the interval (0,¢]. Here,
dN? is the differential element of the counting process for the ith neuron. In
discrete time, AN} = N(t;) — N'(tj—1) ft dN'(u) is the number of spikes
observed in the interval (¢;_1, tx]. We assume that if the Aty =t —tr_1 elements
are sufficiently small then there will be at most one spike in the interval, and
the collection AN, ,i for all k is a sequence of zeros and ones used to express spike
data in a discrete time series. The probability of neuron i spiking in (¢x_1, tx] is

Pr(AN][wy, Hy,) = (\pAty) A Nke ™A% 1 o(Aty), (2.4)

where zj, = z(t;) and o(Aty) is a function such that lima¢, —o(o(Aty)/Aty) =0
(Andersen| (1996])).

3. A Continuous-Time Equation for the Unnormalized Density

The estimation problem deals with computing the time-varying conditional
probability density of the state given the observations. One approach to tracking
this probability density in continuous-time is to construct a differential equation,
based on the Fokker-Planck equation, describing the evolution of the conditional
density as a diffusion process (Stengel (1994)). It is sufficient to track an unnor-
malized version of this density in time, since it is always possible to compute its
integral and renormalize at any later point.

As with our discrete-time point process filtering paradigm (Brown, Frank,
Tang, Quirk and Wilson| (1998) and [Eden, Frank, Barbieri, Solo and Brown
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(2004))), we develop a recursive expression for the conditional density given the
observations process up to a given time from its value at a previous point in time
by using Bayes’ rule:

C 7
H Pr(AN"|z(t + At), Hy)

At)|{AN}E
p(z(t + At){ i=1 H Pr(AN?|Hy)

p(xz(t + At)|Hy), (3.1)
i=1

where AN® = N*(t+ At) — Ni(t) and H; is the complete history of spiking obser-
vations from the entire neural population up to time t. We call p(z(t+At)|H;) the
one-step prediction density, Pr(AN*|z(t+ At), H;) the firing probability distribu-
tion for the ith neuron, and p(z(t+ At)|[{AN}{,, H;) the conditional density for
the state process. Here we have assumed that, within the small time interval At,
the firing intensity of each neuron does not depend on the firing of other neurons
in the ensemble within that interval. In the limit as At — 0, this limitation van-
ishes as long as the entire process is orderly. For notational simplicity, we derive
the update equation for a single neuron, and then discuss how it generalizes to
spiking observations for a neural ensemble.

The denominator on the right side of (3.1) is a normalization term for the
conditional density that does not depend on x(¢). Computing this normalization
constant at each time is computationally demanding. An alternate approach is
to replace this with another normalization term that facilitates the computation
of an unnormalized version of the conditional density. Following [Solol (2000), we
use the probability of seeing the same observation under a simple homogeneous
Poisson process, Pr(AN| Poission(1)), as the normalization term. This renormal-
ization serves to simplify the computation of (3.1). The resulting expression for
the discrete-time evolution of the unnormalized conditional density for a single
neuron is then

Pr(AN|z(t + At), H

Pr(AN|Poisson(1)) J p(x(t + At)|Hy). (3.2)

ple(t + At)AN, Hy) =

This unnormalized density can later be renormalized as needed at any point in
time.

For notational convenience, we write p(t) (or simply p) in place of p(z(t)|AN,
H;) and X in place of A(t|H;), from here on. The fraction on the right side of (3.2)
is a likelihood ratio that is completely determined by the conditional intensity
functions of the neurons in the ensemble. The only remaining term that needs
to be evaluated is the one-step prediction density. One approach to computing
this density is to use the Chapman-Kolmogorov equation and pass to the limit
as At — 0 (Sold (2000)). Here, we take an alternate approach. In the absence
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of any observations, the evolution of p is given by the Fokker-Plank operator,
defined under an It6 calculus to be
dp 1 0?p
L(p)=—-Ap— Az— — ~BB'—~ 3.3
(p) p—Azg — BB o5 (3.3)
(Stengel (1994)). We use this expression to define the evolution of the conditional
density from ¢ to t+ At which, for small At, gives the one-step prediction density
p(z(t + At)|[Hy) = p(t) + L(p(t)) At + o(At).
We next compute the unnormalized conditional density in the limit as the
discrete time interval approaches zero, obtaining

ANe—)\At
dim e+ 80 = Jim (0T t0) + 200 80))

= lim (A= ODA (o) + Lip(1)AD).  (3.4)

