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Abstract: The receiver operating characteristic (ROC) curve has been extended to

survival data recently, including the nonparametric approach by Heagerty, Lumley

and Pepe (2000) and the semiparametric approach by Heagerty and Zheng (2005)

using standard survival analysis techniques based on two different time-dependent

ROC curve definitions. However, both approaches do not involve covariates other

than the biomarker and cannot be used to estimate the ROC curve adjusted for

covariates. To account for the covariate effect, we propose a joint model approach

which assumes that the hazard of failure depends on the biomarker and the co-

variates through a proportional hazards model and that the biomarker depends

the covariates through a semiparametric location model. We propose semipara-

metric estimators for covariate-specific ROC curves corresponding to the two time-

dependent ROC curve definitions, respectively. We show that the estimators are

consistent and converge to Gaussian processes. In the case of no covariates, the

estimators are demonstrated to be more efficient than the Heagerty-Lumley-Pepe

estimator and the Heagerty-Zheng estimator via simulation studies. In addition,

the estimators can be easily extended to other survival models. We apply these

estimators to an HIV dataset.

Key words and phrases: Location model, proportional hazards model, receiver op-

erating characteristic curve, survival analysis.

1. Introduction

The receiver operating characteristic (ROC) curve is a popular tool to assess
the effect of biomarkers in screening and predicting disease. A biomarker can be
a single variable or a composite score of several variables. The ROC curve has
recently shown promises in the identification of biomarkers using high dimen-
sional microarray data (Pepe, Longton, Anderson and Schummer (2003)). The
curve can be viewed as a plot of the true versus false positive rates among all
possible thresholds for classifying disease and nondisease patients. One appealing
property of the ROC curve is that it provides a common scale for comparing the
accuracy of biomarkers, which may be measured in different units, in distinguish-
ing two states of a binary outcome. Various approaches have been proposed for
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estimating the ROC curve (Zhou, Obuchowski and McClish (2002, Chaps. 4 and

5) and Pepe (2003, Chap. 5)). When covariates have an impact on the accuracy of

a biomarker, it is important to account for them (Zhou, Obuchowski and McClish

(2002), Chapter 8; Pepe (2003, Chap. 6)). This leads to the covariate-specific

ROC curve.

Recently, the ROC curve has been extended to survival times to evaluate the

accuracy of biomarkers in classifying subjects based on time to an event, such

as time to progression to a disease. Heagerty and Zheng (2005) give a system-

atic review of such time-dependent ROC curves. Basically, the true positive rate

(TPR) and false positive rate (FTR) of a ROC curve can be extended in two

different ways for survival time: the TPR is generalized to incident TPR and

cumulative TPR, and the FPR is generalized to dynamic FPR and static FPR.

Heagerty, Lumley and Pepe (2000) proposed a nonparametric approach for the

time-dependent ROC curve based on the incident TPR and the dynamic FPR,

using the Kaplan-Meier estimator of the survival distribution and the empirical

distribution estimator of the biomarker. Heagerty and Zheng (2005) took a semi-

parametric approach for the time-dependent ROC curve based on the cumulative

TPR and the dynamic FPR, using a proportional hazards model for a linear com-

bination of several variables as the biomarker. Both the Heagerty-Lumley-Pepe

and Heagerty-Zheng approaches can be used to evaluate and compare biomarkers

in classifying subjects based on their survival times (Heagerty and Zheng (2005));

the former is useful in distinguishing subjects failing by a given time and those

failing after this time, and the latter is useful in distinguishing subjects failing at

a given time and those failing after this time. However, these two approaches do

not include covariates, variables other than those used in defining the biomarker,

in the ROC curve, which may be important in assisting classification. An ex-

ample is the HIVNET 012, a randomized clinical trial to compare nevirapine

(200mg at labor onset, and 2mg/kg for babies within 72 hours of birth) and

zidovudine (600mg at labor onset, 300mg every three hours until delivery, and

4mg/kg orally twice daily for babies for seven days) for prevention of mother-

to-child transmission of HIV-1 (Jackson et al. (2003)). HIV-1 infected pregnant

women in Kampala, Uganda, were recruited between November 1997 and April

1999, with 313 assigned nevirapine and 313 zidovudine. Two possible biomark-

ers, the maternal HIV-1 RNA and CD4 count, were measured at baseline. It

is of interest to evaluate the capacities of the biomarkers in the classification of

babies based on their time to HIV infection or death, which may be different for

the two treatment groups. Thus it may be important to adjust for the treatment

in constructing the ROC curves.

In this paper, we consider two types of time-dependent ROC curves for sur-

vival data adjusted for covariates. They correspond to the ROC curves used
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by Heagerty, Lumley and Pepe (2000) and Heagerty and Zheng (2005), respec-
tively, in the case of no covariates. We allow the biomaker to be composed of
several variables, as considered by Heagerty and Zheng (2005). Moreover, co-
variates other than those variables contained in the biomarker can be adjusted in
constructing the ROC curves. We assume that the survival time depends on the
biomarker and covariates through a proportional hazards model, and that the
biomarker depends on the covariates through a semiparametric location model.
Semiparametric estimators are proposed for the time-dependent ROC curves. We
show that these estimators are consistent and converge to Gaussian processes.
This approach can be easily extended to other survival models, as discussed in
Section 7.

