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Abstract: Functional near infrared spectroscopy (fNIRS) is an emerging non-invasive

optical technique to monitor the cortical hemodynamic response. Generally, para-

metric statistical methods are used to analyze fNIRS data, requiring certain strong

assumptions that may fail in fNIRS data. This paper illustrates the application

of non-parametric alternatives, such as permutation and bootstrap methods, which

require fewer and weaker assumptions. We demonstrate that the proposed methods

can increase the statistical significance of results when compared to the equivalent

parametric methods in controlling familywise error rate in fNIRS group studies.
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1. Introduction

Functional near infrared spectroscopy (fNIRS) is an emerging optical imag-

ing technique that non-invasively monitors the brain activity using near infrared

light (NIR). A neuronal activity in the brain evokes the regional cerebral blood

flow (neurovascular coupling). As a result, there is a localized change in the con-

centration of oxygenated and deoxygenated hemoglobins (HbO2 and HbR), which

are the dominant absorbers of NIR light in the brain tissue (Cope et al. (1988)).

In fNIRS, a pair of illuminator (light emitting diode) and detector are affixed

to the scalp. The illuminator emits NIR light through the scalp, which scatters

and penetrates the underlying head and brain tissue, and the detector detects

the light that reflects back to the scalp. fNIRS measures the relative changes

in hemoglobin components as a function of the change in light intensity during

emission and detection. The midpoint of an illuminator-detector pair defines a

channel, which is used as a reference to locate the brain activity. Multichannel

fNIRS is used to monitor many brain locations simultaneously by setting up a

probe holder on the head surface that contains several pairs of light illuminators

and detectors. fNIRS has several advantages over other non-invasive functional
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neuroimaging techniques, e.g., functional magnetic resonance imaging (fMRI)

and positron emission tomography (PET). It is compact, portable, and relatively

more tolerant of body movement, enabling a wide range of experimental applica-

tions in neuropsychological and diagnostic situations (reviewed in Koizumi et al.

(2003), Obrig and Villringer (2003) and Strangman, Boas and Sutton (2002)).

As in the case of fMRI and PET studies, a two-level summary statistics

approach based on the random effects general linear model (RFX) is commonly

used in fNIRS (Schroeter et al. (2004)). This model accounts for both within-

subject and between-subject variability, and thus extrapolates the inference at

the population level (Friston et al. (1995)). At the first level, subjects’ averages

are computed for each condition to summarize within-subject effect, and then

a t-test is performed to detect whether the subjects respond differently under

experimental and control conditions. The family wise error rate (FWER) control

in multiple channel testing is often applied using Bonferroni correction.

The above model relies on parametric tests, and thus requires certain distri-

butional assumptions that may be too strong in fNIRS. The distribution of the

measured hemoglobin signal is associated with many uncertainties. The mecha-

nism of neurovascular coupling that causes the change in hemoglobin concentra-

tion is not well understood (Steinbrink et al. (2006) and Villringer and Dirnagl

(1995)). These changes also depend on certain unknown factors, such as optical

path length, and thickness of the brain tissues (Hoshi (2003) and Okada and Delpy

(2003)). In addition, neuroimaging studies often employ only a few subjects. In

fNIRS, their response data vary a lot even if they are sampled from the same head

location under identical conditions. In the case of the two-sample t-test, we test

the equality of sample means assuming independent and identical error variances.

Since this test is performed on the subjects’ averages at the second level of GLM,

where the subjects are conventionally assumed to be independent, the assump-

tion of independence is tenable. However, the assumption of identical variances

cannot be ascertained. In addition, fNIRS allows the monitoring of subjects who

cannot be prohibited from moving (e.g., in the case of awake infants), which

adds motion-related noise. Removal of this noise results in unbalanced datasets

with unequal sample sizes between conditions, which may further aggravate the

possibility of failure to meet the assumption of identical variances.

Thus, it is important to explore statistical options that can deal with such

possible failures of assumptions in practical fNIRS datasets. In this paper, we

examine the potential scope of resampling-based methods, such as the permuta-

tion and bootstrap tests on multichannel and multisubject fNIRS data, to relax

such assumptions, focusing primarily on the independent two-sample problem.

