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Abstract: This paper investigates nonparametric priors that induce infinite Gibbs–

type partitions; such a feature is desirable both from a conceptual and a mathe-

matical point of view. Recently it has been shown that Gibbs–type priors, with

σ ∈ (0, 1), are equivalent to σ–stable Poisson–Kingman models. By looking at

solutions to a recursive equation arising through Gibbs partitions, we provide an

alternative proof of this fundamental result. Since practical implementation of gen-

eral σ–stable Poisson–Kingman models is difficult, we focus on a related class of

priors, namely normalized random measures with independent increments; these

are easily implementable in complex Bayesian models. We establish the result that

the only Gibbs–type priors within this class are those based on a generalized gamma

random measure.
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1. Introduction

Recently a number of generalizations of the Dirichlet process (Ferguson
(1973)) appeared in the literature. Among them we mention species sampling
models (Pitman (1996)), stick–breaking priors (Hjort (2000) and Ishwaran and
James (2001)), normalized random measures with independent increments
(Regazzini, Lijoi and Prünster (2003)), Poisson–Kingman models (Pitman (2003)),
spatial neutral to the right models (James (2006)), neutral to the right species
sampling models (James (2007)). The last two works are based on neutral to
the right processes due to Doksum (1974). All these classes of priors share with
the Dirichlet process the so–called “discreteness” property, i.e., they select almost
surely discrete distributions. Special cases have been successfully exploited in the
context of Bayesian semiparametric models. See Hjort (2003) and Müller and
Quintana (2004) for a review of complex Bayesian models involving a nonpara-
metric component. The richer clustering structure induced by these new priors
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turns out to have some advantages over the widely used Dirichlet process mix-
tures (Lo (1984)) in certain applications. See, e.g., Ishwaran and James (2001,
2003), Lijoi, Mena and Prünster (2005a,b, 2007a). Moreover, novel applications
to data sequences with ties have also been proposed: for instance, Goldwater,
Griffiths, and Johnson (2006) and Teh (2006a,b) apply them to language mod-
els, and Lijoi, Mena and Prünster (2007b) to genomic libraries. Based on the
usefulness they have demonstrated in applications, the structural properties of
these novel priors deserve thorough investigations.

By close inspection of the alternatives to the Dirichlet process, one can see
that many specific tractable priors lead to a system of predictive distributions of
the type

P
[
Xn+1 ∈ A

∣∣ X1, . . . , Xn

]
= g0(n, k)P0(A)+g1(n, k)

k∑
j=1

(nj−σ)δX∗
j
(A) (1.1)

for any A ∈ X , n ≥ 1, σ ∈ [0, 1), where X∗
1 , . . . , X∗

k are the k distinct observa-
tions in the n–sample with frequencies nj , and P0 represents the prior guess at
the shape of the random distribution. Such random probability measure can be
a termed Gibbs–type random probability measure since it generates a sequence
(P̃n)n≥1 of exchangeable random partitions of Gibbs type, as defined by Gnedin
and Pitman (2005). See also Pitman (2006). Note that when σ = 0, (1.1) reduces
to the predictive distributions of the Dirichlet process. It is well–known that such
predictives characterize the Dirichlet process prior; see Regazzini (1978) and Lo
(1991). Other examples of Gibbs–type priors are the normalized stable process
(Kingman (1975)), the two–parameter Poisson Dirichlet process (Pitman (1996)),
and the normalized inverse Gaussian process (Lijoi, Mena and Prünster (2005a)).
In the following we focus on Gibbs–type priors with σ ∈ (0, 1).

From (1.1) the mathematical tractability of Gibbs–type priors is apparent;
indeed, the prediction rule can be seen as resulting from a two step procedure:
the (n + 1)th observation Xn+1 is either “new” (i.e., not coinciding with any of
the previously observed X∗

i ’s) or “old”, with probability depending on n and k

but not on the frequencies ni’s. Given Xn+1 is “new”, it is sampled from P0.
Given Xn+1 is “old” (i.e., Xn+1 is equal to one of the already sampled X∗

i ’s),
it will coincide with a particular X∗

j with probability (nj − σ)/(n − kσ). The
fact that the assignment to “new” or “old” does not depend on the frequencies
ni’s is crucial in simplifying both analytical calculations and the derivation of
suitable sampling schemes in complex models. See Ishwaran and James (2003)
for connections with Chinese restaurant process sampling schemes.

