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In this supplement, we prove Theorems 1 and 3.

Let ψd(x) = exp(xd)− 1 for d ≥ 1. For any random variable X its ψd-Orlicz

norm ‖X‖ψd
is defined as ‖X‖ψd

= inf{C > 0 : Eψd(|X|/C) ≤ 1}. Orlicz norm is

useful for obtaining maximal inequalities, see Van der Vaart and Wellner (1996)

(hereafter referred to as VW (1996)).

Lemma 1. Suppose that ε1, . . . , εn are iid random variables with Eεi = 0 and

Var(εi) = σ2. Furthermore, suppose that their tail probabilities satisfy P (|εi| >
x) ≤ K exp(−Cxd), i = 1, . . . , n, for constants C and K, and for 1 ≤ d ≤ 2.

Then, for all constants ai satisfying
∑n

i=1 a
2
i = 1,

∥∥∥
n∑

i=1

aiεi

∥∥∥
ψd

≤




Kd

{
σ + (1 +K)

1

dC− 1

d

}
, 1 < d ≤ 2

K1 {σ + (1 +K)C log n} , d = 1.

where Kd is a constant depending on d only. Consequently

q∗n(t) = sup
a2
1
+···+a2n=1

P
{ n∑

i=1

aiεi > t
}
≤





exp(− td

M ), 1 < d ≤ 2

exp(− td

{M(1+log n)}), d = 1,

for certain constant M depending on {d,K,C} only.

Proof. Because εi satisfies P (|εi| > x) ≤ K exp(−Cxd), its Orlicz norm ‖εi‖ψ2
≤

[(1 +K)/C]1/d (Lemma 2.2.1, VW 1996). Let d′ be given by 1/d+ 1/d′ = 1. By

Proposition A.1.6 of VW (1996), there exists a constant Kd such that

∥∥∥
n∑

i=1

aiεi

∥∥∥
ψd

≤Kd

{
E

∣∣∣
n∑

i=1

aiεi

∣∣∣ +
[ n∑

i=1

‖aiεi‖d
′

ψd

] 1

d′
}

≤Kd

{[
E

( n∑

i=1

aiεi

)2] 1

2

+ (1 +K)
1

dC− 1

d

[ n∑

i=1

|ai|d
′

] 1

d′
}
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≤Kd

{
σ + (1 +K)

1

dC− 1

d

[ n∑

i=1

|ai|d
′

] 1

d′
}
.

For 1 < d ≤ 2, d′ = d/(d − 1) ≥ 2. Thus
∑n

i=1 |ai|d
′ ≤ (

∑n
i=1 |ai|2)d

′/2 = 1. It

follows that ∥∥∥
n∑

i=1

aiεi

∥∥∥
ψd

≤ Kd

{
σ + (1 +K)

1

dC− 1

d

}
.

For d = 1, by Proposition A.1.6 of VW (1996), there exists a constant K1

such that

∥∥∥
n∑

i=1

aiεi

∥∥∥
ψ1

≤K1

{
E

∣∣∣
n∑

i=1

aiεi

∣∣∣ + ‖ max
1≤i≤n

|aiεi|‖ψ1

}

≤K1

{
σ +K ′ log(n) max

1≤i≤n
‖aiεi‖ψ1

}

≤K1

{
σ +K ′(1 +K)C−1 log(n) max

1≤i≤n
|ai|

}

≤K1

{
σ +K ′(1 +K)C−1 log(n)

}
.

The last inequality follows from

P (X > t‖X‖ψd
) ≤ {ψd(t) + 1}−1

(
1 + Eψd

( |X|
‖X‖ψd

))
≤ 2e−t

d

, ∀t > 0

in view of the definition of ‖X‖ψd
.

Lemma 2. Let s̃n1 = (|β̃nj |−1sgn(β0j), j ∈ Jn1)
′ and sn1 = (|ηnj |−1sgn(β0j), j ∈

Jn1)
′. Suppose (A2) holds. Then,

∥∥∥s̃n1

∥∥∥ = (1 + oP (1))Mn1, max
j 6∈Jn1

∥∥∥ |β̃nj |̃sn1 − |ηnj|sn1

∥∥∥ = oP (1). (S.1)

Proof. Since Mn1 = o(rn), maxj∈Jn1

∣∣|β̃nj |/|ηnj | − 1
∣∣ ≤ M1nOP (1/rn) = oP (1)

by the rn-consistency of β̃nj . Thus, ‖s̃n1‖ = (1+oP (1))Mn1. For the second part

of (S.1), we have

max
j 6∈Jn1

‖(|ηnj |̃sn1−|ηnj |sn1)‖2≤M2
n2

∑

j∈Jn1

∣∣∣∣∣
|β̃nj | − |ηnj|
|β̃nj | · |ηnj |

∣∣∣∣∣

2

=OP (
M2
n1

r2n
)=oP (1) (S.2)

and maxj 6∈Jn1
‖(|β̃nj | − |ηnj |)̃sn1‖ = OP (Mn1/rn) = oP (1).

