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Abstract: The multidimensional nature of neuroscience data has made the use

of multi-way statistical analysis suitable in this field. Parallel Factor Analysis

(PARAFAC) is a multidimensional generalization of PCA with the advantage of

offering unique solutions. However, imposing physiologically acceptable constraints

would improve the interpretation of this type of analysis. In this work we propose

a new algorithm called Alternating Penalized Least Squares to estimate PARAFAC

solutions using different kinds of soft penalization. The algorithm relies on the re-

cent generalization of modified Newton-Raphson techniques to estimate a multiple

penalized least squares model. Applied to semi-synthetic and real spontaneous EEG

time-varying spectra, we show that a wide range of sparse and smooth solutions

can be found separately, as well as with these two properties combined. Smooth-

ness is usually desired in spectra, and different sparse scenarios are observed in the

temporal evolution of physiological intermittent phenomena. The degree of con-

straints can be tuned through the weighting parameters, whose optimal values can

be chosen by means of the cross-validation and Corcondia measures.
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1. Introduction

Tools for the analysis of multidimensional data arrays have recently gained
popularity in neuroscience (Miwakeichi, Mart́ınez-Montes, Valdés-Sosa, Nishiyama,
Mizuhara and Yamaguchi (2004), Morup, Hansen, Herrmann, Parnas and Arn-
fred (2006) and Beckmann and Smith (2005)). This multi-way analysis is the
natural extension of usual multivariate analysis, and it offers several advantages
over the well-known bilinear methods for dimensionality reduction, such Princi-
pal Component Analysis (PCA) and Independent Component Analysis (ICA).
The first advantage is that of more parsimonious and interpretable data models.
Another advantage is the achievement of unique decompositions under very mild
conditions, without constraining the solutions to be either orthogonal or statis-
tically independent. Several models and algorithms for multi-way analysis have
been developed (Bro (1998)). Of particular interest is the PARAFAC model,
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first proposed by Harshman (1970) and recently used for the analysis of sponta-
neous EEG data (Miwakeichi et al. (2004)). The basic model for a PARAFAC
decomposition of a three-way data array X(I×J×K) of elements xijk is:

xijk =
∑Nf

f=1
aifbjfckf + εijk, (1.1)

where εijk represents an error term. The problem is to find the loading matrices,
or signatures, A, B and C, whose elements are aif , bjf and ckf , respectively, with
columns corresponding to components (indexed by f ) which are also designated
as ‘atoms’ (see Figure 1 of supplemental material online). This model does not
suffer from rotational freedom and its only intrinsic indeterminacies are the order
of the atoms and the relative scaling of the signatures. These can be solved in
practice by choosing the first atom as the one explaining most of the variance,
normalizing two of the estimated loadings and scaling the other with the overall
explained variance. Therefore, the model is considered to be essentially unique
(Stegeman and Sidiropoulos (2007)).

Sufficient conditions for the uniqueness of PARAFAC were given in Harsh-
man (1970), although the most general condition is due to Kruskal (1977).
Kruskal´s rank (k-rank) of a matrix is the largest number r such that every
subset of r columns of the matrix is linearly independent. Uniqueness of the
solution is guaranteed when k-rank(A)+ k-rank(B)+ k-rank(C) ≥ 2Nf + 2.
This is a less-stringent condition than either orthogonality or statistical inde-
pendence (Sidiropoulos and Bro (2000)). Necessary and sufficient conditions for
unique decomposition of higher dimensional arrays are discussed in Stegeman
and Sidiropoulos (2007).

Kruskal also showed that if the data conforms to the model, PARAFAC anal-
ysis will recover the true underlying phenomena if the correct number of compo-
nents is used and if the signal-to-noise ratio is appropriate (Kruskal (1977)). To
select the appropriate number Nf of components we use the Core Consistency
Diagnostic (Corcondia) test (Bro (1998)). This measure takes the value 100%
when the data conform exactly to the trilinear model. If Corcondia is lower than
85%, then either too many components have been extracted, the model is mis-
specified, or gross outliers disturb the model (Bro (1998)). For other details on
this issue see Section 1 of the supplemental material (online).