The paper is organized as follows. We define the covariate specific time-
dependent ROC curves in Section 2, and derive the estimators in Section 3.
Asymptotic properties are given in Section 4. We assess the finite sample per-
formance of the estimators by simulation in Section 5, and apply the method to
the HIVNET 012 data described above in Section 6. The paper concludes with
discussions in Section 7.

2. Definition

Let Y be a biomarker, T the survival time, C the censoring time, and X
a vector of covariates that may affect T . The observed survival data are V =
min(T,C) and ∆ = I(T ≤ C), where I(·) is the indicator function. Suppose
that larger values of Y are associated with greater hazards; otherwise, Y can be
recoded if necessary to achieve this. The ROC curve for survival time is defined
based on TPR and FPR by analogy to that for a binary outcome. To define the
covariate specific time-dependent ROC curve, we first define the conditional TPR
and FPR given the covariate X. Specifically, for X = x, the cumulative TPR,
the incident TPR and the (dynamic) FPR at time t are defined, respectively, as

TPRC(y; t, x) = P (Y > y|T ≤ t,X = x),

TPRI(y; t, x) = P (Y > y|T = t,X = x),

FPR(y; t, x) = P (Y > y|T > t,X = x).

Then we define the cumulative ROC curve as

ROCC(v; t, x) = TPRC

{

FPR−1(v; t, x); t, x
}

,

and the incident ROC curve as

ROCI(v; t, x) = TPRI

{

FPR−1(v; t, x); t, x
}

.

Both the cumulative and the incident time-dependent ROC curves can be
used to evaluate and compare the accuracy of biomarkers in classifying subjects
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based on their survival times while adjusting for covariates; the former is useful
in distinguishing subjects failing by a given time and those failing after this time,
while the latter is useful in distinguishing subjects failing at a given time and
those failing after this time. The Heagerty-Lumley-Pepe approach deals with the
cumulative ROC curve without covariates, and the Heagerty-Zheng approach
estimates the incident ROC curve without covariates.

3. Estimation

With some simple algebra, TPRC , TPRI and FPR can be written as

TPRC(y; t;x) =

∫∞

y {1 − S(t|u, x)} dP (Y ≤ u|X = x)
∫∞

−∞
{1 − S(t|u, x)} dP (Y ≤ u|X = x)

, (3.1)

TPRI(y; t, x) =

∫∞

y f(t|u, x)dP (Y ≤ u|X = x)
∫∞

−∞
f(t|u, x)dP (Y ≤ u|X = x)

, (3.2)

FPR(y; t;x) =

∫∞

y S(t|u, x)dP (Y ≤ u|X = x)
∫∞

−∞
S(t|u, x)dP (Y ≤ u|X = x)

, (3.3)

where S(t|y, x) = P (T ≥ t|Y = y,X = x) is the conditional survival distribu-
tion function given Y = y and X = x, and f(t|y, x) = −dS(t|y, x)/dt is the
corresponding conditional survival density.

To estimate these quantities, we assume a proportional hazard model for the
survival time,

λ(t|Y,X) = λ0(t) exp
(

β0Y + γT
0 X
)

, (3.4)

and a semiparametric location model for the biomarker,

P (Y ≤ y|X) = H(y − αT
0 X), (3.5)

where λ0(·) is an unspecified baseline hazard function, and H(·) is an unspecified
distribution function. Suppose that the observed data {(Vi,∆i, Yi,Xi) : i = 1, . . .,
n} are independent and identically distributed samples from (V,∆, Y,X).

The estimator of α0, say α̂, can be obtained by solving

n
∑

i=1

(Yi − αT Xi)Xi = 0, (3.6)

and H(y) can be estimated by

Ĥ(y, α̂) = n−1
n
∑

i=1

I
(

Yi − α̂T Xi ≤ y
)

.

Under (3.4), we can write the survival function S(t|y, x) = exp{−Λ0(t) exp(βy
+γTx)}, where Λ0(t) =

∫ t
0 λ0(u)du is the cumulative baseline hazard function.
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Let Ni(u) = I(Vi ≤ u,∆i = 1) be the counting process and Ri(u) = I (Vi ≥ u)
be the at risk process. An estimator of S(t|y, x) is

Ŝ(t|y, x) = exp
{

−Λ̂0(t) exp
(

β̂y + γ̂T x
)}

,

where (β̂, γ̂) is the maximum partial likelihood estimator of (β0, γ0) that solves
the partial score equation at time L,

n
∑

i=1

∫ L

0

{

(Yi,X
T
i )T −

∑n
j=1 Ri(u)(Yi,X

T
i )T exp

{

βYi + γT Xi

}

∑n
j=1 Ri(u) exp {βYi + γT Xi}

}

dNi(u) = 0,

and Λ̂0(t) is the Breslow estimator of Λ0(t) given by

Λ̂0(t) =

n
∑

i=1

∫ t

0

dNi(u)
∑n

j=1 Ri(u) exp
{

β̂Yi + γ̂T Xi

} .