In this paper we investigate Gibbs–type priors by finding solutions to a spe-
cific recursive equation. With this approach we first provide an alternative proof
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of the characterization of Gibbs–type priors due to Gnedin and Pitman (2005);
this deep result essentially states that Gibbs-type priors are Poisson–Kingman
models based on the stable subordinator. Their proof resorts to combinato-
rial techniques, in particular, generalized Stirling triangles asymptotics; see also
Pitman (2003, 2006). Given this result, we face the problem of determining
which normalized random measures with independent increments (NRMI) are
also Gibbs–type priors. The answer turns out to be that a NRMI belongs to the
class of Gibbs–type priors if and only if it is a normalized generalized gamma
process (whose definition is provided in Section 2.2). From a statistical perspec-
tive this result is of great relevance; typically, when defining new specific priors,
one first aims at deriving the posterior distribution and then obtains the predic-
tive distributions as the expected value of the posterior distribution. In the case
of NRMI, which are uniquely characterized by the Poisson intensity measure,
the posterior and predictive distributions have been derived in James, Lijoi and
Prünster (2008) as function of the Poisson intensity. Hence, it is natural to ask
which choices of the Poisson intensity lead to a NRMI that is also of Gibbs–type.
Indeed, given the analytical and computational advantages of a Gibbs structure,
a precise answer to this question, as we give in this paper, is of great importance.
As a consequence of our result, if one is looking for a new tractable prior with
Gibbs structure, attention has to be focused on Poisson–Kingman models based
on the stable process; unfortunately, this class, in its generality, is much less
tractable than NRMI and, hence, the search for new specific examples of Gibbs–
type priors which admit explicit representations will be a difficult task. For
appreciating the complexity of the posterior distributions of Poisson–Kingman
models, the reader is referred to the characterizations provided in James (2002).

In Section 2 we set the framework for our analysis, define the classes of priors
with which we will deal, and review some relevant results and concepts. Section
3 states the fundamental result of Gnedin and Pitman (2005) and characterizes
the normalized generalized gamma process as the only NRMI of Gibbs type. In
the Appendix we provide an alternative derivation of the result of Gnedin and
Pitman (2005).

2. Gibbs–Type Priors and Related Random Distributions

Throughout the paper we consider the following setup. Let (Xn)n≥1 be a
sequence of exchangeable X–random variables defined on some probability space
(Ω,F , P), where X is a separable and complete metric space and X the corre-
sponding Borel σ–field. In other terms, we suppose there exists some random
probability measure, say P̃ , such that

P
[
X1 ∈ A1, . . . , Xn ∈ An

∣∣ P̃
]

=
n∏

i=1

P̃ (Ai)
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for any n ≥ 1 and A1, . . . , An ∈ X , the law of P̃ acting as a nonparametric prior.
For any n ≥ 1, the joint law of X(n) = (X1, . . . , Xn) is then

P [X1 ∈ dx1, . . . , Xn ∈ dxn] = E
[
P̃ (dx1) · · · P̃ (dxn)

]
. (2.1)

In the sequel, we consider P̃ which are, almost surely, discrete and with non–
atomic prior guess at the shape P0(A) := E[P̃ (A)] for any A ∈ X . Given the
discreteness, we expect ties in the sample, namely that X(n) contains k ≤ n

distinct observations X∗
1 , . . . , X∗

k with frequencies n1, . . . , nk, respectively. By
integrating (2.1) with respect to all n–samples with k distinct observations having
frequencies n1, . . . , nk, we obtain the joint distribution of the number of distinct
observations Kn and of the vector of frequencies (N1,n, . . . , Nk,n)

P [{Kn = k} ∩ {Nj,n = nj , j = 1, . . . , k}] = Π(n)
k (n1, . . . , nk),

known as exchangeable partition probability function (EPPF) and extensively
studied in Pitman (1996, 2003, 2006). Note that the EPPF satisfies the addition
rule

Π(n)
k (n1 . . . , nk) =

k∑
j=1

Π(n+1)
k (n1, . . . , nj + 1, . . . , nk) + Π(n+1)

k+1 (n1, . . . , nk, 1).

Moreover the EPPF identifies the law of an exchangeable random partition P̃
of the set of integers N. Here by random partition of N we mean a sequence
(P̃n)n≥1, where P̃n is a random partition of the set of integers [n] = {1, . . . , n},
for each n ≥ 1. The sequence must be consistent, in the sense that P̃n is the
partition resulting from P̃n+1, after dropping the integer n+1. For a stimulating
account on random partitions, the reader is referred to Pitman (2006).