Although other algorithms have been proposed, PARAFAC is most often esti-
mated by Alternating Least Squares (ALS), which offers a good trade-off between
computational expense and quality of the solution (Tomasi and Bro (2006)). This
consists of simply dividing the parameters into several sets, each being estimated
in a least squares sense, conditionally on the remaining parameters. This can be
formalized using the following definition.
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Definition. Let A ∈ Rm×n and B ∈ Rp×n be two matrices with columns
denoted as ai and bi, i = 1, . . . , n, respectively. Then, the matrix C ∈ Rmp×n;
C =

[
a1 ⊗ b1 · · · an ⊗ bn

]
is called the Khatri-Rao product of A and B, denoted

as C = A |⊗|B, where ⊗ is the Kronecker product.

If the tensor data is reshaped by joining along the second dimension all slices
Xk (k = 1, . . . ,K), we end up with a matrix X(I×JK)

A , and the model can be
rewritten in terms of the loadings matrices as X(I×JK)

A = A (C |⊗|B)T +E(I×JK)
A .

Here, E(I×JK)
A is the error matrix equally rearranged. Similarly, reshaping the

original data in such a way that the second (or third) dimension runs along rows
and the other two are joined along columns, leads to the following equivalent
forms of (1.1):

X(J×KI)
B = B (A |⊗|C)T + E(J×KI)

B ; X(K×IJ)
C = C (B |⊗|A)T + E(K×IJ)

C .

The global or general problem in PARAFAC has the loss function

min
A,B,C

∥∥∥X(I×JK)
A − A (C |⊗|B)T

∥∥∥2
,

where ‖Y‖ denotes the Frobenius (l2 -) norm of a matrix Y, ‖Y‖=
√

trace (YTY).
With auxiliary matrices Z(JK×Nf )

A = (C |⊗|B), Z(KI×Nf )
B = (A |⊗|C), and

Z(IJ×Nf )
C = (B |⊗|A), the ALS algorithm can be expressed as three ordinary

least squares (OLS) regressions.

1. Initialize two of the loadings, say B and C.

2. Â = arg min
∥∥XA − AZT

A

∥∥2.

3. B̂ = arg min
∥∥XB − BZT

B

∥∥2.

4. Ĉ = arg min
∥∥XC − CZT

C

∥∥2.
5. Repeat Steps 2, 3 and 4 until relative change in fit is smaller than a specified

criterion.

Such an algorithm may only improve the fit or keep it the same, driving
the loss function to monotonically decrease. Since the problem is a bounded-
cost problem (the loss function cannot be less than zero) convergence follows.
This property is very attractive, and one of the reasons for the widespread use
of ALS. However, the noisy nature of neuroscience data may lead to difficult-
to-interpret solutions and, in the worst case, to solutions without physiological
interpretation at all. Therefore, the use of appropriate constraints is usually
helpful for obtaining clinically and neurophysiologically sound results.

In this context, constraints can be applied as either approximate or exact.
In the available implementation of PARAFAC (Andersson and Bro (2000)), only
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exact orthogonality, nonnegativity and unimodality of components can be used
as constraints, although in theory many others are possible (Bro (1998)). How-
ever, in the study of complex systems such as the brain through noisy data, exact
constraints are not suitable. Recently, PARAFAC has been estimated through
the Expectation-Maximization (EM) algorithm and the Variational Bayesian EM
(Morup (2005)). These algorithms imply the use of prior information (approx-
imate constraints) on some or all of the loadings, reducing to ALS when delta
functions are used. The use of the Bayesian approach offers a natural way of
imposing constraints through prior information and also allows one to address
the evaluation of the optimal number of components to extract (e.g. through
Automatic Relevant Detection or the Bayesian Information Criterion). However,
the implementation of these methods depends strongly on the assumed prior
densities for the loadings.

As an alternative, in this work we propose the use of approximate con-
straints in the ALS approach for a physiologically valid PARAFAC analysis of
neuroscience data. Recent advances in the field of least squares regression allow
one for the first time to efficiently constrain one or more signatures to be smooth,
or sparse, or even to have both these properties. Some of these constraints would
be very difficult to deal with in the EM/VBEM approaches and would lead to
very slow algorithms. The next section presents the modifications of the ALS
algorithm to include penalizations, as well as other details for efficient implemen-
tation and estimation of optimal weights for the constraints. Section 3 gives the
results of the application of the new method to the analysis of actual and semi-
synthetic EEG data, and Section 4 is devoted to the discussion and conclusions
of the study.