The density f(t|y, x) can be estimated by f̂(t|y, x) = −∂Ŝ(t|y, x)/∂t. Substitut-
ing the estimators of S(t|u, x), f(t|u, x) and P (Y ≤ u|X = x) into (3.1)–(3.3),
we obtain estimators of TPRC , TPRI and FPR:

T̂PRC(y; t, x) =

∫∞

y

{

1 − Ŝ(t|u, x)
}

dĤ(u − α̂x, α̂)

∫∞

−∞

{

1 − Ŝ(t|u, x)
}

dĤ(u − α̂x, α̂)

=

∑n
i=1

[

1−Ŝ {t|Yi−α̂(Xi−x), x}
]

I {Yi−α̂(Xi−x)≥y}

∑n
i=1

[

1−Ŝ {t|Yi−α̂(Xi − x), x}
] , (3.7)

T̂PRI(y; t, x) =

∫∞

y f̂(t|u, x)Ŝ(t|u, x)dĤ(u − α̂x, α̂)
∫∞

−∞
f̂(t|u, x)Ŝ(t|u, x)dĤ(u − α̂x, α̂)

=

∑n
i=1 exp

{

β̂Yi−α̂(Xi−x)
}

Ŝ {t|Yi−α̂(Xi−x), x} I {Yi−α̂(Xi−x) ≥ y}

∑n
i=1 exp

{

β̂Yi − α̂(Xi − x)
}

Ŝ {t|Yi − α̂(Xi − x), x}
,

(3.8)

F̂PR(y; t;x) =

∫∞

y Ŝ(t|u, x)dĤ(u − α̂x, α̂)
∫∞

−∞
Ŝ(t|u, x)dĤ(u − α̂x, α̂)

=

∑n
i=1 Ŝ {t|Yi − α̂(Xi − x), x} I {Yi − α̂(Xi − x) ≥ y}

∑n
i=1 Ŝ {t|Yi − α̂(Xi − x), x}

. (3.9)

Thus the estimators of ROCC(v; t) and ROCI(v; t) are R̂OCC(v; t, x) = T̂PRC

{F̂PR
−1

(v; t, x); t, x} and R̂OCI(v; t, x) = T̂PRI{F̂PR
−1

(v; t, x); t, x}, respec-
tively. Note that both estimators can be used in the case of no covariate by



952 XIAO SONG AND XIAO-HUA ZHOU

setting α̂ in (3.7)–(3.9) to be 0. For valid estimation, t should be less than the

maximum follow-up time.

4. Asymptotic Properties

Let Y and X be the supports of Y and X, respectively. We derive the

asymptotic properties of the estimators under some regularity conditions given

in Appendix A.

Lemma 1. Given x ∈ X , n1/2{Ĥ(y − α̂T x, α̂) − H(y − αT
0 x)}, as a process

in y, converges to a mean zero Gaussian process on Y with covariance given in

Appendix B.

Lemma 2. Given (x, t) ∈ X × [0, L], n1/2{Ŝ(t|·, x) − S(t|·, x)} converges to a

mean zero Gaussian process on Y with covariance given in Appendix B.

The proofs are sketched in Appendix B.

Using these lemmas, we show in Appendix C the following theorem.

Theorem 1. Given (x, t) ∈ X × [0, L], n1/2{F̂PR(·; t, x) − FPR(·; t, x)}, n1/2

{T̂PRC(·; t, x)−TPRC(·; t, x)}, and n1/2{T̂PRI(·; t, x)− TPRI(·; t, x)} converge

to mean zero Gaussian processes on Y, with covariances given in Appendix C.

The asymptotic properties of the ROC curves then follow from Theorem 1

by the functional delta method (van der Vaart and Wellner (2000, Chap. 3.9)).

Theorem 2. Given (x, t) ∈ X × [0, L], n1/2{R̂OCC(·; t, x) − ROCC(·; t, x)} and

n1/2{R̂OCI(·; t, x)−ROCI(·; t, x)} converge to mean zero Gaussian processes on

[p, q] with covariances given in Appendix C, where p and q are defined in condition

H in Appendix C.

The covariance formulas for these processes contain density functions.

Smoothing techniques are needed to compute the standard errors based on these

formulas. Alternatively, we may compute the standard errors and confidence

bands using the bootstrap method.

5. Simulation Studies

To assess the performance of the estimators, we conduct simulations under

the following scenarios.

We first consider the simple case of no covariate. The hazard of failure

depends on the biomarker only through the proportional hazards model. The

true regression coefficient is β0 = 1, and the baseline hazard is constant at 0.1.