2.1. Gibbs–type priors

We focus attention on random probability measures inducing Gibbs–type
random partitions (Gnedin and Pitman (2005)) that are characterized by EPPF’s
of the form

Π(n)
k (n1, . . . , nk) = Vn,k

k∏
j=1

(1 − σ)nj−1 (2.2)

for some σ ∈ (0, 1) and some set of non–negative weights {Vn,k : n ≥ 1, 1 ≤ k ≤
n}. Here (c)n = Γ(c + n)/Γ(c) stands for the Pochhammer symbol.

Definition 1. A discrete random probability measure governing a sequence of
exchangeable observations (Xn)n≥1 is a Gibbs–type prior if it can be expressed
as (2.2).
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The predictive distributions associated to a Gibbs–type prior P̃ are, indeed, of
the form (1.1), and the weights can be expressed as

g0(n, k) =
Vn+1,k+1

Vn,k
g1(n, k) =

Vn+1,k

Vn,k
.

Crucial for our treatment is the fact, shown in Gnedin and Pitman (2005), that
the Vn,k’s have to satisfy the recursive equation

Vn,k = (n − σk)Vn+1,k + Vn+1,k+1 (2.3)

for any k = 1, . . . , n and n ≥ 1 with V1,1 = 1. This recursive equation arises from
the fact that probabilities sum to one; that is given n observations, which produce
k groups of sizes (n1, . . . , nk), the probability that the next observation provides
a new group is Vn+1,k+1/Vn,k and the probability the next observation is from the
group of size nj is (nj −σ)Vn+1,k/Vn,k. Then it must be that 1 = Vn+1,k+1/Vn,k +∑k

j=1(nj−σ)Vn+1,k/Vn,k, which is tantamount to (2.3). From Lemma 2 in Gnedin
and Pitman (2005) one has that a Gibbs type prior is uniquely characterized by
a set of weights {Vn,k : n ≥ 1, 1 ≤ k ≤ n} and a prior guess P0 at the shape of
P̃ .

In the following we explore which priors induce a Gibbs–type partition struc-
ture: we will see that Gibbs priors are closely connected with Poisson–Kingman
models and NRMI. To this end we first define these two classes of priors. Let
us start from the latter, which was introduced in Regazzini, Lijoi and Prünster
(2003), and extended to general spaces in James (2002). Further results and
characterizations have been provided in James, Lijoi and Prünster (2006, 2008).

2.2. NRMIs

Let X be some complete separable metric space equipped with the usual
Borel σ–field X . A completely random measure (Kingman (1967)) on X defined
on some probability space (Ω, F , P) is a random measure µ̃ such that

(i) µ̃(∅) = 0 a.s.-P
(ii) for any collection of disjoint sets A1, A2, . . ., the random variables µ̃(A1),

µ̃(A2), . . . are mutually independent and µ̃(∪j≥1Aj) =
∑

j≥1 µ̃(Aj) holds
true a.s.-P.

The Laplace transform of µ̃(C) for any measurable C is given by

E[e−λµ̃(C)] = e−
R

R+×C [1−e−λ v ]ν(dv,dx), λ ≥ 0, (2.4)

where ν stands for the Poisson intensity measure which uniquely characterizes µ̃.
Moreover,

ψC(λ) :=
∫

R+×C

[
1 − e−λ s

]
ν(ds, dx) (2.5)
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is the so–called Laplace exponent of µ̃(C). See Kingman (1993) for a detailed
account of completely random measures. According to Regazzini, Lijoi and
Prünster (2003), a NRMI can be introduced as follows.

Definition 2. The measure

P̃ ( · ) =
µ̃( · )
µ̃(X)

. (2.6)

is a NRMI on (X, X ) if µ̃ is a completely random measure whose intensity
measure ν is such that the Laplace exponent ψ(λ) := ψX(λ) is finite, for any
positive λ, and ν(R+ × X) = +∞.

The finiteness of ψX(λ) and ν(R+×X) = +∞ are required in order to ensure
that the total mass µ̃(X) is finite and positive, almost surely. For details see
Regazzini, Lijoi and Prünster (2003).