We also explore the FWER controlling property of a resampling-based multiple
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testing correction, maximum t (max t) correction (Westfall and Young (1993)),

which can deal with any underlying spatial correlation structure. We applied

the two-sample permutation and bootstrap tests, including the max t correc-

tion, using an unbalanced dataset acquired from an fNIRS group experiment.

In the experiment, we performed the standard neuropsychological task of word

generation that is known to activate the motor speech (Broca’s) area in the left

ventrolateral prefrontal cortex. In addition, we also used simulation to compare

the power of the two resampling-based methods. The results obtained from real

and simulated data show that the proposed two-sample permutation and boot-

strap tests can detect 50% more channels than traditional parametric tests after

applying familywise error correction.

2. Conventional Parametric Framework

Suppose the subjects’ averages for task and baseline conditions are repre-

sented by two samples, X = (X1 , . . . ,XN1
) and Y = (Y1 , . . . ,YN2

), with sizes N1

and N2 , from normal populations with means and variances µX , µY , σ2
X and σ2

Y ,

respectively. The null hypothesis is, H0 : µX = µY . For paired samples,

N1 = N2 = N , and a one-sample t-test is used on the difference (X−Y ) between

pairs with N − 1 df. If the samples are independent and have homogeneous

variances, a two-sample t-test is used. The p-value is obtained using Student’s t

distribution with N1 + N2 − 2 df. The validity of the test depends on how well

its assumptions are met.

t =
(µX − µY )
√

σ2
X

N1
+

σ2
Y

N2

∼ tdist (N1 + N2 − 2 ). (2.1)

3. Resampling-Based Framework

In a resampling-based test, the inference is based upon repeated sampling of

the observed data. The resampling is done without replacement in a permuta-

tion test and with replacement in a bootstrap test. While the resampling-based

methods have been around since permutation tests were first reported (Fisher

(1935) and Pitman (1937)), bootstrap methods have been developed more re-

cently (Efron (1979)). A permutation test is exact but requires the assumption

of exchangeability (for definition refer to Section 3.1), which is not applicable

in certain situations, e.g., for testing the equality of sample means without as-

suming identical distributions in a two-sample t-test. A bootstrap test is more

flexible. It can accommodate a broader range of situations depending on the

null hypothesis being tested, including those that fail to justify exchangeability

(ref. Section 3.3). In the following sections, we discuss several resampling-based

alternatives for emulating two-sample t-test.
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3.1. Permutation tests

In the permutation test, the null distribution is generated by random permu-

tation of the data. Suppose that subjects’ averages for task, X = (X1 , . . . ,XN1
),

are distributed as F , while for baseline, Y = (Y1 , . . . ,YN2
), are distributed as G,

with N1 ≥ N2 . If Z = {X1 , . . . ,XN1 , Y1 , . . . ,YN2} represents the union of the

two samples, the observations in Z can be permuted in NP = (N1 + N2 )!/N 1 !N 2 !

possible ways. If the null hypothesis is true, the equality F = G will assure an

equal probability 1/NP to the observations in any subset of the common sample

space of observations in X and Y . The labels X and Y will not affect their joint

outcome, therefore we can label the first N1 of the pooled observations as X, the

rest as Y , and compute the t-statistic using a large number of permutations to

find the null distribution. The p-value is obtained as the proportion of the resam-

pled t∗ that are as extreme as or larger than the observed t (Efron and Tibshirani

(1986)). A sufficient condition for the inference obtained from the permutation

test to be exact and unbiased is the exchangeability of observations with respect

to the observations in the pooled sample Z. The observations in Z are exchange-

able if the probability of any joint outcome of these observations, such as a

t-statistic, is invariant to their permutations. In a two-sample comparison prob-

lem, exchangeability holds if the observations are independent and identically

distributed.

However, there is a special case for comparing means of paired observations,

in which the exchangeability is granted under a milder assumption of symmetry.