The censoring distribution is the exponential distribution with mean 30 truncated

at 20, leading to a censoring rate of 34%. For estimation of the cumulative

ROC curve, we compare the estimator R̂OCC with the Heagerty-Lumley-Pepe
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Figure 1. True ROC curves at t = 5 in simulation. Solid line, cumulative

ROC; dashed line, incident ROC.

estimator; for estimation of the incident ROC curve, we compare the estimator
R̂OCI with the Heagerty-Zheng estimator. The smoothing bandwidth for the
Heagerty-Lumley-Pepe approach is taken to be n−1/3/3. We consider the ROC
curves at t = 5 with the true curves shown in Figure 1(a). For the sample
sizes n = 300 and 600, we generate 500 simulated data sets. The ROC curves
are estimated at v = 0.1, 0.3, 0.5, 0.7, 0.9. For all these estimators, the standard
errors are computed by the bootstrap method, using 100 resampled data sets, as
the standard deviation of the ROC estimates from the resampled data sets at the
same v. The 95% Wald confidence intervals are constructed using the bootstrap
standard errors. The results are shown in Tables 1 and 2 for ROCC and for
ROCI , respectively. All estimators show negligible bias. The bootstrap standard
errors track the empirical standard deviations well, and the coverage probabilities
are close to the nominal level for all the semiparametric estimators. However,
they may be a little below the nominal level for the nonparametric Heagerty-
Lumley-Pepe estimator when v is close to 0 or 1. The semiparametric estimator
R̂OCC has smaller bias and is more efficient than the nonparametric Heagerty-
Lumley-Pepe estimator, as we expect. Interestingly, R̂OCI also achieves smaller
bias and better efficiency than the Heagerty-Zheng estimator, although they are
both semiparametric estimators.

Next we consider the case when the hazard of failure depends on the marker

Y and a single covariate X through the proportional hazards model. The true

regression coefficients are β0 = 1 and γ0 = 0.5, and the baseline hazard is constant

at 0.1. The covariate X is generated from a normal distribution with mean 1 and

variance 1, and the marker Y is generated from a conditional normal distribution

with mean X and variance 1. The censoring time is generated in the same way

as described above, with the censoring rate being 33%. We estimate the ROC
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curves for X = 0, 1, 2 at t = 5 and v = 0.1, 0.3, 0.5, 0.7, 0.9, with the true curves
shown in Figure 1(b). The Heagerty-Lumley-Pepe estimator and the Heagerty-

Zheng estimator are not applicable in this case. We use R̂OCC to estimate the
cumulative ROC curve and R̂OCI to estimate the incident ROC curve. The
results are shown in Tables 3 and 4. Both estimators work well.

Table 1. Simulation results for the cumulative ROC in the case of no covari-
ate. HLP: Heagerty-Lumley-Pepe estimator; B: bias; SD: empirical standard
deviation across simulated data sets; SE: average of estimated standard er-
rors; CP: coverage probability of the 95% confidence interval.

n = 300 n = 600
v ROCC Method B SD SE CP B SD SE CP

0.1 0.4841 R̂OCC −0.0019 0.0397 0.0386 0.934 −0.0027 0.0254 0.0272 0.958
HLP −0.0362 0.0746 0.0753 0.904 −0.0385 0.0555 0.0536 0.864

] 0.3 0.7362 R̂OCC −0.0019 0.0292 0.0284 0.926 −0.0021 0.0190 0.0201 0.964

HLP −0.0219 0.0565 0.0584 0.920 −0.0222 0.0415 0.0408 0.928

0.5 0.8677 R̂OCC −0.0020 0.0186 0.0181 0.932 −0.0014 0.0121 0.0128 0.958

HLP −0.0122 0.0432 0.0416 0.938 −0.0122 0.0288 0.0293 0.940

0.7 0.9463 R̂OCC −0.0014 0.0094 0.0092 0.936 −0.0010 0.0061 0.0065 0.964

HLP −0.0058 0.0272 0.0260 0.916 −0.0052 0.0176 0.0182 0.960

0.9 0.9903 R̂OCC −0.0007 0.0024 0.0024 0.958 −0.0004 0.0016 0.0017 0.956

HLP −0.0020 0.0102 0.0097 0.880 −0.0021 0.0074 0.0071 0.924

Table 2. Simulation results for the incident ROC in the case of no covariate.
HZ: Heagery-Zheng estimator; B, bias; SD: empirical standard deviation
across simulated data sets; SE: average of estimated standard errors; CP:
coverage probability of the 95% confidence interval.

n = 300 n = 600

v ROCI Method B SD SE CP B SD SE CP

0.1 0.3042 R̂OCI −0.0010 0.0200 0.0196 0.932 −0.0007 0.0133 0.0136 0.958

HZ −0.0082 0.0273 0.0275 0.932 −0.0045 0.0196 0.0193 0.936

0.3 0.6088 R̂OCI −0.0020 0.0240 0.0237 0.948 −0.0017 0.0162 0.0166 0.946

HZ −0.0050 0.0285 0.0284 0.934 −0.0034 0.0197 0.0199 0.956

0.5 0.7935 R̂OCI −0.0023 0.0192 0.0189 0.944 −0.0013 0.0130 0.0132 0.960
HZ −0.0027 0.0218 0.0212 0.932 −0.0016 0.0146 0.0149 0.950

0.7 0.9129 R̂OCI −0.0017 0.0114 0.0112 0.944 −0.0010 0.0076 0.0079 0.962

HZ −0.0024 0.0128 0.0123 0.934 −0.0013 0.0082 0.0086 0.970

0.9 0.9837 R̂OCI −0.0011 0.0034 0.0034 0.942 −0.0006 0.0023 0.0023 0.960

HZ −0.0013 0.0037 0.0036 0.944 −0.0007 0.0024 0.0025 0.960
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Table 3. Simulation results for the cumulative ROC in the case of a single
covariate. B: bias; SD: empirical standard deviation across simulated data
sets; SE: average of estimated standard errors; CP: coverage probability of
the 95% confidence interval.