2. Alternating Penalized Least Squares

Without loss of generality, we focus on the estimation of one of the loadings
to be penalized, say A. For this loading, the OLS solution is given by the second
step of the ALS algorithm presented above. For simplicity, we write XT

A and ZA

as X and Z, respectively. A constraint is introduced by adding a penalization
term P (A):

Â = arg min
(∥∥X − ZAT

∥∥2
+ λP (A)

)
.

The nonnegative parameter λ quantifies the relative importance of the two
competing (fit and constraint) terms. Of particular interest is the well-known
Ridge regression (Hoerl and Kennard (2000)), where the penalty function is
quadratic in A, having the general form P (A) = ‖L1AL2‖2, with L1 and L2

being two operators that operate on the columns and rows of A respectively.
The choice of the first or second order difference operator for L1 (L2) is aimed
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at the imposition of smoothness along rows (columns) of the coefficients ma-
trix (Timmerman and Kiers (2002)). Alternatively, P (A) can be a non-convex
penalty function characterized by having a singularity at the origin and which
leads to sparse solutions (Fan and Li (2001)). In this line, some penalizers are the
Least Absolute Shrinkage Selection Operator (Lasso) (Tibshirani (1996)), which
uses the l1 -norm of A, so P (A) = ‖A‖1; a variant called the “Fusion Lasso”
(Land and Friedman (1996)), with P (A) = ‖LA‖1, where L is the first order
difference operator; and the Smooth Clipped Absolute Deviation (SCAD) (Fan
(1997)), with a more complicated definition for the penalty function. Also, some
particular combinations of penalties have been introduced, such as the “Fused
Lasso” (Tibshirani, Saunders, Rosset, Zhu and Knight (2005)), which combines
typical penalties of Lasso and Fusion Lasso; and Elastic Net (Enet) (Zou
and Hastie (2005)) combining l1 -norm penalties (Lasso) and quadratic penalties
(Ridge). A general expression for this penalty is P (A)=µ1 ‖L1A‖1+µ2 ‖L2A‖2,
where µi, (i = 1, 2) is the weight for the l(i)-norm term. These strategies are suit-
able in problems where group behavior is searched for in some of the coefficients.
A compendium of different non-convex penalizers and their application to neu-
roscience data can be found in Valdés-Sosa, Sánchez-Bornot, Vega-Hernández,
Melie-Garćıa, Lage-Castellanos and Canales-Rodŕıguez (2006).

For estimating penalized linear regression models with the use of non-convex
penalties, (which are not algebraically treatable), we used the Local Quadratic
Approximation (LQA) algorithm (Fan and Li (2001)). It unifies nearly all vari-
able selection techniques into an easy-to-implement iterative application of Ridge
regression, and retains the convergence properties of the Newton-Raphson algo-
rithm (Hunter and Li (2005)). Recently, our group has developed a generalized
LQA variant to tackle the estimation of a penalized least squares model with
combinations of different types of penalties (Sánchez-Bornot, Mart́ınez-Montes,
Lage-Castellanos, Vega-Hernández and Valdés-Sosa (2008)). This is called Multi-
ple Penalized Least Squares (MPLS) and, for a PARAFAC loading, is established
as

Â = arg min
(∥∥X − ZAT

∥∥2
+

∑
λlPl(A)

)
, (2.1)

where l = 1, . . . , Nl, indexes the penalty functions and corresponding weight-
ing parameters. This loss function cannot be separated into contributions from
columns of A (rows of AT ), thus each column has to be estimated condition-
ally on the others using a backfitting algorithm (Hastie and Tibshirani (1990)).
Mathematically, if we set Tf = X −

∑
f ′ 6=f zf ′aT

f ′ , then the loss function for the
f -th atom af can be written as ‖Tf − zfaT

f ‖2 +
∑

λlPl(A), where zf is the f -th
column of Z. The solution to this problem is not necessarily the overall solution
of (2.1) in the least squares sense. However, this formulation is very useful in
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practice due to the following lemma, whose proof can be found in Section 2 of
the supplemental material (online).

Lemma 1. Consider the minimization subject to any constraint of the loss
function of a multiple penalized linear regression model for a row aT : min(‖T−
zaT ‖2+

∑
λlPl(a)). The solution is that of min ‖α−a‖2+

∑
λlPl(a)),where α is

the solution of the unconstrained problem α =arg min(‖T− zαT ‖2) = TTz/zTz,
and λl = λl/z

T z.