We examine the cases of spike times and non-spike times separately. By a non-
spike time, we mean a time t for which there exists an ¢ such that for all At < ¢
no spike occurs in [t,t + At). In this case, we are interested in the standard
definition of the derivative of the unnormalized density with respect to time,

: _ ~1_ 1 —(A=1)At _ —(A—1DAt —1
Jim (p(t+A8)—p()) A= lim (e 1p(t)+e L(p(t))At) At

— Tim ( — (A= 1)p(t) + L(p(t))). (3.5)

At—0
Therefore, the differential equation describing the evolution of the conditional

density at times when no spike occurs is
dp
ot = L) —(A=1)p. (3.6)
On the other hand, when a spike does occurs at time ¢, we are interested in the
instantaneous jump in the density between the instants just before and just after
the spike. We compute this as the limit of the change in density at ¢ as At — O:

Jim plt+ &) = p(t) = lim (A"O"DA(p(t) + L(p(1)) A1) = p(1))

=(A—=1)p(t). (3.7)

This is the jump in the density caused by a spike. Combining (3.6) and (3.7), we
can write a diffusion equation for the unnormalized conditional density:

dp = (L(p) — (A —1)p)dt + (A — 1)pdN. (3.8)

Since adding any multiple of p to itself only serves to change the normalizing
factor, we could alternately write an unnormalized density equation with the first
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(A — 1) term replaced by A. If observations from an ensemble of simultaneously
recorded spiking neurons are available, and we assume that each neuron can only
affect the future firing of other neurons, it is easy to show that the unnormalized
conditional density equation reflects the superposition of the contributions from
each neuron individually, and is

dp:< Ap — A;l—er BB’ ZX )dt+z " —1)pdN'.  (3.9)

The solution to this density equation depends on the initial value of the
distribution, on the form of the state and observation models, and on the spiking
data. For initial densities with broad support over the appropriate region of the
state space, the effect of the initial distribution will vanish as the observation
interval and the number of observed spikes becomes large.

4. Instantaneous Density Changes

Consider the evolution of the conditional density based on the observation of
a single neuron. The dN term on the right hand side of (3.9) indicates that when
a spike occurs the unnormalized density undergoes a jump discontinuity at every
value of the state. Specifically, if we let p~ = limy, p(t) and pt = limy,, p(t)
then, at a spike time u,

=t ([ )+

— lim lim ( / ’ (L(p) - )\(t|Ht)p(t)>dt + ()\(t|Ht) - 1) p(t)dN(t)> +p

alu blu
— Al H,)p (4.1)

The conditional density immediately following a spike is simply the product of the
conditional density preceding the spike and the conditional intensity function for
the spiking neuron. Therefore, if the conditional intensity is small in the region
of the state space where most of the mass of the conditional density resides, and
high elsewhere, then a spike can significantly and instantaneously change the
overall structure of the conditional density.

5. Exponential Representations of Solutions

Based on Brockett and Clark (1980), we can construct a representation of the
unnormalized conditional density solution for (3.9) as p(t) = exp{>_ fiGi(x)}p(0),
where {f;} is a set of real-valued functions in time, and {G;(z)} is a set of func-
tions of the state . The G; are chosen so that this exponential form encompasses
the solution to the diffusion equation for any possible set of spiking observations.
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In the absence of any spiking activity, the solution to the diffusion equation
has an exponential representation determined by the drift operator in (3.9),

(—A—Ax$+;(£€)’33’(§v> —zC:x), (5.1)
i=1

and the initial state distribution. Equation (4.1) makes clear the effect of a spike
from any neuron on the conditional density, namely that the function for the
conditional density immediately after the spike is the product of the density just
before the spike and the intensity of the spiking neuron as a function of the state.
Writing this to suit an exponential representation, we obtain

p* =~ = exp{log(M)}p~. (5.2)

Therefore, to construct an exponential representation for the conditional
density, we need a set of basis functions, {G;(z)}, that include the contribution
from the drift term and the initial distribution on the state, as well as log(\?)
for every neuron in the ensemble. Additionally, since the drift term will exert its
influence before and after each spike event, we need this set of basis functions
to span all commutators of the drift and spike terms, all commutators of those
operators, and so on. In other words, if we can construct a finite basis for a set
of operators that includes this drift and the jump terms for each neuron and is
closed under commutation, then there exists an exponential representation for
the solution with a finite number of terms. This set of operators is called the
Lie algebra generated by this drift, L(-) — > A%, and the jump terms, log(\?), for
i=1,...,C (Brockettl (1981) and [Sagle and Walde| (1973)).