According to the particular decomposition of the intensity measure ν, one
can distinguish two subclasses of NRMIs. Letting H = θ P0, where 0 < θ < ∞
and P0 is a non–atomic probability distribution on X, we have:

(a) if ν(dv,dx) = ρ(dv) H(dx), for some measure ρ on R+, then µ̃ and the
induced NRMI P̃ are homogeneous;

(b) if ν(dv,dx) = ρ(dv|x) H(dx), where ρ( · |x) is a measure on R+ for any x in
X, then µ̃ and the induced NRMI P̃ are non–homogeneous.

Recall that, as shown e.g., in James (2003), NRMI select almost surely discrete
distributions. James, Lijoi and Prünster (2008) obtained the EPPF of a NRMI
as

Π(n)
k (n1, . . . , nk) =

1
Γ(n)

∫
R+

un−1 e−ψ(u)
[ k∏

j=1

∫
X

τnj (u|x) H(dx)
]
du, (2.7)

where, for i = 1, . . . , k,

τni(u|Yi) =
∫

R+

vni e−uv ρ(dv|Yi). (2.8)

The EPPF of a homogeneous NRMI, derived in Pitman (2003), is of the form

Π(n)
k (n1, . . . , nk) =

θk

Γ(n)

∫
R+

un−1 e−ψ(u)
[ k∏

j=1

τnj (u)
]
du. (2.9)

An important case of NRMI, relevant for subsequent developments, is the gen-
eralized gamma NRMI, which is derived from the generalized gamma process
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studied in Brix (1999). Such a NRMI is homogeneous and characterized by a
Poisson intensity measure of the type

ν(dv,dx) =
e−τv

Γ(1 − σ) v1+σ
dvH(dx), (2.10)

where τ ∈ (0,∞) and σ ∈ (0, 1). Note that it includes, as a special case, the
stable NRMI due to (Kingman (1975)), which arises by setting τ = 0 in (2.10).
The EPPF of the generalized gamma NRMI is

Π(n)
k (n1, . . . , nk) =

eβ σk−1

Γ(n)

n−1∑
i=0

(
n − 1

i

)
(−1)i β

i
σ Γ

(
k − i

σ
; β

) k∏
i=1

(1 − σ)ni−1,

(2.11)
where β = θτσ/σ and Γ( · ; · ) is the incomplete Gamma function. By setting
τ = 0, (2.11) simplifies to

Π(n)
k (n1, . . . , nk) =

σk−1Γ(k)
Γ(n)

k∏
i=1

(1 − σ)ni−1, (2.12)

the EPPF of the stable NRMI (Pitman (1996)). By comparing (2.11) with (2.2),
it is apparent that generalized gamma NRMI are of Gibbs–type.

2.3. Poisson–Kingman models

Let us now review the essentials of Poisson–Kingman (PK) models intro-
duced in Pitman (2003). To give the general definition of PK model let P̃ = µ̃/T ,
where T = µ̃(X), be a homogeneous NRMI, and take f : X → R to be any func-
tion such that P̃ (|f |) =

∫
X |f(x)| P̃ (dx) < ∞.

Definition 3. If γ is a probability distribution on R+, a Poisson–Kingman model
is the random probability measure Q̃ characterized by

E
[
exp

{
− Q̃(f)

}]
=

∫
R+

E
[
exp

{
− µ̃(f)

T

} ∣∣∣ T
]
dγ, (2.13)

where E[ e− µ̃(f)/T |T ] is a regular version of the conditional expectation of e− µ̃(f)/T

given T .

Intuitively, a PK model is a (homogeneous) NRMI conditional on the total
mass µ̃(X) = T , and mixed with respect to any probability distribution on R+.
Consequently, Q̃ in (2.13) is uniquely defined by the Poisson intensity underlying
P̃ and the mixing distribution γ. If γ coincides with the distribution of µ̃(X),
then (2.13) is a homogeneous NRMI. An important special case is the σ–stable
PK model with σ ∈ (0, 1): such a model is constructed starting from a σ–stable
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NRMI characterized by the Poisson intensity (2.10) with τ = 0. Let C ∈ X be
any set such that H(C) = σ and denote by fσ the density of µ̃(C); the Laplace
transform is then given by

∫
R+ e−λx fσ(x)dx = e−λσ

. As shown in Pitman (2003),
the EPPF of the σ–stable NRMI conditioned on its total mass µ̃(X) is

Π(n)
k (n1, . . . , nk|t) =

σkt−n

Γ(n − kσ) fσ(t)

∫ t

0
sn−kσ−1fσ(t − s) ds

k∏
i=1

(1 − σ)ni−1.