This result allows for a fast computation of each atom which compensates
for the slowness of the iterative backfitting process. Moreover, it is possible to
use different constraints for each atom separately. The APLS algorithm can then
be summarized as follows.

1. Initialize the loadings: A0, B0 and C0.

2. Iterate until convergence the following steps (iteration t).
3. Estimate Ât = backfitting(XA,At−1,Bt−1,Ct−1, PA).
4. Estimate B̂t = backfitting(XB,At−1,Bt−1,Ct−1, PB).
5. Estimate Ĉt = backfitting(XC,At−1,Bt−1,Ct−1, PC).

(PA, PB and PC summarize multiple penalties on A, B and C, respectively.)

Backfitting Algorithm: Â = backfitting(XA,A,B,C, PA).

(i) For each column af , bf and cf of A,B and C, respectively, compute zf =
cf⊗bf and αf= (XA−

∑
f ′ 6=f zf ′aT

f ′)Tzf/zT
f zf .

(ii) Estimate âf = arg min(‖αf − af‖2 + PA).

(iii)Repeat (i) and (ii) until convergence.

Finally, two important issues should be mentioned. First, each iterative step
(penalized least squares) of the backfitting algorithm is approximated by iterative
ridge regressions using LQA to guarantee its global convergence. This ensures
the convergence of the backfitting (Ansley and Kohn (1994)), improving the fit
or keeping it the same. Therefore, similar to ALS, since the loss function is
non-negative, the whole algorithm converges at least to a local minima. On the
other hand, in some cases PARAFAC is known to depend strongly on initial
loadings. For the ALS algorithm, several options have been used for obtaining
initial estimates ranging from random guesses to direct trilinear decomposition
(Bro (1998)). A common option has been to use several runs with initial guesses
to ensure convergence to a unique solution. We follow this approach in the case
of synthetic data, although for real data we always start from the unconstrained
PARAFAC solution, which ensures that penalized loadings will resemble the
original ones.
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Second, we have to set values for the weighting parameters for each penalty
function that allow a continuous control over the corresponding constraint. Au-
tomatic selection of optimal values can be found by generalized cross-validation
(GCV) (Golub, Heath and Wahba (1979)), or information criteria such as Akaike’s
(Akaike (1974)) or Schwartz’s Bayesian Information Criterion (Schwartz (1978)).
In this work we compute solutions with different values for the weighting param-
eters and review corresponding values of the logarithm of GCV (logGCV), and
the Corcondia measure, for identifying an ‘optimal’ solution. In the case of using
several penalty functions, this can lead to a computationally expensive approach.
Thus, for the case of the Enet penalty, we follow a different approach that consists
of using only a few pairs of values for µ1 and µ2 such that µ1 + µ2 = 1, and find-
ing the optimal weighting parameter common for both terms through inspection
of log GCV and Corcondia. The former is logGCV= log(σ̂2) − log (1 − df/N),
where N = IJK is the number of data elements, σ̂2 = ‖X − X̂‖2/ (N − df) is
an estimate of the error variance component, and df is the effective number of
parameters (degrees of freedom), which is very difficult to compute for nonlinear
models and non-quadratic penalties. Here, we approximate df by the sum of each
loading’s degrees of freedom. This approximation is also used in the backfitting
process for each atom, as proposed by Hastie and Tibshirani (1990), Chapters 2
and 6.

3. Constrained Decomposition of EEG Data

3.1. Ordinary PARAFAC

The data used in this study is the time-varying spectrum of a resting-state
EEG recording of 16 bipolar derivations. This is a three-dimensional array of 208
320 elements, indexed by 16 derivations, 124 frequencies and 105 time points, that
can be subject to PARAFAC analysis as is schematically shown in Figure 1 of the
supplemental material (online). The estimated loadings correspond to spatial,
spectral and temporal signatures, respectively. More details about these data set
and their preprocessing for PARAFAC can be found in the supplemental material
(online), and in Mart́ınez-Montes, Valdés-Sosa, Miwakeichi, Goldman and Cohen
(2004)