For the unnormalized density to have a Gaussian solution for our Gaussian
state and point process observation model, the basis functions must be given by
quadratic polynomials. In general, there is no functional form for the conditional
intensity models so that the Lie algebra generated by this system has such a
basis. Therefore, Gaussian solutions to the diffusion equation will not exist for
these spiking systems. However, in many cases, Gaussian approximations to the
conditional density have been used to compute accurate state estimators and
characterize their uncertainty (Brown, Frank, Tang, Quirk and Wilson (1998)),
Barbieri, Frank, Nguyen, Quirk, Solo, Wilson and Brown| (2004) and [Ergun,
Barbieri, Eden, Wilson and Brown| (2007))). Under such a scheme, it is possible
that errors related to the Gaussian approximation will be large and accumulate
over time, leading to inaccurate estimators, or that these errors will remain small
and their effects on the estimators limited in duration. The degree to which either
of these possibilities occurs will depend on how each term in the Lie algebra affects
the conditional density at each point in time.
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This theory suggests a practical approach to evaluate the potential accu-
racy of the Gaussian approximation to the conditional density used in point
process adaptive filters. To the extent that quadratic functions approximate
well the effect of the drift and jump terms and their commutators, the log of
the conditional density will be nearly quadratic and the Gaussian approxima-
tion should be accurate. For example, when the neural spiking models have the
form \(t) = exp{a;x(t)? + bjz(t) + ¢;}, then the > A% in the drift operator is
the only term causing the conditional distribution to deviate from a Gaussian.
Twum-Dansol (1997) and Twum-Danso and Brockett! (2001) showed that for a
regular lattice of hippocampal spatial receptive fields with identical Gaussian
shapes, this term is remarkably well-approximated by a constant, and therefore
an expression for an accurate Gaussian approximation to the conditional density
can be constructed. More generally, if the > A? term is well approximated by
any quadratic function, then the Gaussian approximation should be accurate.

This result suggests that, for any neural decoding solution computed from
an ensemble of neurons of this form, it is prudent to examine the structure of
¢ N(t|H;) over the relevant region of the state space to assess the accuracy
of the Gaussian approximation. For a low-dimensional state vector, this could be
accomplished by plotting the sum of intensities over the state-space (e.g. Figure 2
in the example in Section 7) to assess how well it is fit by a quadratic polynomial.
For more complicated intensity models, it may be useful to expand the sum of
intensities in a Taylor series and compare the magnitude of the constant, linear,
and quadratic coefficients to higher order terms.

6. A Continuous-time Approximate Filter

The diffusion equation derived in Section 3 is exact in the sense that its so-
lution at any point in time is equal to the conditional probability density up to a
normalization constant. However, this differential equation cannot typically be
solved analytically, and standard numerical methods can become computation-
ally difficult. On the other hand, the discrete-time stochastic state point process
filter (SSPPF) (Eden, Frank, Barbieri, Solo and Brown| (2004)) uses a Gaussian
approximation to the conditional density at each time step to construct a compu-
tationally simple recursion (3.1). Similar to the derivation of the Kalman-Bucy
filter, we can construct a continuous-time analogue to the SSPPF by applying a
limiting procedure as the time step in the discretization approaches zero.

In order to construct the SSPPF, we used the Bayesian recursion in (3.1)
and applied the Chapman-Kolmogorov equation to compute the one-step pre-
diction density, expanded the log of the posterior in a Taylor series about the
one step prediction mean, xy, = Ty, = Elxg[{AN} Y |, H(tt)], dropped terms
higher than second order, and obtained a linear, discrete-time recursive Gaussian
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approximation to the conditional density. Under the discrete-time state model
given by (2.2) with observations process (2.3), the equations for the estimated
conditional variance, Wy, = var(vg[{ AN} }C |, H(tg)), and mean are, respec-
tively,

[((‘3log)\Z alog)\i>

C
(Wk‘k) = (Wi Pl + Qi) T Z Oxy, ) AlAtk]( Oxy,

=1
, , 2log \
(AN} — Niag) Lo ] : (6.1)
amkaxk Tp=Frxp_1)k—1
¢ Olog N\ ; -
Ty = Fetptp-1 + Wige > [( o ) (AN} — xmk)] . (6.2)
i= zp=Frxi_1)k—1