(2.14)
Obviously, the EPPF of the σ–stable PK model is then given by

Π(n)
k (n1, . . . , nk) =

∫
R+

σkt−n

Γ(n − kσ)fσ(t)

∫ t

0
sn−kσ−1fσ(t−s)dsγ(dt)

k∏
i=1

(1−σ)ni−1.

(2.15)
Hence, a σ–stable PK model with any mixing distribution γ is a Gibbs–type
prior. Finally, it is important to recall that the generalized gamma NRMI can
be recovered from the σ–stable PK model by a suitable choice of the mixing
distribution γ (Pitman (2003)).

3. Characterization of Gibbs–Type Priors

In this section we focus on the characterization of Gibbs priors; the aim is to
identify all priors which lead to a simple predictive structure of the form (1.1).
Gnedin and Pitman (2005), resorting to combinatorial arguments and generalized
Stirling number asymptotics, have shown that Gibbs priors coincide with stable
PK models.

Proposition 1. (Gnedin and Pitman (2005)) A random probability measure P̃ is
of Gibbs–type with parameter σ ∈ (0, 1) if and only if P̃ is a σ–stable PK model.

In the Appendix we provide an alternative proof of this fundamental result.
Essentially, we face the problem of finding a solution to the recursive equations
(2.3) that characterize Gibbs priors.

Remark. Gnedin and Pitman (2005) also characterize Gibbs priors for σ ∈
(−∞, 0]. For the case where σ < 0, they show that Gibbs priors have finite
support and correspond to mixtures of symmetric Dirichlet distributions. For
σ = 0, Gibbs priors are mixtures, with respect to the parameter θ, of a Dirichlet
process. This latter result was already conjectured by Kerov (1989, 2003) and
stated by Kingman (1980). An alternative proof can be derived using our analytic
approach.

We now state the main result of the paper, we show that the only NRMI
with Gibbs structure is the one based on the generalized gamma process. From
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a practical point of view, the consequence of such a result is clear. Proposition 1
implies that all Gibbs–type priors are σ–stable PK models. However, simulating
from a general σ–stable PK model seems impossible to date; one would need
either a closed form expression for the stable density involved in (2.15) that would
allow one to implement a Blackwell–MacQueen–type urn scheme via numerical
integration, or a way to simulate from a σ–stable process conditioned on its
total mass. Neither strategy is exploitable. Instead, simulating from a NRMI is
feasible by resorting to urn schemes as, e.g, in Ishwaran and James (2001), or
to Ferguson–Klass algorithms as, e.g., in Nieto-Barajas, Prünster, and Walker
(2004). Hence, it is natural to ask which NRMIs have a Gibbs structure.

Before stating the result it is worth showing that a σ–stable PK model with
a particular mixing distribution leads to the generalized gamma NRMI charac-
terized by the Poisson intensity at (2.10). Pitman (2003) shows this using scaling
arguments, whereas we resort to analytic tools. Take the mixing distribution in
(2.15) as γ(dt) = fσ(t) φ(t) dt for some (for the moment unspecified) function φ.
Then

Vn,k =
σk

Γ(n − kσ)

∫ ∞

0

∫ t

0
t−nfσ(t − s)sn−kσ−1φ(t)dsdt

=
σk

Γ(n − kσ)

∫ ∞

0

∫ ∞

s
t−nfσ(t − s)sn−kσ−1φ(t) dtds

=
σk

Γ(n − kσ)

∫ ∞

0

∫ ∞

0
(u + s)−nfσ(u)sn−kσ−1φ(s + u) dsdu. (3.1)

By the gamma identity we have

(
θ

σ
)

n
σ

[
(
θ

σ
)

1
σ (u + s)

]−n
=

1
Γ(n)

∫ ∞

0
xn−1 exp

{
− x(

θ

σ
)

1
σ (u + s)

}
dx,

which, inserted into (3.1), leads to

Vn,k =
σk( θ

σ )
n
σ

Γ(n)Γ(n−kσ)

∫ ∞

0

∫ ∞

0

∫ ∞

0
xn−1e−x( θ

σ
)
1
σ (s+u)fσ(u)sn−kσ−1φ(s+u)dxduds.