Unconstrained PARAFAC decomposition via ALS was performed, and ex-
amination of Corcondia, residual errors, and explained variance allowed us to
determine the appropriate number of components as three. Figure 1 shows the
three atoms extracted for the spatial, temporal and spectral loadings. The lat-
ter allows the identification of the present rhythms in the data, namely alpha
(solid line), theta (dot line), and gamma (dash line) atoms. Note that temporal
signatures show different behaviors, being quite constant for the gamma atom,
and showing intermittent activity for the alpha and theta atoms. The spatial
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Figure 1. Unconstrained PARAFAC decomposition via ALS of the time-
varying spectra of resting-state EEG. (a) Temporal signatures (b) Spectral
signatures (c) Spatial signatures. The three atoms extracted are identified
according to the classical band classification as alpha (8-12Hz), theta (4-
8Hz), and gamma (>30Hz) from the spectral loadings. The spectral and
spatial signatures are normalized and the temporal retains the scale of the
data. Figure in color in the online version.

loadings are more difficult to interpret in this view and are not of interest in
this paper, although the representation on the scalp is shown in Figure 2 of the
supplemental material (online).

3.2. Smoothness

Although the main spectral peaks of the three atoms are clearly distinguished
(Figure 1b), this is not always the case, and oscillations or roughness of the spec-
trum sometimes make it difficult to interpret. To overcome this, we imposed
several degrees of smoothness on one spectral loading (P (B) = ‖L2B‖2 , L2

being the second difference operator) while leaving the other two loadings un-
constrained. Figure 2a-e show the spectral signatures for different values of the
corresponding weighting parameter. As can be seen, the higher the weighting
parameter, the smoother the signatures for all atoms. The ‘optimal’ value for
this parameter is λ = 1 in terms of minimization of the GCV, the residual sum
of squares (RSS) and the relative distances to unconstrained solution, as well as
maximization of the Corcondia measure, as shown by Table 1 of the supplemental
material (online). However, the RSS and logGCV obtained for the unconstrained
PARAFAC decomposition are lower, which might be explained by its uniqueness,
i.e., the constraint pulls the solution far from the least squares one. On the other
hand, Figure 2f shows the spectral signatures obtained by requiring smoothness
and non-negativity simultaneously, illustrating the feasibility of combining this
kind of soft constraint with the hard constraint already used in PARAFAC (Bro
(1998)).
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Figure 2. Spectral signatures constrained to be smooth, obtained by PARAFAC
via APLS. (a)−(e) Spectral loadings with different degree of smoothness
(see value of lambda, the smoothing parameter). (f) Spectral loadings con-
strained to be smooth and non-negative. Values of logGCV and Corcondia
are shown in Table 1 of the supplemental material (online). Figure in color
in the online version.

3.3. Sparsity and group behavior

EEG data and other neuroimages often show intermittent activity. For ex-
ample, epileptic spikes are very localized in time, spontaneous rhythms usually
alternates periods of high and low amplitudes, and experimental block designs
give the amplitude of oscillations a box-like appearance. Having this in mind,
we simulated the three scenarios for a temporal signature that are shown in the
top row of Figure 3. The first is theoretically suitable for the use of Lasso penal-
ization since it shows very sparse signatures (Figure 3a top). The second shows
non-zero values in groups, within which all points have the same value (Figure
3b top) so, theoretically, this is the ideal situation for applying the Fusion Lasso
penalization. Finally, the third also shows signatures with group behavior, but
now with smooth variations in values inside a group (Figure 3c top), which is
suitably tackled by penalizations combining smoothness and sparsity, such as
Elastic Net. With these simulated temporal signatures and the unconstrained
spatial and spectral loadings, we recomposed the three-dimensional data and
added some white noise (signal-to-noise ratio of 20 dB). The bottom row of Fig-
ure 3 shows the unconstrained PARAFAC decomposition of this semi-synthetic
data. Note that in all cases there is a good correspondence (Corcondia>99%), but
the sparse nature of the real signatures (many zero values) cannot be recovered.
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Figure 3. Simulated temporal signatures for the three atoms (top), and those
obtained by unconstrained PARAFAC (bottom). Logarithm of Generalized
Cross Validation (logGCV) function and relative distance (RD1) to the real
loadings are also shown. (a) Lasso scenario; only some time points are
activated. (b) Fusion Lasso scenario; each signature is a box-like function.
(c) Elastic Net scenario; only a few patches are activated, but this activation
is smooth inside the patch. Figure in color in the online version.