For the derivation of a continuous-time analogue to the SSPPF, we are in-
terested in the observation interval (¢,¢ + At], and the values of the estimated
mean and variance process solely at the beginning and end of this interval, in
the limit as At — 0. We define # and W as our continuous-time expressions
for the conditional mean and variance, respectively, in this limit, and write
27 = lima¢—o Tp_1x—1 and 2T = limas o zy)p, for the mean estimator, and
W= = limaso Wi _1jk—1 and Wt = limas o Wik for the variance estimator.
In this limit, the discrete-time expressions in (6.1) and (6.2) become continuous-
time stochastic differential equations that characterize the evolution of the mean
and variance of the conditional density

di = Ai™ dt+W+Z [(mg? ) (dN7 —)\jdt)] , (6.3)

Jj=1 &~

A2\
dxdx’

C
dW = (AW~ + W~ A + BB)dt - Y W~ ( dt + SJdNJ) W (6.4)
j=1

where,

A 0% log N -t 02 log \/
7 = <W ( dzxdx! ) ) if ( dzx0x’ )#0-
0 otherwise

From any initial values, this system of differential equations completely describes
the evolution of the Gaussian approximation to the conditional density in con-
tinuous time. As with the diffusion equation for the unnormalized density, when
the initial estimate of the variance term is sufficiently large relative to the range
of values that the state takes on, the effect of the initial estimates vanishes as
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Figure 1. Sample arm movement with simulated spiking activity of two
neurons, one in red and the other in green, overlaid. (A) (z,y) coordinates
of movement trajctory, (B) z-velocity versus time, (C) y-velocity versus time.

the size of the observation interval and the number of spikes becomes large. The
step-by-step procedure for computing these limiting equations is available as an
online supplement to this article on the Statistica Sinica website.

7. An Application to Motor Decoding

We illustrate the application of these continuous-time approximate methods
to the problem of estimating the firing properties of an ensemble of simulated
primary motor cortical neurons that respond during reaching arm movements,
and reconstructing movement trajectories from this simulated ensemble spiking
activity. This problem relates to the important application of developing neural
prosthetic devises for patients who have lost the ability to perform voluntary arm
movements, for example through brain or spinal cord injury or neural degenera-
tion.

Elsewhere (Truccolo, Eden, Fellows, Donoghue and Brown| (2005))), we ap-
plied the SSPPF to real spike train data from the primary motor cortex of
macaque monkeys to characterize the firing properties of these neurons in re-
lation to arm movement, spiking history, and interactions among neurons. Here,
we simulate neurons based on these neural models with realistic parameter val-
ues drawn from these previously characterized spiking properties. We generated
smooth simulated arm movement data as an autoregressive process with param-
eters estimated from real arm trajectories recorded from a monkey executing
continuous reaching movements. The values of these parameters, as well as the
specific details of the state and observation models used in this simulation, are
described in further detail in the online supplement to this article on the Sta-
tistica Sinica website. An example of one of these reaching arm movements is
shown in black in Figure 1.
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We simulated spiking activity from neural intensity models of the form

N(t|H;) = exp {ai + B%|v(t + 150ms)| cos(¢(t + 150ms) — qﬁipref)

130ms
+ Z ’Y;L'AN[th,t(Tl))}7 (7.1)

=1

where v(t) and ¢(t) are the speed and direction of the arm movement, AN[ia,b) is
the total number of spikes fired by the ith neuron in the interval [a,b), and o,
B3, ;ref, {4t E’:Ol are respectively the model parameters related to the baseline
firing rate, velocity modulation, preferred direction, and history dependence of
the neuron. Under this model, the spiking activity predicts movement variables
that occur after a lag of 150 ms. This form of kinematic tuning is based on
a model of Moran and Schwartzl (1999). We simulated 20 neurons generated
by selecting of, 3, ¢Lref, {73139 randomly over a range of realistic parameter
values estimated previously in [Truccolo et all (2005). The spiking activity from
two of these neurons relative to an arm trajectory is shown in Figure 1. The
neuron whose spiking is labeled in green tends to fire more during movements
in the positive z and y-directions, while the one whose spiking is labeled in red
tends to fire during movements in the negative x and y-directions. The true
tuning functions for each of the 20 simulated neurons is shown in Figure 2A.

We performed an encoding analysis by estimating model parameters for the
conditional intensity function for each neuron, for models of the form of (7.1),
from a training set containing 20 minutes of simulated spiking data. The methods
and results of this analysis, along with a goodness-of-fit analysis are presented in
the online supplement to this paper on the Statistica Sinica website. We can ask
the question whether the ensemble activity of these 20 estimated neurons contains
sufficient information about the arm kinematics to reconstruct accurately the
trajectory of a new arm movement solely from the observed ensemble spiking
activity.