We choose, for some a, τ > 0, φ(t) = a exp(−tτ(θ/σ)1/σ), and hence

Vn,k =
a( θ

σ )
n
σ σk

Γ(n)Γ(n−kσ)

∫ ∞

0
xn−1

∫ ∞

0

∫ ∞

0
e−( θ

σ
)
1
σ (u+s)(τ+x)sn−kσ−1fσ(u)dsdudx

=
aθk

Γ(n)

∫ ∞

0

xn−1

(τ + x)n−kσ

∫ ∞

0
e−u( θ

σ
)
1
σ (τ+x)fσ(u)dudx

=
aθk

Γ(n)

∫ ∞

0

xn−1

(τ + x)n−kσ
e−( θ

σ
)(τ+x)σ

dx.
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In order for V1,1 = 1, it must be that a = exp(θτσ/σ). Hence, we have

Vn,k =
θk exp( θτσ

σ )
Γ(n)

∫ ∞

0

xn−1

(τ + x)n−kσ
e−(τ+x)σ

dx, (3.2)

which is precisely the EPPF of a homogeneous NRMI (2.9) computed for the
generalized gamma intensity (2.10). By simple algebra from (3.2), one obtains
(2.11) as in Lijoi, Mena and Prünster (2007a). We are now in a position to state
the characterization of the generalized gamma NRMI.

Proposition 2. Let P̃ be a NRMI. Then P̃ is of Gibbs–type, with σ ∈ (0, 1), if
and only if it is a generalized gamma NRMI.

Proof. First note that, combining the definition of a PK model with Propo-
sition 1, a necessary condition for a NRMI to be of Gibbs–type is that it be
homogeneous. Hence, P̃ has an EPPF of the form (2.9). From (2.2), it then
follows that P̃ is of Gibbs–type if

Vn,k =
θk

Γ(n)

∫
R+

un−1 e−ψ(u)
[ k∏

j=1

τnj (u)
(1 − σ)nj−1

]
du (3.3)

for every n ≥ 1 and k = 1, . . . , n. Since σ and the sequence of Vn,k’s uniquely iden-
tify the underlying Lévy intensity ρ, we first assume ρ is such that

∏k
j=1[τnj (u)/(1−

σ)nj−1] depends only on n and k, for almost every u. Then we resort to a con-
structive approach in order to determine such a ρ and discover that it coincides
with the Lévy intensity of a generalized gamma NRMI.

In accordance with our assumption, set fn,k(u) =
∏k

j=1 τnj (u)/(1 − σ)nj−1.
If we now put k = 2, then it is easy to see that we must have

τn+1(u)
τn(u)

=
(n − σ)
(1 − σ)

τ2(u)
τ1(u)

.

This follows by taking n1 = n + 1 and n2 = 1, then n1 = n and n2 = 2. Hence,
writing l(u) = τ2(u)/τ1(u), we have

τn+1(u) =
(n − σ) · · · (1 − σ)

(1 − σ)n
ln(u) τ1(u),

and so
τn(u) =

(1 − σ)n−1

(1 − σ)n−1
ln−1(u)τ1(u). (3.4)

Consequently
k∏

j=1

τnj (u) =
k∏

j=1

(1 − σ)nj−1
ln−k(u)τk

1 (u)
(1 − σ)n−k

,
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and it follows that

Vn,k =
θk

(1 − σ)n−kΓ(n)

∫ ∞

0
un−1 e−ψ(u) ln−k(u)τk

1 (u) du. (3.5)

At this point we claim that

l′(u) = − l2(u)
1 − σ

. (3.6)

To see this, recall that l(u) = τ2(u)/τ1(u), so that l′(u) = −τ3(u)/τ1(u) +
τ2
2 (u)/τ2

1 (u), since τ
′
n(u) = −τn+1(u). Using (3.4), we obtain τ3(u) = {(2 −

σ)/(1 − σ)}l2(u)τ1(u) and, hence, (3.6) follows.
Now, the solution to (3.6) is given by

l(u) =
1

c + u
1−σ

=
1 − σ

τ + u
, (3.7)

where c is some constant and τ = c(1 − σ). Therefore, (3.5) becomes

Vn,k =
1

Γ(n)

∫ ∞

0
un−1 e−ψ(u) (θτ1(u))k

(τ + u)n−k
du. (3.8)

Recall that l(u) = τ2(u)/τ1(u) and that, by (2.8), one has τ2(u) = −dτ1(u)/du.
Consequently

− d
duτ1(u)
τ1(u)