Penalized PARAFAC analyses with different constraints on the temporal
signature, and without constraining the other two loadings, were performed.
Figure 4a shows the temporal loading obtained by using a Lasso penalization
(P (C) = ‖C‖1) for the first scenario (Figure 3a). Here, the optimum value
(minimum logGCV) for the weighting parameter is 0.1, which also produces
the lowest relative distance to the real loading, i.e., the one resembling the real
loading most accurately. This plot for other values of the weighting parame-
ter and corresponding logGCV, Corcondia, and relative distances are shown in
the top row of Figure 3 of the supplemental material (online). Similarly, Figure
4b shows the temporal signatures obtained by using Fusion Lasso penalization
(P (C) = ‖L1C‖1 , L1 being the first difference operator) on the second simu-
lated data set (Figure 3b). The value λ = 0.9 seems to be optimal, having the
highest Corcondia, the lowest logGCV, and the lowest relative distance to the
real loading. The temporal loadings estimated for different values of λ are shown
in the middle row of Figure 3 of the supplemental material (online). Finally, in
Figure 4c the temporal signatures estimated with the use of Enet penalization
(P (C) = µ1 ‖L1C‖1+µ2 ‖L2C‖2) on the third simulated data set (Figure 3c) are
shown. Enet solutions were found using a first order difference operator for the
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Lasso Fusion Lasso Elastic Net

logGCV=-4.7358 Lambda=0.1
Corcondia=99.95 RD1=9.3

logGCV=-4.3832 Lambda=0.9
Corcondia=99.90 RD1=4.5

Lambda=0.4 µ1 = 0.5 µ2 = 0.5
logGCV=-4.3669 RD1=3.3

Figure 4. Estimated temporal signatures for the three atoms using con-
strained PARAFAC with corresponding penalization for the three simulated
scenarios. Values of optimum lambda, logarithm of GCV, Corcondia (ex-
cept for Enet), and relative distance to real temporal signature (in percent)
are shown. Solid line represents the Alpha atom, dotted line represents the
Theta atom, and dashed line the Gamma atom. Figure in color in the online
version.

l1 -norm term and a second order difference operator for the l2 -norm term. Dif-
ferent values of the parameter λ were explored for three different pairs of weights
(µ1, µ2) = {(0.9, 0.1); (0.5, 0.5); (0.1, 0.9)}. Solutions with the lowest logGCV
in each case are shown in the bottom row of Figure 3 of the supplemental mate-
rial (online). Since values of logGCV and Corcondia (not shown) are almost the
same in the three cases, in Figure 4c we present the solution with µ1 = µ2 = 0.5
as best, based only on the relative distance to the real loading. The slowest
computed solution took around 2.5 minutes to converge.

3.4. Combining smoothness and sparsity

Finally, we explored the three types of sparse constraints on the temporal
signature of the real data. Additionally, smoothness was required for the spectral
loading in order to test the ability of the proposed algorithm to simultaneously
impose different types of constraints to different loadings. Figure 5 shows three
PARAFAC decompositions corresponding to the use of the Lasso, the Fusion
Lasso and the Enet penalizations on the temporal loading, and Ridge (with a
second order difference operator) on the spectral loading. The ‘optimal’ solu-
tions were selected as those with minimum logGCV, also taking into account the
Corcondia measure. All decomposition converged in less than 4 minutes.

The discussed properties of each penalty used can be easily distinguished. In
the first case (Figure 5a, top), the signatures are sparser, since more coefficients
are set to zero. In the second case (Figure 5b, top), there are some flat periods,
and in the third (Figure 5c, top), the groups of coefficients with nonzero values
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logGCV=-3.4787 Corcondia=92.19 logGCV=-3.4462 Corcondia=92.73 logGCV=-3.4249 Corcondia=93.87

Figure 5. Estimated temporal (top), spectral (middle), and spatial (bottom)
signatures for the three atoms using constraints for temporal and spectral
loadings in real data. a) Lasso penalization (sparsity) on the temporal load-
ing; b) Fusion Lasso penalization (sparsity on the first differences); c) Enet
penalization (combination of sparsity and smoothness) with first and second
order difference operators in the l1 -norm and l2 -norm terms, respectively. In
all cases the smoothness constraint (using the second order difference opera-
tor) was required on the spectral loading. Corresponding optimal values for
lambda, logGCV, Corcondia, and relative distances to unconstrained load-
ings (in percent) are shown. Solid line represents the Alpha atom, dotted
line represents the Theta atom, and dashed line the Gamma atom. Figure
in color in the online version.