To address this question we adopt a state space model for the arm movement

trajectory as in (2.1), with z(t) = [Z((?) :Ts((j((;))))} ,A=0and B=10-1. Given

the maximum likelihood estimates of the conditional intensity functions for the
ensemble, the solution to the conditional density is given by (3.9). To determine
whether a Gaussian approximation to this solution would be appropriate, we
calculated the value of >~ A% over the range of movement velocities. The result is
shown in Figure 2A. It is clear that the depth of directional tuning for this
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Figure 2. Decoding Analysis. (A) True receptive field properties of each
neuron, and the sum term, Y. A*. This sum term has a tuning depth that
is much smaller than any individual neuron and can be well approximated
by a linear function of the movement speed, suggesting that the Gaussian
approximation in the filter algorithm will be good. (B) True arm movement
profile (blue) and filter estimates (green) for a single arm movement. Velocity
tracking remains accurate, while position estimation suffers from integrated
errors.

combined ensemble activity is much smaller that that of any individual neuron.
This sum of conditional intensities can be well approximated by a function that
increases linearly with speed and is independent of direction. Therefore, we
expect Gaussian approximations to the conditional density to be quite accurate.

Based on these results, we applied the continuous-time Gaussian approxi-
mate filter given by (6.3) and (6.4) to these data. The differential equations were
solved numerically using an Euler’s method at a time step of 1 msec, for non-spike
intervals, and computing the jumps directly at the spike times. The resulting
estimated arm movement, illustrated in Figure 2B, is in close agreement with the
actual movement. The root mean squared error for reconstructing the velocity
signal was 2.56 cm/sec in the x-direction, and 2.37 cm/sec in the y-direction.
These mean squared error values combine error related to the Gaussian approx-
imation with observation error due to the fact that the spiking observations are
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not perfectly informative about the state. From previous work (Ergun, Barbieri,
Eden, Wilson and Brown)| (2007))), we conjecture that the error observed here is
overwhelmingly dominated by observation error. This could be verified explicitly
(at great computational expense) by comparing this filter to the mean of the
solution of the exact conditional density equation.

8. Discussion

We previously used a state space framework with point process observations
to track neural plasticity (Frank, Eden, Solo, Wilson and Brown| (2002])), to char-
acterize learning from changes in neural firing (Czanner, Eden, Wirth, Yanike,
Suzuki and Brown! (2008))), and to reconstruct behavioral and biological signals
from observed spiking activity (Brown, Frank, Tang, Quirk and Wilson| (1998)),
Barbieri, Frank, Nguyen, Quirk, Solo, Wilson and Brown| (2004)) and [Eden, Truc-
colo, Fellows, Donoghue and Brown| (2004)). In each of these cases, the key to
performing estimation is tracking the evolution of the conditional density with
time and with incoming spike observations. Whereas these previous analyses
have focused on tracking this density, or a Gaussian approximation, in discrete
time, the continuous-time framework offers an important perspective on point
process estimation.

Computing the conditional density in continuous-time allows us to calculate
expectations of any function of the state process and therefore to construct es-
timators for these processes at any point in time within an observation interval,
not just those times selected for the discrete-time partition of this interval. Be-
yond that, the coefficients associated with differential equations that describe a
system are generally more amenable to physical interpretation than those asso-
ciated with difference equations. For example, whereas (), the covariance of the
discrete-time state equation only has meaning for a specific time partition, the
scale matrix or volatility, B, of the Wiener process driving the continuous-time
state equation (2.1) describes a physical property of the state process at all time
scales. Furthermore, this continuous-time framework makes available a wide
range of additional numerical methods for calculation of the conditional den-
sity associated with numerical methods for solving partial differential equations
(Evans, Blackledge and Yardley| (1999)).

From a control theoretic perspective, the differential equation for the un-
normalized conditional density maps out the space of possible distributions that
can be achieved. In this point-of-view, (3.9) can be seen as a control equation
composed of a drift term and terms related to the spiking activity of each ob-
served neuron. The drift term, represented by the first bracketed term on the
right side of (3.9), contains combined features of each neural receptive field and
determines how the conditional density evolves absent any spiking observations.
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Intuitively, when the ensemble is silent, the conditional density of regions of the
state space with high firing probability for any neuron decreases while that of
areas with low firing probability for all neurons increases. The second term on
the right side of (3.9) can be thought of as the sum of control terms related to
each observed neuron. When a neuron fires, it causes the conditional density to
jump discontinuously to a new density whose value at each point in the state
space is equal to the product of the conditional density immediately before that
spike and the intensity function of the neuron that fired. Therefore, each neuron
causes the conditional density to jump so that it reflects the features of its own
intensity function more strongly.