n = 300 n = 600
X v ROCC B SD SE CP B SD SE CP

0 0.1 0.4217 −0.0026 0.0407 0.0398 0.936 −0.0014 0.0268 0.0280 0.954
0.3 0.7001 −0.0019 0.0325 0.0322 0.944 −0.0003 0.0219 0.0226 0.956
0.5 0.8494 −0.0012 0.0213 0.0211 0.944 −0.0002 0.0144 0.0148 0.952
0.7 0.9391 −0.0009 0.0108 0.0109 0.952 −0.0003 0.0074 0.0076 0.950
0.9 0.9890 −0.0005 0.0027 0.0027 0.954 −0.0001 0.0018 0.0019 0.950

1 0.1 0.5091 −0.0023 0.0395 0.0391 0.952 −0.0002 0.0269 0.0275 0.958
0.3 0.7509 −0.0016 0.0281 0.0279 0.948 −0.0001 0.0193 0.0196 0.956
0.5 0.8753 −0.0011 0.0174 0.0174 0.940 −0.0003 0.0119 0.0122 0.952
0.7 0.9494 −0.0010 0.0087 0.0088 0.958 −0.0003 0.0060 0.0061 0.946
0.9 0.9908 −0.0007 0.0023 0.0023 0.948 −0.0002 0.0015 0.0016 0.960

2 0.1 0.7030 −0.0005 0.0368 0.0372 0.952 0.0005 0.0270 0.0258 0.934
0.2 0.8594 −0.0014 0.0210 0.0215 0.952 −0.0005 0.0159 0.0149 0.936
0.3 0.9315 −0.0017 0.0120 0.0122 0.966 −0.0005 0.0090 0.0084 0.932
0.5 0.9724 −0.0014 0.0059 0.0059 0.960 −0.0004 0.0043 0.0040 0.924
0.9 0.9950 −0.009 0.0017 0.0016 0.902 −0.0004 0.0011 0.0011 0.924

Table 4. Simulation results for the incident ROC in the case of a single
covariate. B: bias; SD: empirical standard deviation across simulated data
sets; SE: average of estimated standard errors; CP: coverage probability of
the 95% confidence interval.

n = 300 n = 600
X v ROCI B SD SE CP B SD SE CP

0 0.1 0.3408 −0.0024 0.0269 0.0271 0.942 −0.0007 0.0189 0.0187 0.956
0.3 0.6440 −0.0019 0.0280 0.0284 0.956 −0.0002 0.0199 0.0196 0.938
0.5 0.8173 −0.0011 0.0205 0.0208 0.954 0.0000 0.0145 0.0143 0.944
0.7 0.9251 −0.0008 0.0113 0.0114 0.942 −0.0002 0.0079 0.0079 0.938
0.9 0.9863 −0.0005 0.0031 0.0031 0.958 −0.0001 0.0021 0.0021 0.948

1 0.1 0.2960 −0.0019 0.0181 0.0185 0.960 −0.0003 0.0129 0.0127 0.944
0.3 0.5991 −0.0013 0.0229 0.0232 0.956 −0.0001 0.0160 0.0160 0.952
0.5 0.7863 −0.0009 0.7854 0.0187 0.954 −0.0001 0.0128 0.0129 0.950
0.7 0.9093 −0.0013 0.0111 0.0113 0.954 −0.0005 0.0078 0.0079 0.942
0.9 0.9828 −0.0011 0.0036 0.0035 0.942 −0.0004 0.0024 0.0024 0.944

2 0.1 0.2545 −0.0013 0.0150 0.0154 0.944 −0.0007 0.0104 0.0106 0.964
0.2 0.5505 −0.0033 0.0218 0.0225 0.950 −0.0016 0.0156 0.0157 0.946
0.3 0.7492 −0.0047 0.0199 0.0206 0.936 −0.0019 0.0144 0.0144 0.948
0.5 0.8877 −0.0046 0.0143 0.0143 0.936 −0.0018 0.0101 0.0100 0.938
0.9 0.9772 −0.0039 0.0061 0.0057 0.848 −0.0017 0.0038 0.0038 0.926
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6. Application

We applied these approaches to the HIVNET 012 data described in Section 1.

It is thought that the maternal HIV-1 RNA and CD4 count may contain infor-

mation in predicting the time to HIV infection or death of a child. The indicator

for the treament, X = I(treatment = nevirapine), might have impact on the ca-

pacity of the two biomarkers. Here the survival time is the time to HIV infection

or death of a child. There were 89 events in the nevirapine group, and 60 events

in the zidovudine group. We estimated the cumulative and incident ROC curves

for the two biomarkers adjusted for the treatment using the proposed estimators.

To ensure the validity of these estimators, we checked the proportional haz-

ards assumption using the method in Therneau and Grambsch (2000, Chap. 6.2).