In the one-sample (paired) t-test on the difference between the pairs, D = X −

Y , and N1 = N2 = N , the null hypothesis is that the D′s are symmetrically

distributed around zero, i.e., there is no activation. Under the null hypothesis,

(X−Y ) and (Y−X) are the same, and changing the signs of observations in D will

not affect the t-statistic. For a sample size of N , we can re-arrange observations in

D by randomly prefixing them with a plus or a minus sign in 2N equally possible

ways (Good (2000), Holmes et al. (1996) and Nichols and Holmes (2002)). If X

and Y are drawn from different symmetric distributions and they have the same

mean (but possibly different variances) then X − Y and Y − X will have the

same distribution, and hence the permutation test that flips signs on the values

of D′s is exact.

3.2. Bootstrap tests under exchangeability

This bootstrap test is used for testing the null hypothesis Ho : F = G . The

resampling procedure is similar to that of the permutation test as described in

the previous section, except that bootstrap resamples of X and Y are drawn

with replacement from the pooled sample Z. The bootstrap null distribution

can be obtained by computing t-statistic from these bootstrap resamples (Efron
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and Tibshirani (1986)). Like the permutation test, validity relies on how well

exchangeability holds under the null hypothesis. If the exchangeability condition

applies, the null distributions from the two-sample permutation and bootstrap

test are asymptotically equivalent (Romano (1989, Figure 1A 2B)). In this article,

we use the abbreviation ‘exchangeable bootstrap’ for this test.

Figure 1. Histograms for the distribution of t-statistics obtained from the

two-sample t-test statistic using permutation (A), exchangeable bootstrap

(B), and non-exchangeable bootstrap (C) methods. All these tests used

1,000 resamples. The vertical line indicates the corresponding 5% threshold.

3.3. Bootstrap tests under possible non-exchangeability

This test is used for testing the equality of the sample means, without as-

suming equal distribution. Suppose the two samples X and Y are mutually

independent, and the observations are independent and identically distributed

within each sample. We construct two independent bootstrap resamples, X∗ and

Y ∗, by randomly drawing N1 values from X and N2 values from Y , respectively,

with replacement. Repeating this B times and computing the t-statistic from

the resampled sets each time generates the bootstrap null distribution of t∗. In

order to reflect the null hypothesis, H0 : µX − µY = 0 in the bootstrap scheme,
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Figure 2. Analysis of unbalanced WG data. The spatial visualization of

the results was done by registering the datasets in MNI space using our

fNIRS registration program (Okamoto et al. (2004), Okamoto et al. (2005)

and Singh et al. (2005)). The channels that are detected active are shown
in black. The left column (A) depicts the results obtained from the para-

metric t-test after Bonferroni correction at 5% threshold. The permutation,

exchangeable bootstrap, and non-exchangeable bootstrap t-tests, after max2

t FWER control detected the same channels, as shown in the right column

(B).

we subtract µ∗

X from µX and µ∗

Y from µY in (2.1), as

t∗ =
(µ∗

X − µX )− (µ∗

Y − µY )
√

σ∗ 2
X

N1
+

σ∗ 2
Y

N2

, (3.1)

where µ∗

X , µ∗

Y , σ∗ 2
X , and σ∗ 2

Y are the mean and variance of the bootstrapped
samples X∗ and Y ∗ respectively. This method has been referred to as the shift
and pivot method in Westfall and Young (1993) in the one-sample situation. The
algorithm for the two-sample test is summarized in Efron and Tibshirani (1986).
We use the abbreviation ‘non-exchangeable bootstrap’ to refer to this test. In case
of a paired t-test with samples of equal size (N = N1 = N2 ), we can resample
with replacement the difference between pairs after shifting their means, and
compute a one-sample t-statistic to obtain the bootstrap null distribution.

3.4. Resampling-based FWER corrected p-values

The permutation or bootstrap distribution of the test statistic, t∗, for the null
hypothesis H0j (j = 1 , . . . , C ), is given by the empirical distribution t∗j ,1 , . . . , t∗j ,B .
For the right-tail alternative, the resampling-based uncorrected p-value corre-
sponding to H0j is calculated as p∗

j = (1/B)
∑B

b=1 ϕ(t∗j ,b ≥ tj )), where ϕ(·) is
1 if the condition in parenthesis is true, and 0 otherwise. The resampling-
based FWER threshold can be obtained from the distribution of the maxima
of resampling-based t-values using a single-step procedure (max1), or a step-
wise procedure (max2) (Westfall and Young (1993, Algorithm 2.8), Holmes et al.
(1996) and Dudoit et al. (2002)). First, we compute the t-statistic t∗1 ,b , . . . , t