The continuous-time perspective can also serve as a guide to help us im-
prove our discrete-time estimation methods. For example, a common numerical
technique for tracking the conditional density to high precision in discrete-time
is sequential Monte Carlo, also known as particle filtering (Doucet, de Freitas
and Gordon! (2001))). The method involves maintaining a cloud of samples that
evolve in time, and empirically approximating the conditional density. The most
commonly applied particle filtering algorithm is the bootstrap filter whereby, at
each point in time, the empirical estimate from the previous point in time is used
as the starting point for the evolution of the particles. From the above discussion
about the continuous-time conditional density equation, it is clear that a single
spike can cause the conditional density to jump so that most of its mass moves
from one region of the state space to another. This jump will cause bootstrap
particle filters to be computationally inefficient, since they require a significant
number of particles in the region where the density prior to a spike was low. In
Ergun, Barbieri, Eden, Wilson and Brown| (2007)), we describe an alternate par-
ticle filter that accounts for these jumps to improve the computational efficiency
of estimation.

In [Eden (2005), we made an analogy between discrete-time point process
filters and the Kalman filter for systems with continuous-valued observations
with Gaussian errors. Likewise, the continuous-time approximate Gaussian filter
developed in Section 6 can be seen as a point process analogue of the Kalman-
Bucy filter, in that we construct stochastics differential equations for the first two
moments of the conditional density and use those, respectively, as estimates for
the state and of the gain. The primary advantage of this approximate filter over
the exact conditional density equation is that it allows us to obtain estimates of
the state, and a sense of its uncertainty, using methods associated with ordinary
differential equations rather than with partial differential equations, as are needed
to calculate the full conditional density.

The curvature of the conditional intensity function plays a significant role
in determining the evolution of the covariance or gain term in (6.4) of the
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continuous-time approximate filter. For any neuron, when the curvature of its
intensity function is high, the spike observation makes the conditional covariance
drop toward zero. When the intensity function is log linear, spikes will not cause
the conditional covariance to change at all. Therefore spikes from neurons with
narrow intensity functions are much more informative than those with broader
ones.

This continuous-time approximate filter in (6.3) and (6.4) is similar to one
developed by [Snyder and Miller| (1991)). They took the first two moments of the
normalized density equation and replaced the expectations of the intensity at
each point in time with the intensity at the mean estimate. This approximation
should only be good when the intensity function is close to log linear in the state.
As a consequence, Snyder’s approximate filter differs significantly from our result
in the magnitude of the jump in the conditional variance at spike times.

Classically, another benefit of continuous-time expressions for state space fil-
ters has been the fact that they can be easily implemented using analog electronic
circuitry. The value of an estimated state can be encoded as the voltage level at a
node, and the effects of the drift and observations can be simulated using circuit
elements such as differentiators and integrators. Although analog computation
has decreased in popularity with the rise of rapid digital computation, there are
at least two promising areas of application for analog computation of neural state
space estimates: the dynamic clamp and neural prosthetics. Dynamic clamping
involves recording from a cell or ensemble and dynamically injecting current into
each cell to mimic the effect of physiological inputs. Analog electronics are of-
ten used to rapidly compute the desired current injection as a function of the
spiking observations. The continuous-time filters developed here would allow for
the rapid computation of state estimates upon which to base a dynamic clamp
injection paradigm. Similarly, closed-loop motor prosthetic devices must convert
neural activity related to motor intent to a control signal for a cursor or robotic
prosthesis in real time. Current motor prosthesis implementations digitize these
signals and transmit them to a remote computer to perform estimation. The
computational speed of these devices could be significantly improved through
hardware implementation of neural filtering algorithms, which could occur lo-
cally at the recording site.

From a theoretical standpoint, these results provide an effective framework
for addressing the problem of estimating dynamic signals from neural spike train
data. By making the link between these continuous-time point process filters and
our previous estimation algorithms, as well as to classical filtering algorithms
whose properties are well understood, we can be sure that these methods are
internally consistent, regardless of whether we choose to work in discrete or
continuous time.
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