Statistica Sinica 18(2008): Supplement, S??7~S??

ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL
REGRESSION MODELS

Jian Huang!, Shuangge Ma? and Cun-Hui Zhang?

YUniversity of Towa, ? Yale University, > Rutgers University

Supplementary Material

In this supplement, we prove Theorems 1 and 3.

Let ¥4(z) = exp(z?) — 1 for d > 1. For any random variable X its 14-Orlicz
norm || X ||, is defined as || X ||y, = inf{C > 0: E¢y(|X|/C) < 1}. Orlicz norm is
useful for obtaining maximal inequalities, see Van der Vaart and Wellner (1996)
(hereafter referred to as VW (1996)).

Lemma 1. Suppose that e1,...,e, are iid random variables with Ee; = 0 and
Var(e;) = o2. Furthermore, suppose that their tail probabilities satisfy P(|e;| >
r) < Kexp(—Czx%),i = 1,...,n, for constants C and K, and for 1 < d < 2.
Then, for all constants a; satisfying > 1, a? =1,
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where K4 is a constant depending on d only. Consequently
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for certain constant M depending on {d, K,C} only.

Proof. Because ¢; satisfies P(|e;| > x) < K exp(—Cz?), its Orlicz norm [|g;| 4, <
[(1+ K)/C)Y¢ (Lemma 2.2.1, VW 1996). Let d’ be given by 1/d +1/d’ = 1. By
Proposition A.1.6 of VW (1996), there exists a constant K; such that
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< Kd{o' +(1+ K) ic—i {Z |az|d/] 7}
For 1 <d<2,d =d/(d—1)>2 Thus 7 |ai|¥ < (OO0 |a:)?/? =1. 1t

follows that
=1 Va

For d = 1, by Proposition A.1.6 of VW (1996), there exists a constant K;
such that

< Ky {U—i—(l—i—K)%C_%}.
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The last inequality follows from

P(X >t Xly,) < {wa®) + 137 (14 Ew(%)) <2e Wt > 0

in view of the definition of ||.X||y,

Lemma 2. Let $p1 = (|Gn;|  s9n(Bos), j € Ju1)’ and sp1 = (1|~ sgn(Bo;), J €
Jn1)". Suppose (A2) holds. Then,

Snl

BujlBut — [nglsnt | = op(1).  (S.1)

=(1 1))M,
(14 o0p(1)) My, max

Proof. Since M,; = 0(721), max;ej,, Hﬁnj]/]nnj] — 1] £ My,,0p(1/ry) = op(1)
by the r,,-consistency of 3,;. Thus, |[Sp1]| = (1+0p(1))My1. For the second part

of (&), we have

2 - ﬂnﬂ 77nJ| Mr%l
max {|([7n;[Sn1 = |1 lsn1) || < =0p(—5~)=op(1) (S.2)
Tn1 r
i¢ JeJnl ‘571]‘ |75 n

and maxjgs,, [|(18n;] = 1181 | = Op (M1 /rn) = op(1).

Proof of Theorem 1. Let J,1 = {j : By; # 0}. It follows from the Karush-
Kunh-Tucker conditions that 8,, = (8p1, ..., 0np)" is the unique solution of the
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adaptive Lasso if

. _ (S.3)
x5 (y = XBp)| < Anwny, Bnj =0

and the vectors {x;, an # 0} are linearly independent. Lets,; = (wnjsgn(ﬁoj),j €
Jn1) and

_ = N 1 ~
B = (X’1X1) (X1y = ASn1) = Bor + — 8,11 (Xie = MSur), (S4)

where Enll = X/ X;i/n. If B =s Boi, then the equation in ([E3) holds for
Bn = (,Bnl,O’). Thus, since X,@n = Xle for this Bn and {x;,j € J,1} are
linearly independent,

~

- IBn =s B
B.=:By if L | (S5)
|X9 (y - Xlﬁnl)| < )‘nwnja vy € JIn1-

This is a variation of Proposition 1 of Zhao and Yu (2007). Let H,, = I, —
X12n11 1/n be the projection to the null of Xj. It follows from (E4) that

y — Xlﬁnl =e— Xl(,B —Bo1) =Hpe+ XlEannl)\n/n so that by (&3

sen(Bo;) (Boj — Buj) < 1B0;], Vi€ Jn

Bn s BO if , 1~ .
X (Hns + Xlznllsnl)\n/n)‘ < AWrj, Vi & Jn1.

(S.6)

Thus, by (&8 and (€4)), for any 0 < k <k +e< 1
!ﬁoj‘\

|ﬂOj|
2

for some j € Jnl}

P{Bn #s /30} { |]ETL11 i |>

{|eJ2n11 n1|_ >

{|X-Hn€| > (1=K —€e)A\ywy; for some j ¢ Jnl}

for some j € Jnl}

\x XlEannl\ > (k4 €)wy; for some j ¢ Jm}
— P{Bnl} + P{Bn2} + P{Bn3} + P{Bn4}’ say, (87)

where e; is the unit vector in the direction of the j-th coordinate.
Since H(e]EnHX’) |/n < n 2|22 < (n7,1)" Y2 and |Boj| > bp1 for
j € Jnlv

P{Bu} :P{ €S0 Xe] = ‘60]’ ,Jj € Jnl} (mbnl)
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with the tail probability ¢ (¢) in Lemma 1. Thus, P{B,1} — 0 by (Al), Lemma
1, (A4) and (A5).
Since wyj = 1/|Bn;|, by Lemma 2 and conditions (A4) and (A5)

sl < Bl _ o (Mot
n

Tn1M

) = op(bn1),

where b,1 = min{|Bo;],j € Jn1}. This gives P{Bn2} = o(1).
For B3, we have w;jl = |Bnj| < Mp2+ Op(1/ry). Since ||(x;H,)'|| < v/n,
for large C

Tn1M

(I—k—€eA .
GOt L & I | + o(1)
(I1—K—€A )

Thus, by Lemma 1 and (A4), P{B,3} — 0.
Finally for B4, Lemma 2 and condition (A5) imply

P{By3} < P{yx;Hney >

< mng(

%X 15, St | _
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max
J€JIn1 nwnj
I XS ) N s~ 1
< max <—] - = >H |BnjlSn1 — |Mnjlsni|| < 7,,120p(1) = op(1),
nl

due to ||x;||?/n = 1. Since |77njx9-X12;1115n1| < k by (A3), we have P{B,4} — 0.
Proof of Theorem 3. Let py = Ey = %" x;;. Then,

~ XLy X€
By == =mat o

with 7, = x| pg/n. Since ||x;]|>/n = 1, by Lemma 1, for all € > 0

~ x\.e n
P{Tn max | — 1| > 6} B P{Tn max el 6} < pugs (L) = o(1)
J<pn J<pn N Tn

due to 7, (log p)(log n)l{dzl}/\/ﬁ = 0o(1). For the second part of (A2) with M, =
max;g j,, |1, we have by (B3)

1 M?2
Yo (=t 4"2> < =E(L+ ) = o(ry).
jedm i Ty

To verify (A3), we notice that

2
X2 = 3 (%) < han®p?
leJnl
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and [nn;] % ||sp1]] < k%, for all j & Jp1. Thus, for such j, (B2) implies

cnknpn

Tnl

]nnj]nfl x’-XlEglllsnl < < k.
J

The proof is complete.
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