We considered two proportional hazards models: one including log transformed

maternal HIV-1 RNA and X; the other including log transformed CD4 count and

X. Use of log transformations on HIV-1 RNA and CD4 counts is standard in

the medical literature. There were no evidences against the proportional hazards

assumptions.

To compare the accuracy of the two biomarkers in distinguishing subjects

failing by a given time t and those failing after t, we estimated the cumulative

ROC curves using the estimator R̂OCC for X = 0, 1 at t = 0.5, 1, 1.5 and 2 years.

The 95% Wald confidence intervals were computed by the bootstrap method

using 100 resampled data sets. The results are shown in Figure 2. Considering

the FPR to be less than 15%, HIV-1 RNA seems to be a better biomarker than

CD4 count for subjects taking nevirapine, but CD4 count seems to be a better

marker in the zidovudine group.

To compare the accuracy of the two biomarkers in distinguishing subjects

failing at t and those failing after t, we estimated the incident ROC curves using

the estimator R̂OCI adjusting for X = 0, 1 with the same choices of time t. The

results are presented in Figure 3. In contrast to their effects of classification of

failures by or after these times, CD4 count seems to be a better biomarker than

HIV-1 RNA for subjects taking nevirapine, but HIV-1 RNA seems to be a better

marker in the zidovudine group when the FPR is less than 15%.

7. Discussion

We have proposed semiparametric estimators for the cumulative ROC curve

and the incident ROC curve for survival data that may adjust for covariate

effects. The proposed estimators are consistent and converge to Gaussian pro-

cesses. These approaches work well in the case of moderate sample sizes. In

the case of no covariate, these estimators are more efficient than the Heagerty-

Lumley-Pepe method and the Heagerty-Zheng method, respectively.
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Figure 2. Estimated cumulative ROC curves adjusted for treatment for the
HIVNET 012 data. The plots are, from the top, for t = 0.5, 1.0, 1.5 and
2, respectively. Left plots, zidovudine; Right plots, nevirapine; ROC curves
for the maternal HIV-1 RNA, solid lines; ROC curves for the maternal CD4
count, dashed line; 95% pointwise confidence intervals are shown with the
intermediate curves, the estimates themselves are shown with the center
curves.
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Figure 3. Estimated incident ROC curves adjusted for treatment for the
HIVNET 012 data. The plots are, from the top, for t = 0.5, 1.0, 1.5 and
2, respectively. Left plots, zidovudine; Right plots, nevirapine; ROC curves
for the maternal HIV-1 RNA, solid lines; ROC curves for the maternal CD4
count, dashed line; 95% pointwise confidence intervals are shown with the
intermediate curves, the estimates themselves are shown with the center
curves.
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Cai, Pepe, Lumley, Zheng and Jenny (2006) estimated the time-dependent

ROC curve based on the cumulative TPR and static FPR, assuming standard

binary regression models for the cumulative TPR and the static FPR, and a

proportional hazards model for the censored distribution. Loosely speaking, Cai

et al.’s approach assumes models for the conditional distributions P (Y |T,X) and

P (T |X), while our approach assumes models for the conditional distributions

P (T |Y,X) and P (Y |X), where P (A|B) denotes the conditional distribution of

A given B. Our approach provides an alternative way to estimate the time-

dependent ROC curve adjusted for covariate. Compared to Cai et al.’s approach,

our approach has the advantage of simple computation; the estimating equations

(3.4) and (3.6) are much easier to solve than the estimating equations (3.3) and

(3.4) in Cai, Pepe, Lumley, Zheng and Jenny (2006).

We assume a standard proportional hazards model for the hazard given the

biomarker and covariates, and a semiparametic location model for the condi-

tional distribution of the biomarker given the covariates. The consistency of the

proposed estimators depend on the correct specification of these models. How-

ever, the approach can be easily adapted to more flexible models. For example,

we can use other survival models, such as the stratified proportional hazards

model, the accelerated failure time model, and the transformation model, as

long as we can obtain consistent estimators for the survival distributions. The

nonparametric transformation model (Song, Ma, Huang and Zhou (2006)) may

be an attractive extension as it includes most popular survival models as spe-

cial cases, such as the proportional hazards model and the accelerated failure

time model. The semiparametric location model is used only for estimating the

conditional distribution P (Y ≤ y|X = x). We can remove this assumption and

estimate P (Y ≤ y|X = x) by kernel smoothing method when the number of

covariates is small and the sample size is relatively large, since the kernel method

may not work well otherwise.

A common usage of the ROC curve is for the comparison of markers. In this

paper, we focus on estimation of the covariate specific ROC. The estimated ROC

curves from different biomarkers provide informal comparison for the biomarkers.

Formal comparison of the ROC curves can be pursued based on the areas under

the ROC curves (AUCs) similar to the case for binary ROC curves (Pepe (2003,

Chap. 5)). This is beyond the scope of this paper and is to be investigated in

the future.
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Appendix A: Regularity Conditions

Let η = (β, γT )T , η̂ = (β̂, γ̂T )T , z = (y, xT )T , Z = (Y,XT )T , W = (V,∆, Z),

and

Qbi (η;Wi, s) = Ri(s)Z
⊗b
i exp

(

ηT Zi

)

, b = 0, 1, 2,

where a⊗b = 1, a, aaT for b = 0, 1, 2 respectively. Suppose η0 = (β0, γ
T
0 )T is an

internal point in a compact set, and write N (η0) as a neighborhood of η0.