∗

C ,b
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for each of B bootstrap or permutation sets. In the single step max t proce-
dure, a global threshold is computed from the maximal t-statistic among the
channels for each b, Ub = max(t∗j,b), for j = 1, . . . , C. The adjusted p-values

are p∗

j = (1/B)
∑B

b=1 ϕ (Ub ≥ tj ). In the stepwise max t procedure, we compute
successive maxima for each of the test-statistics

UC ,b = t∗rC ; Uj ,b = max
(

Uj+1 ,b , t∗rj ,b

)

, for j = C − 1 , . . . , 1 , (3.2)

where rj denotes the ordering of the observed test statistic such that tr1
≥ · · · ≥

trC
. The adjusted p-value is p∗rj

= (1/B)
∑B

b=1 ϕ
(

Uj,b ≥ trj

)

. The monotonicity
constraints can be enforced as

p∗

r1
← p∗

r1
, p∗

rj
← max

(

p∗

rj
, p∗

rj−1

)

, for j = 2 , . . . ,C . (3.3)

4. Application to fNIRS Data

We acquired the data from an fNIRS word generation (WG) experiment that
was expected to activate Broca’s area. We monitored 15 healthy, right handed
subjects using fNIRS topography system OMM-2000 optical multi-channel mon-
itor (Shimadzu, Kyoto, Japan) with 34 channels that covered inferior frontal,
middle frontal, precentral and postcentral gyri. Paired illuminators and detec-
tors were located 3 cm apart. The subjects sat in a quiet room with eyes closed
during the measurements. The tasks were 20 s in duration (block design) with an
inter-stimulus interval of 20-24 s. During the task period, a category (e.g., fruit,
countries etc.) was dictated, and the subjects were asked to silently think of pos-
sible nouns from the selected category. During the rest period, the subjects were
asked not to think about nouns. Each time series was filtered with a band pass
filter to remove temporal dependencies due to baseline drifts and physiological
noises, using 0.01 Hz and 0.8 Hz as the high and low pass cutoff, respectively.
The HbO2 signal values for the 5th to the 20th second of the task period and
those from 5 seconds prior to the onset of the task period were averaged across
10 trials for each subject to generate task and baseline samples, respectively. We
focused only on the HbO2 signal.

We are interested in a statistical method that is robust to unequal numbers
of observations in the task and baseline samples, though this was not the case
here. Therefore, we randomly omitted some task observations, which resulted in
twelve task observations for four of the channels, and fifteen for all others. The
two-sample t-test at (2.1) can be used with such unpaired data, with different
sample sizes and possibly different variance. We used the two-sample permuta-
tion and bootstrap t-test, and applied single-step and stepwise max t correction.
For comparison, we also applied the conventional model with Bonferroni cor-
rection. As fNIRS does not provide structural brain information, we previously
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developed a probabilistic data registration method for presenting fNIRS stud-

ies in MNI (Montreal Neurological Institute) standard brain co-ordinate system

(Singh et al. (2005)). First we constructed our fNIRS template, NFRI-CB17

(National Food Research Institute Canonical Brain based on 17 brains), in MNI

space by averaging the MR brain images from 17 subjects (mongoloid; 9 males, 8

females; aged 22 to 51 years) that are normalized in MNI space (Okamoto et al.

(2004)). Using this template, our method obtains the most probable anatom-

ical source of activation, and the associated positional errors in the standard

MNI space. The detailed algorithms are discussed in (Okamoto et al. (2004),

Jurcak, Okamoto, Singh and Dan (2005), Okamoto and Dan (2005) Singh et al.

(2005), Jurcak, Tsuzuki and Dan (2007) and Tsuzuki et al. (2007)).