Proof of Theorem 1. Let Jn1 = {j : β0j 6= 0}. It follows from the Karush-

Kunh-Tucker conditions that β̂n = (β̂n1, . . . , β̂np)
′ is the unique solution of the
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adaptive Lasso if




x′
j(y − Xβ̂n) = λnwnjsgn(β̂nj), β̂nj 6= 0

|x′
j(y − Xβ̂n)| < λnwnj , β̂nj = 0

(S.3)

and the vectors {xj , β̂nj 6= 0} are linearly independent. Let s̃n1 =
(
wnjsgn(β0j), j ∈

Jn1

)′
and

β̂n1 =
(
X′

1X1

)−1
(X′

1y − λns̃n1) = β01 +
1

n
Σ−1
n11(X

′
1ε − λns̃n1), (S.4)

where Σn11 = X′
1X1/n. If β̂n1 =s β01, then the equation in (S.3) holds for

β̂n = (β̂
′

n1,0
′)′. Thus, since Xβ̂n = X1β̂n1 for this β̂n and {xj , j ∈ Jn1} are

linearly independent,

β̂n =s β0 if





β̂n1 =s β01
∣∣x′
j

(
y − X1β̂n1

)∣∣ < λnwnj , ∀j 6∈ Jn1.
(S.5)

This is a variation of Proposition 1 of Zhao and Yu (2007). Let Hn = In −
X1Σ

−1
n11X

′
n1/n be the projection to the null of X′

1. It follows from (S.4) that

y − X1β̂n1 = ε − X1(β̂n1 − β01) = Hnε + X1Σ
−1
n11s̃n1λn/n, so that by (S.5)

β̂n =s β0 if





sgn(β0j)(β0j − β̂nj) < |β0j |, ∀j ∈ Jn1
∣∣∣x′
j

(
Hnε + X1Σ

−1
n11s̃n1λn/n

)∣∣∣ < λnwnj , ∀j 6∈ Jn1.
(S.6)

Thus, by (S.6) and (S.4), for any 0 < κ < κ+ ǫ < 1

P
{
β̂n 6=s β0

}
≤ P

{ 1

n
|e′jΣ−1

n11X
′
1ε| ≥

|β0j |
2

for some j ∈ Jn1

}

+P
{
|ejΣ−1

n11s̃n1|
λn
n

≥ |β0j |
2

for some j ∈ Jn1

}

+P
{
|x′
jHnε| ≥ (1 − κ− ǫ)λnwnj for some j 6∈ Jn1

}

+P
{1

n
|x′
jX1Σ

−1
n11s̃n1| ≥ (κ+ ǫ)wnj for some j 6∈ Jn1

}

= P{Bn1} + P{Bn2} + P{Bn3} + P{Bn4}, say, (S.7)

where ej is the unit vector in the direction of the j-th coordinate.

Since ‖(e′jΣ−1
n11X

′
1)

′‖/n ≤ n−1/2‖Σ−1/2‖ ≤ (nτn1)
−1/2 and |β0j | ≥ bn1 for

j ∈ Jn1,

P{Bn1} = P
{ 1

n
|e′jΣ−1

n11X
′
1ε| ≥

|β0j |
2

,∃j ∈ Jn1

}
≤ knq

∗
n

(√τn1nbn1

2

)
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with the tail probability q∗n(t) in Lemma 1. Thus, P{Bn1} → 0 by (A1), Lemma

1, (A4) and (A5).

Since wnj = 1/|β̃nj |, by Lemma 2 and conditions (A4) and (A5)

|ejΣ−1
n11s̃n1|

λn
n

≤ ‖s̃n1‖λn
τn1n

= OP

(Mn1λn
τn1n

)
= oP (bn1),

where bn1 = min{|β0j |, j ∈ Jn1}. This gives P{Bn2} = o(1).

For Bn3, we have w−1
nj = |β̃nj | ≤ Mn2 + OP (1/rn). Since ‖(xjHn)

′‖ ≤ √
n,

for large C

P{Bn3} ≤ P
{
|x′
jHnε| ≥

(1 − κ− ǫ)λn

C(Mn2 + 1
rn

)
,∃j 6∈ Jn1

}
+ o(1)

≤mnq
∗
n

( (1 − κ− ǫ)λn

C(Mn2 + 1
rn

)
√
n

)
.

Thus, by Lemma 1 and (A4), P{Bn3} → 0.

Finally for Bn4, Lemma 2 and condition (A5) imply

max
j 6∈Jn1

( |x′
jX1Σ

−1
n11s̃n1|

nwnj
− |ηnjx′

jX1Σ
−1
n11sn1|

)

≤ max
j 6∈Jn1

(‖(x′
jX1Σ

−1
n11)

′‖
n

)∥∥∥ |β̃nj |̃sn1 − |ηnj |sn1

∥∥∥ ≤ τ
− 1

2

n1 oP (1) = oP (1),

due to ‖xj‖2/n = 1. Since |ηnjx′
jX1Σ

−1
n11sn1| ≤ κ by (A3), we have P{Bn4} → 0.

Proof of Theorem 3. Let µ0 = Ey =
∑pn

j=1 xjβ0j . Then,

β̃nj =
x′
jy

n
= ηnj +

x′
jε

n

with ηnj = x′
jµ0/n. Since ‖xj‖2/n = 1, by Lemma 1, for all ǫ > 0

P
{
rn max

j≤pn

|β̃nj − ηnj| > ǫ
}

= P
{
rn max

j≤pn

|x′
jε|
n

> ǫ
}
≤ pnq

∗
n(

√
nǫ

rn
) = o(1)

due to rn(log p)(log n)I{d=1}/
√
n = o(1). For the second part of (A2) with Mn2 =

maxj 6∈Jn1
|ηnj |, we have by (B3)

∑

j∈Jn1

( 1

η2
nj

+
M2
n2

η4
nj

)
≤ kn

b̃2n1

(1 + c2n) = o(r2n).

To verify (A3), we notice that

‖X′
1xj‖2 =

∑

l∈Jn1

(
x′
lxj

)2
≤ knn

2ρ2
n
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and |ηnj | × ‖sn1‖ ≤ k
1/2
n cn for all j 6∈ Jn1. Thus, for such j, (B2) implies

|ηnj |n−1
∣∣∣x′
jX1Σ

−1
n11sn1

∣∣∣ ≤ cnknρn
τn1

≤ κ.

The proof is complete.
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