To derive the asymptotic properties, we assume the following regularity con-

ditions.

A. T and C are independent given Z.

B. P (V ≥ L) > 0 for a constant L > 0.

C. E(ZT Z) < ∞, E
{

supη∈N (η
0
) ZT Z exp

(

ηT Zi

)

}

< ∞.

D. Σ (η0) =
∫ τ
0

{

EQ2(η0;Wi,s)
EQ0(η0;Wi,s)

−
EQ2

1
(η0,Wi,s)

EQ2

0
(η0;Wi,s)

}

EdN(s) is positive definite.

E. For (y, x) ∈ Y × X , S(t|y, x) is an absolutely continuous function for t ∈

[0, L].

F. H(u) is bounded and has bounded first- and second-order derivatives H ′(u)

and H ′′(u) for u ∈ (−∞,+∞).

G. Γ = E(XXT ) is positive definite.

H. The conditional densities

f1(y; t, x) = −
dTPRC(y; t, x)

dy
=

{1 − S(t|y, x)}H ′(y − αT
0 x)

∫∞

−∞
{1 − S(t|u, x)} dP (Y ≤ u|X = x)

,

f∗
1 (y; t, x) = −

dTPRI(y; t, x)

dy
=

{f(t|y, x)S(t|y, x)}H ′(y − αT
0 x)

∫∞

−∞
f(t|u, x)S(t|u, x)dP (Y ≤ u|X = x)

,

f0(y; t, x) = −
dFPR(y; t, x)

dy
=

S(t|y, x)H ′(y − αT
0 x)

∫∞

−∞
S(t|u, x)dP (Y ≤ u|X = x)

exist, and f0(y; t, x) is positive for y ∈
[

F (−1)(p) − ε, F (−1)(q) + ε
]

for some

constants p and q, 0 < p < q < 1, and ε > 0.
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Appendix B: Proofs of Lemma 1 and Lemma 2

Proof of Lemma 1. Note that the semiparametric location model is equivalent

to Y = αT
0 X + e, where e has the distribution function H(·). Under Conditions

C and F, the least square estimator α̂ is consistent and asymptotically normal

with

n
1

2 (α̂ − α0) = n− 1

2

n
∑

i=1

Γ−1
(

XiYi − XiX
T
i α0

)

+ op(1). (B.1)

Let N (α0) be a compact neighborhood of α0. Letting B(α) = EH{y+αT (X−x)

−αT
0 X}, by the Functional Central Limit Theorem, n1/2[Ĥ(y − αT x, α) −B(α)]

converges to a mean zero Gaussian process on (y,α) ∈ Y × N (α0). It follows

from the equicontinuity of the foregoing process and the consistency of α̂, that

sup
y∈Y

∣

∣

∣
n

1

2

[

Ĥ(y−α̂T x, α̂)−B(α̂)
]

−n
1

2

[

Ĥ(y−αT
0 x, α0)−H

{

y−αT
0 x
}

]
∣

∣

∣
= op(1).

This implies that

n
1

2

{

Ĥ(y − α̂T x, α̂) − H(y − αT
0 x)
}

= n
1

2

{

Ĥ(y−αT
0 x, α0)−H(y−αT

0 x)
}

+n
1

2

{

B(α̂)−H(y−αT
0 x)
}

+op(1), (B.2)

uniformly for y ∈ Y. Under condition F, the second term in (B.2) can be written

by a Taylor series expansion as

H ′(y − αT
0 x) {E(X) − x}T n− 1

2 (α̂ − α0) + op(1),

uniformly for y ∈ Y. This, together with (B.1), implies that

n
1

2

{

Ĥ(y − α̂T x, α̂) − H(y − αT
0 x)
}

= n− 1

2

n
∑

i=1

h(α0, y, x;Zi) + op(1),

where

h(α0, y, x;Zi) =
[{

I
(

Yi − αT
0 Xi ≤ y − αT

0 x
)

− H(y − αT
0 x)
}

+H ′(y − αT
0 x) {E(X) − x}T Γ−1

(

XiYi − XiX
T
i α0

)

]

.

Thus n1/2{Ĥ(y−α̂T x, α̂)−H(y−αT
0 x)} converges to a Gaussian process H(y;x)

with covariance

cov {H(y1;x),H(y2;x)} = cov {h(α0, y1, x;Zi), h(α0, y2, x;Zi)} .