5. Simulation Analysis

In order to evaluate and compare the power as a function of the sample size

(number of subjects) and examine the influence of the multiplicity level (number

of channels) on the resampling-based FWER control methods, we synthesized

datasets from the full fNIRS WG dataset. It is rare to find studies using more

than 100 channels in fNIRS, though there are fNIRS devices that offer up to 200

channels. Therefore, we synthesized datasets for up to 204 channels by repli-

cating the original WG dataset with 34 channels. Then, from this synthesized

dataset, we randomly selected subsets of data from a range of TN = [7 9 11 13

15] subjects. We generated 30 randomly selected unique combinations of sub-

jects for all subsets, except for the 15-subject subset in which we had only one

possible combination. In each simulation, we systematically varied the number

of channels, TC, in the range of [34 68 102 204] and, for each combination of

TN and TC, we repeated the permutation or bootstrap test 1,000 times (i.e.,

B = 1, 000). We averaged the results obtained from these simulations and de-

rived the null distributions of the max t statistic for the chosen sample sizes,

then computed max t and Bonferroni correction thresholds and the number of

channels detected by these thresholds (Figures 4, 5).

6. Results

Table 1 shows p-values and t-value thresholds acquired from various combi-

nations of statistical methods using the unbalanced WG data before and after

FWER correction. These results are overlaid on the fNIRS reference brain for

spatial visualization of the activated brain areas (Figure 2). As expected for

the word generation task, activation was detected in the ventro-lateral prefrontal

area with most of the activated channels in the left hemisphere (language domi-

nance hemisphere). The observations can be summarized as follows. (1) The final

outcome from the three resampling-based options for FWER control in terms of
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detection of channels remains the same (Figure 2), though the p-values in the
non-exchangeable bootstrap test tend to be relatively larger than those of the
permutation and exchangeable bootstrap tests (Table 1). (2) The max t step-
wise correction offers the most lenient threshold among the FWER controlling
methods used in these examples, and the max t single-step procedure has pro-
duced more conservative estimates than even the Bonferroni correction in two
cases (Table 1). For the results of the full dataset (as compared to the unbal-
anced dataset), refer to simulation analysis with 15 subjects 34 channels, using
simulation parameters TN=15 and TC=34 (Figures 3, 4 and 5).

In the simulation analysis, the t-value thresholds in non-exchangeable boot-
strap tests tend to be more conservative than the exchangeable bootstrap or
permutation tests, particularly for small sample sizes (Figure 3) and larger num-
bers of channels (Figures 4 and 5). We have noted that, despite the visible loss
in power with the decrease in sample size (Figure 5), both bootstrap and permu-
tation tests can detect a few channels in the language area of the brain with a
small sample having just six degree of freedom. Since, the parametric inference
may be questionable at such low degrees of freedom, resampling-based inference
indeed offers a good escape from this issue.

Table 1. Comparison of results from different combinations of statistical
tests and FWER controls using the unbalanced data example. The first
column indicates the rank of the channel in the descending order of original
t-value given in second column. The subsequent columns show the p-values
obtained from parametric, permutation, exchangeable bootstrap, and non-
exchangeable bootstrap methods. The sub-columns, Unc, Bonf, Max1, and
Max2 denote uncorrected p-value, and pvalues after Bonferroni, max t (single
step), and max t (stepwise) correction, respectively. The corrected p-values
in bold indicate that they are significant at 5% threshold.

Parametric Permutation Exchangeable Bootstrap Non-exchangeable Bootstrap

Rank T Unc Bonf Unc Bonf Max1 Max2 Unc Bonf Max1 Max2 Unc Bonf Max1 Max2

22 8.189 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19 7.412 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23 7.008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 3.704 0.0005 0.0157 0.0005 0.0170 0.0112 0.0098 0.0000 0.0000 0.0088 0.0068 0.0000 0.0000 0.0130 0.0120

21 3.623 0.0006 0.0194 0.0008 0.0255 0.0140 0.0118 0.0005 0.0170 0.0108 0.0080 0.0000 0.0000 0.0160 0.0150

25 3.614 0.0006 0.0199 0.0002 0.0085 0.0142 0.0118 0.0005 0.0170 0.0108 0.0080 0.0000 0.0000 0.0160 0.0150

26 3.192 0.0017 0.0591 0.0012 0.0425 0.0408 0.0325 0.0010 0.0340 0.0305 0.0232 0.0010 0.0340 0.0350 0.0290