show a smoother behavior. In all cases, the theta atom seems to be the one
most reactive to the imposed constraint, and the gamma atom the one least
reactive. Spectral loadings are almost the same as presented in Figure 2 with
a corresponding smoothing parameter, and the spatial loadings closely resemble
the unconstrained one shown in Figure 1c. This can be considered as evidence
of a small influence of penalization in one loading on the remaining loadings.
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Moreover, it can be of help in reducing the time needed for performing this
kind of analysis, since one can first explore the optimal values for the weighting
parameters in separate constrained analysis for the loadings, and then look for
the optimal set of parameters for the conjoint analysis in a small neighborhood.

4. Conclusions

In this work we have proposed a methodology for imposing constraints on
loadings in a PARAFAC decomposition. The combination of a multiple penalized
linear regression algorithm and the alternating least squares philosophy has given
rise to what we have called the Alternating Penalized Least Squares algorithm.

Although the idea of constraining the loading matrices in a PARAFAC re-
gression is not new, to our knowledge, this is the first time that such a general
algorithm is proposed, allowing the use (together with the usual constraints of
orthogonality, nonnegativity, and others) of a wide range of unexplored penalties
and combinations of penalties. This is particularly important in neuroscience,
when the complex and noisy nature of the data makes the use of prior information
unavoidable.

In our exploration, PARAFAC via APLS was useful for imposing smooth-
ness on the spectral loading of the time-varying spectrum of real spontaneous
EEG recording. It was equally successful in estimating different kinds of tem-
poral evolutions that are common in neuroscience experimental designs. They
range from very sparse signatures with only a few nonzero ‘appearances’ in time,
to other group behavior such as box-like and piece-wise smooth functions. We
found that the true simulated loadings are better recovered with the use of ap-
propriate constraints than with the unconstrained solution. On the other hand,
though the degree of constraint can be tuned by hand, we found that the use
of GCV and the Corcondia measure can help in selecting an optimal solution.
Constraining different loadings simultaneously did not affect the optimal values
of the weighting parameters. This can reduce time of computation if they are
selected in faster, separated analysis.

The proposed approach inherits some of the virtues and drawbacks of uncon-
strained PARAFAC. Among the former, the most attractive is the uniqueness of
solution under very mild conditions. In this sense, the use of constraints can even
help in those cases in which the noise level of the data restricts the convergence.
Among the latter, we can mention the strong dependency on initial estimates, as
well as the appearance of highly correlated atoms known as degeneracy. Again
the use of constraints, when needed, can be helpful in avoiding degeneracy, and
initial estimates for loadings can be obtained from the unconstrained solution.
We conjecture that APLS provides more robust solutions than the ordinary ALS,
although a more thorough study on this issue should be carried out in the future.
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On the other hand, the use of a backfitting procedure can make the overall
algorithm slower, although the efficient implementation through LQA and the
use of Lemma 1 (Section 2) compensate for this effect. The computational time
of the algorithm proposed depends on the chosen weighting parameters, usually
being lower when optimum values are used. In our analysis, the slowest case
converged in no more than 10 minutes, although the average computational time
was around 2-3 minutes for actual data, and about a minute for synthetic data.
Some approaches developed for speeding up the ALS algorithm in PARAFAC,
such as Candelinc (Carroll, Pruzansky and Kruskal (1980)) and the use of QR-
decompositions, could also be implemented in the context of the proposed algo-
rithm.

Several issues remain unexplored and will be the subject of future work.
First, the extension of the algorithm to use different penalization for each atom
might allow for the extraction of, e.g., temporal evolutions with different prop-
erties for different rhythms in the same decomposition. Second, the use of sta-
tistical techniques such as bootstrapping for assessing the significance of findings
is needed. Third, other approaches, such as the use of the Variational Bayesian
framework, can be of help for selecting the optimal penalized decompositions.
Finally, it should be mentioned that the APLS algorithm can also be applied
in the context of other multidimensional models, such as Tucker, Parafac2, and
multi-way Partial Least Squares (Bro (1998)).
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