=
1 − σ

τ + u
,

which is solved by

τ1(u) =
d

(τ + u)1−σ
(3.9)

for some constant d. Finally, note that eψ(u)(−de−ψ(u)/du) = −θτ1(u); solving
this differential equation, with (3.9) for τ1, yields

e−ψ(u) = a exp
{
− θ

σ
(τ + u)σ

}
(3.10)

for some constant a > 0. Inserting (3.9) and (3.10) into (3.8), we obtain

Vn,k =
adkθk

Γ(n)

∫ ∞

0

un−1

(τ + u)n−kσ
exp

{
− θ

σ
(τ + u)σ

}
du. (3.11)

The condition V1,1 = 1 then requires a = exp{(θ/σ)τσ} and d = 1. Since (3.11)
coincides with (3.2), it follows that the generalized gamma NRMI is the unique
solution to (3.3).
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Up to now, we have proved that, if
∏k

j=1[τnj (u)/(1−σ)nj−1] depends only on
n and k, then a NRMI is of Gibbs–type if and only if it is a generalized gamma
NRMI. Suppose there exists another NRMI such that

∏k
j=1[τnj (u)/(1 − σ)nj−1]

depends also on (n1, . . . , nk) and is of Gibbs–type. This implies that it still
satisfies (3.3) but, since a Gibbs prior is characterized by σ and the Vn,k’s, it
necessarily leads to a set of weights Vn,k different from those induced by the
generalized gamma NRMI. Denote this new set of weights by {Zn,k : 1 ≤ k ≤
n, n ≥ 1}. Then, letting Q be any partition–distribution of the integers {1, . . . , n}
in k blocks, one can also write

Zn,k =
θk

Γ(n)

∫
R+

un−1 e−ψ(u)
∑
π

Q(n1, . . . , nk)
[ k∏

j=1

τnj (u)
(1 − σ)nj−1

]
du

=
θk

Γ(n)

∫
R+

un−1 e−ψ(u) gQ
n,k(u) du,

where
∑

π stands for the sum over partitions in k blocks. Since we are assuming
that

∏k
j=1[τnj (u)/(1 − σ)nj−1] depends on (n1, . . . , nk), it must be that gQ

n,k de-
pends on Q, whereas Zn,k does not. Because of the arbitrariness of Q, this cannot
happen unless

∏k
j=1[τnj (u)/(1 − σ)nj−1] does not depend on the specific config-

uration (n1, . . . , nk), which in turn implies the NRMI is of generalized gamma
type. Thus the proof is complete.

Apart from the practical implications we have already outlined, the result
in Proposition 2 sheds some light on the theory of PK models. Indeed, it can
be equivalently formulated as follows: NRMIs based on generalized gamma com-
pletely random measures are the only NRMIs representable, in distribution, as
σ–stable PK models, with σ ∈ (0, 1).

4. Appendix: Alternative Proof of Proposition 1

.
In the following we exclude the trivial case of the one–block partition. Before

entering the details, we outline a brief sketch of the proof. The main idea is to
directly solve (2.3) with V1,1 = 1. The problem is first formulated in terms of an
equivalent array of weights {Wn,k : k = 1, . . . , n, n ≥ 1}. Secondly, we suppose
that Wn,1 can be expressed as a mixture of some function g, and a solution to
the new recursive formula for Wn,k is given. Hence, the function g is identified
as a suitable function of the density of a σ–stable random variable. This leads
to the EPPF as the one generated by a mixture of σ–stable PK models.

According to the above scheme, put

Vn,k =
σk

Γ(n − kσ)
Wn,k
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so that the Wn,k must solve

Wn,k − Wn+1,k =
σWn+1,k+1Γ(n − kσ)
Γ(n + 1 − (k + 1)σ)

. (4.1)

Note that, for any θ > 0, the definition of the Beta function entails

Γ(n − kσ)
Γ(n + 1 − (k + 1)σ)

=

∫ θ
0 (θ − s)−σsn−kσ−1ds

Γ(1 − σ)θn+1−(k+1)σ−1

which, inserted into (4.1), yields

θn+1−(k+1)σ−1 (Wn,k − Wn+1,k) =
σWn+1,k+1

Γ(1 − σ)

∫ θ

0
(θ − s)−σsn−kσ−1ds.