14 3.107 0.0022 0.0732 0.0022 0.0765 0.0500 0.0398 0.0002 0.0085 0.0370 0.0258 0.0010 0.0340 0.0400 0.0320

7 3.099 0.0022 0.0746 0.0032 0.1105 0.0508 0.0398 0.0028 0.0935 0.0372 0.0258 0.0020 0.0680 0.0410 0.0330

32 2.755 0.0051 0.1735 0.0068 0.2295 0.1022 0.0752 0.0058 0.1955 0.0908 0.0612 0.0030 0.1020 0.0910 0.0680

2 2.564 0.0084 0.2845 0.0080 0.2720 0.1520 0.1120 0.0082 0.2805 0.1310 0.0925 0.0020 0.0680 0.1400 0.1070

3 2.547 0.0087 0.2957 0.0150 0.5100 0.1562 0.1120 0.0108 0.3655 0.1358 0.0925 0.0090 0.3060 0.1460 0.1090

20 2.545 0.0084 0.2844 0.0110 0.3740 0.1568 0.1120 0.0080 0.2720 0.1370 0.0925 0.0050 0.1700 0.1470 0.1090

29 2.541 0.0084 0.2870 0.0075 0.2550 0.1575 0.1120 0.0042 0.1445 0.1378 0.0925 0.0030 0.1020 0.1480 0.1090

17 2.067 0.0241 0.8184 0.0292 0.9945 0.3572 0.2508 0.0232 0.7905 0.3180 0.2155 0.0180 0.6120 0.3140 0.2340
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Figure 3. Histograms for resampling-based max t distribution. The simu-
lation analysis is depicted in the histograms of max t distribution obtained
from synthetic data with different number of subjects, TN=[7 9 11 13 15],
and TC=34 channels. The stepwise max t, single-step max t, and Bonfer-
roni thresholds at 5% level are shown as black, dotted and dashed lines,
respectively. The stepwise max t threshold corresponding to the least t-
value among the channels that survived the FWER correction at 5% level
was used as the common threshold for providing an objective comparison of
all the thresholds. All these tests used 1,000 resamples.

7. Discussion

Our results show that both permutation and bootstrap methods in two-
sample testing, along with max t correction, can increase the significance of the

inference from fNIRS group analysis. Unlike permutation tests, bootstrap tests
are not exact and therefore are not guaranteed to preserve the Type I error. The
guidelines to optimize the power and specificity of the bootstrap test, highlighted
by and Hall and Wilson (1991), recommend that resampling should be done in a

manner so that it reflects the null hypothesis, and that a pivotal statistic should
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Figure 4. Comparison of FWER thresholds. The graphs show the t-value
thresholds (y-axis) obtained from simulation analysis after systematically
varying the multiplicity level (TC) from 34 to 204, and the number of sub-
jects (TN) from 7 to 15 (x-axis). The stepwise max t threshold corresponding
to the least t-value among the channels that survived the FWER correction
at 5% level was used as the common threshold for providing an objective
comparison of all the thresholds. All these tests used 1,000 resamples over 30
simulations. The error bars indicate the simulation error in the thresholds.

be used. The null hypothesis of equality of distributions in exchangeable boot-

strap test is reflected by pooling the observations before resampling, and the null

hypothesis of equality of means in non-exchangeable bootstrap test is reflected

by shifting the means before resampling. A statistic is said to be pivotal if its
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Figure 5. Power and sample size. The graph shows the influence of mul-

tiplicity level (TC) and sample size (x-axis) on the power in terms of the

number of the detected active channels along (y-axis) for each resampling-

based test option applied in simulation analysis. The error bars indicate the

simulation error in the number of channels.

sampling distribution is independent of the the distribution of the data that gen-

erated it. The t-statistic used in the bootstrap tests (3.1), is pivotal for normal

data, and asymptotically pivotal for random and non-normal data (Westfall and

Young (1993, Sec. 2.2.2)). Therefore, in order to preserve the pivotality of the

statistic asymptotically, the bootstrap test should be avoided with very small

samples. Interestingly, a previous study on theoretical comparisons of the exact
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permutation and bootstrap tests reported that both preserved the Type I error,

but the bootstrap tests were more conservative in the specific single test exam-

ples that were used (Corcoran and Mehta (2002)). Subsequently these guidelines

were extended to the multiple testing cases under the assumption of subset piv-

otality (Westfall and Young (1993)), which is granted by max t correction, and is

assumed in most neuroimaging experiments (Holmes et al. (1996)). In the WG

example with unbalanced data, the power of permutation and bootstrap tests

was equivalent in terms of detection of active channels, when the max t stepwise

correction was used (Table 1 and Figure 2).