Consider now some function gn,t,σ(θ) such that
∫ ∞
0 θn+1−(k+1)σ−1gn,t,σ(θ) dθ <

∞, where t > 0 is a parameter, and write

(Wn,k − Wn+1,k)
∫ ∞

0
θn+1−(k+1)σ−1gn+1,t,σ(θ)dθ

=
σ Wn+1,k+1

Γ(1 − σ)

∫ ∞

0

∫ θ

0
(θ − s)−σsn−kσ−1 ds gn+1,t,σ(θ) dθ. (4.2)

The sequence {Vn,1 : n ≥ 1} clearly defines the whole array {Vn,k : n ≥ 1, 1 ≤
k ≤ n} via (2.3). Hence, the same holds true for {Wn,1 : n ≥ 1} and {Wn,k : n ≥
1, 1 ≤ k ≤ n}. We suppose that g is such that Wn,1 =

∫ ∞
0 θn−σ−1gn,t,σ(θ) dθ,

and that it further satisfies

σ

Γ(1 − σ)

∫ ∞

s
(θ − s)−σ gn+1,t,σ(θ)dθ = gn,t,σ(s) − sgn+1,t,σ(s). (4.3)

Later we identify an appropriate g. We now show that, given the {Wn,1 : n ≥ 1},
the solutions {Wn,k : n ≥ 1, 1 ≤ k ≤ n} coincide with

Wn,k =
∫ ∞

0
θn−kσ−1gn,t,σ(θ)dθ. (4.4)

Indeed, from (4.2), (4.3), and for Wn,k given by (4.4), we have that

Wn,k − Wn+1,k

Wn+1,k+1
=

∫ ∞
0 sn−kσ−1gn,t,σ(s)ds −

∫ ∞
0 sn+1−kσ−1gn+1,t,σ(s)ds∫ ∞

0 sn+1−(k+1)σ−1 gn+1,t,σ(s)ds
.

Hence, since the array {Wn,k : n ≥ 1, 1 ≤ k ≤ n} is uniquely determined given
{Wn,1 : n ≥ 1}, solutions are of the kind (4.4), with g satisfying (4.3). At this
point we have to identify g by solving (4.3). To this end, we consider

gn,t,σ(θ) = a t−nI(−∞,t](θ) hσ(t − θ) (4.5)
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for some function hσ and some constant a > 0, with IA the indicator function of
the set A. For s < t, (4.3) leads to the identity

σ

Γ(1 − σ) tn+1

∫ t

s
(θ − s)−σhσ(t − θ)dθ = (t−n − st−(n+1))hσ(t − s),

which is equivalent to

σ

Γ(1 − σ)

∫ t

s
(θ − s)−σhσ(t − θ)dθ = (t − s)hσ(t − s). (4.6)

Putting u = t − s, (4.6) can be written as

σ

Γ(1 − σ)

∫ s+u

s
(θ − s)−σhσ(s + u − θ)dθ = uhσ(u).

Finally, set v = θ − s to obtain the integral equation

hσ(u) =
σ

Γ(1 − σ) u

∫ u

0
v−σhσ(u − v)dv. (4.7)

It is well–known that the density f of an absolutely continuous infinitely divisible
random variable is uniquely characterized by its Lévy measure η via the integral
equation f(u) =

∫ u
0 v u−1 f(u − v) η(dv); see, e.g., (4.5) in Pitman (2006). Now,

let µ̃ be a stable random measure whose Poisson intensity is given by Γ(1 −
σ)v−1−σH(dx), and let C be a set such that H(C) = σ. Then µ̃(C), with
density fσ, has Lévy measure σ[Γ(1 − σ)]−1v−1−σdv which, inserted into the
previous integral equation, leads to (4.7). Hence, the unique solution to (4.7) is
given by hσ = fσ. It is clear that any mixture of (4.5) will also work; that is,
gn,σ(θ) =

∫ ∞
0 gn,t,σ(θ)γ(dt) for any distribution γ will also solve (4.3). Hence, we

have shown that solutions to (2.3) are of the type

V
(t)
n,k =

σkt−n

Γ(n − kσ)fσ(t)

∫ t

0
sn−kσ−1fσ(t − s) ds, (4.8)

where we have set a = 1/fσ(t) in (4.5) to ensure that V1,1 = 1, and that any
mixture over t will also be a solution. But (4.8) and its mixtures over t identify
precisely the Vn,k’s corresponding to the EPPF of a σ–stable PK model recalled
in (2.14) and (2.15). The proof is complete.
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