The complete enumeration of a resampling-based test including all possible

resamples is computationally difficult in large samples. Instead, an approximate

resampling-based p-value can be enumerated from a random subset of all possible

resamples at the cost of a small bias (Dwass (1957)) that depends on the number

of resamples included in the enumeration, B. There is no single rule of thumb

for selecting the value of B, but a histogram can give an indication whether the

null distribution is well approximated at the chosen B or not (e.g., Figure 1)

(Good (2000)). In a multiple testing situation, it is complicated to express the

deviation in the p-values of all the channels. Therefore, instead of the deviation

in p-values, we estimated the deviations in single-step (max1) and step-down

(max2) thresholds in the simulation study, at B = 1, 000, over 30 repetitions

(Figure 4).

The issue of selecting an ideal Type I error control procedure is common to

most neuroimaging techniques, where Bonferroni correction tends to be too con-

servative because of positive spatial correlation. Several alternatives have been

suggested to overcome this in functional neuroimaging, e.g., random field theory

(RFT) (Worsley et al. (1992)). and false discovery rate (Benjamini and Hochberg

(1995), Genovese, Lazar and Nichols (2002) and Singh and Dan (2006)). How-

ever RFT requires good lattice assumptions that are problematic with fNIRS

data, and FDR requires a certain kind of positive spatial correlation structure

(Benjamini and Yekutieli (2001)). Fortunately, resampling based max t correc-

tion methods do not require such assumptions.

Some authors have explored the appropriateness of several permutation tests

for fMRI/PET data (Nichols and Holmes (2002)). These tests should be appli-

cable to any data, including fNIRS data, but the scope and applicability might

vary. For example, due to the massive volumes of fMRI data and their pro-

cessing requirements (e.g., the smoothed variance t-test), stepwise correction is

not recommended because its power gain over single-step correction has not been

found worth the additional computational burden imposed by its iterative nature

(Holmes et al. (1996)). This is not the case for fNIRS. Sometimes the distribu-

tion of the permutation statistic will not be identical among channels, which is



1532 A. K. SINGH, L. CLOWNEY, M. OKAMOTO, J. B. COLE AND I. DAN

more likely in case of the unbalanced data with different number of observations

between channels. The stepwise max t threshold is successively adjusted among

channels, and therefore provides greater sensitivity, particularly at channels not

having the maximal distribution. As fNIRS data is less bulky and does not

require complicated processing, stepwise correction is easily applicable, and we

have found it to be more powerful than Bonferroni correction in our examples.

In functional neuroimaging, the application of bootstrap tests is rare and has

been limited to time series analysis (Bullmore, Breakspear and Suckling (2003));

their application in FWER control, e.g., max t, remains unexplored. Our results

indicate that they may be useful for fNIRS when the experimenter may not want

to assume equal variance under the null hypothesis, due to possible failure of

homogeneity, e.g., in the case of the unbalanced (missing) data example (Figure

3). The multiplicity level in fNIRS is moderate. Our simulation example shows

that, although a non-exchangeable bootstrap test becomes conservative compared

to the other resampling-based tests with increasing multiplicity, it is still able to

detect some active channels in the language area. A similar result was observed

in microarray analysis, where non-exchangeable bootstrap tests were found to

be very conservative compared to permutation tests in their specific examples

(Troendle et al. (2004)). We hope that the bootstrap test will also be examined

in the context of other techniques with large multiplicity issues, e.g., fMRI.

The results described in this paper are implemented in matlab, using in-house

software that is developed for analyzing fNIRS data. It may be downloaded from

our website http://brain.job.affrc.go.jp/.
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