Proof of Lemma 2. Under Conditions A–E, n1/2(η̂ − η) is normal, and

n1/2{Λ̂0(t)−Λ0(t)} converges to a Gaussian process (Andersen and Gill (1982)).
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Thus n−1/2{Ŝ(t|·, x) − S(t|·, x)}, as a functional differentiable with respect to

(η,Λ0), converges to a Gaussian process S(·; t, x) on Y by the functional delta

method. Specifically, by the functional Taylor expansion, with some algebra, we

can show that

n
1

2

{

Ŝ(t|y, x) − S(t|y, x)
}

= n− 1

2

n
∑

i=1

ξ(η0, t, y, x,Wi) + op(1),

where

ξ(η0, t, y, x,Wi) = S(t|y, x) exp
{

ηT
0 z
}

(

δ(t, η0,Wi)

−

{
∫ t

0

EQ1 (η0;Wi, s)EdN(s)

E2Q0 (η0;Wi, s)
− Λ0(t)

(

y

x

)}

g(η0,Wi)

)

,

δ(t, η0,Wi) =

∫ t

0

dNi(s)EQ0 (η0;Wi, s) − Ri(s) exp
{

ηT
0 Zi

}

EdN(s)

E2Q0 (η0;Wi, s)
,

g(η;Wi)=Σ−1(η0)

∫ L

0

{

Zi−
EQ1(η0;Wi, s)

EQ0(η0;Wi, s)

}{

dNi(s)−
Q0i(η0;Wi, s)

EQ0(η0;Wi, s)
EdN(s)

}

.

Thus cov{S(y1; t, x),S(y2; t, x)} = cov{ξ(η0, t, y1, x,Wi), ξ(η0, t, y2, x,Wi)}.

Appendix C: Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. Since FPR is differentiable as a composite functional

of (η,Λ0,H, α), by the functional delta method, n1/2{F̂PR(·; t, x)−FPR(·; t, x)}

converges to a Gaussian process F(·; t, x) with mean zero on Y. To derive the

asymptotic covariance, using the functional Taylor expansion, we have

n
1

2

{

F̂PR(y; t, x) − FPR(y; t, x)
}

= n
1

2

[
∫ ∞

−∞

S(t|u, x)dH(u−αT
0 x)

]−1 [∫ ∞

y

{

Ŝ(t|u, x) − S(t|u, x)
}

dH(u − αT
0 x)

+

∫ ∞

y
S(t|u, x)d

{

Ĥ(u − α̂T x, α̂)−H(u−αT x)
}

]

−n
1

2

[
∫ ∞

−∞

S(t|u, x)dH(u − αT
0 x)

]−2 ∫ ∞

y
S(t|u, x)dH(u−αT

0 x)

×

[
∫ ∞

−∞

{

Ŝ(t|u, x) − S(t|u, x)
}

dH(u − αT
0 x)

+

∫ ∞

−∞

S(t|u, x)d
{

Ĥ(u − α̂T x, α̂) − H(u − αT
0 x)
}

]

+ op(1)
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= n− 1

2

n
∑

i=1

̟i(y; t, x) + op(1),

where

̟i(y; t, x) =

[
∫ ∞

−∞

S(t|u, x)dH(u − αT
0 x)

]−1

×

[
∫ ∞

y
ξ(η0, t, u, x, Zi)dH(u−αT

0 x)+

∫ ∞

y
S(t|u, x)dh(α0, u, x;Zi)

]

−

[
∫ ∞

−∞

S(t|u, x)dH(u − αT
0 x)

]−2 ∫ ∞

y
S(t|u, x)dH(u − αT

0 x)

×

[
∫ ∞

−∞

ξ(η0, t, u, x, Zi)dH(u−αT
0 x)+

∫ ∞

−∞

S(t|u, x)dh(α0, u, x;Zi)

]

.

Thus cov{F(y1; t, x),F(y2; t, x)} =cov{̟i(y1; t, x),̟i(y2; t, x)}.

Similarly, we can show that n1/2{T̂PRC(·; t, x) − TPRC(·; t, x)} and n1/2

{T̂PRI(·; t, x) − TPRI(·; t, x)} converge to Gaussian processes TC(·; t, x) and

TI(·; t, x) on Y, respectively, with mean zero,

cov{TC(y1; t, x),TC(y2; t, x)} = cov {ζi(y1; t, x), ζi(y2; t, x)} ,

cov{TI(y1; t, x),TI(y2; t, x)} = cov{ζ∗i (y1; t, x), ζ∗i (y2; t, x)},

where

ζi(y; t, x) =

[
∫ ∞

−∞

{1 − S(t|u, x)} dH(u − αT
0 x)

]−1

×

[
∫ ∞

y
−ξ(η0, t, u, x, Zi)dH(u − αT

0 x) +

∫ ∞

y
{1 − S(t|u, x)} dh(α0, u, x;Zi)

]

−

[
∫ ∞

−∞

{1 − S(t|u, x)} dH(u − αT
0 x)

]−2 ∫ ∞

y
{1 − S(t|u, x)} dH(u − αT

0 x)

×

[

−

∫ ∞

−∞

ξ(η0, t, u, x, Zi)dH(u − αT
0 x) +

∫ ∞

−∞

{1 − S(t|u, x)} dh(α0, u, x;Zi)

]

,

ζ∗i (y; t, x) =

[
∫ ∞

−∞

S(t|u, x)dH(u − αT
0 x)

]−1

×

[
∫ ∞

y
u exp (β0u)S(t|u, x)dH(u − αT

0 x)g(η;Zi)

+

∫ ∞

y
ξ(η0, t, u, x, Zi)dH(u − αT

0 x) +

∫ ∞

y
S(t|u, x)dh(α0, u, x;Zi)

]
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−

[
∫ ∞

−∞

S(t|u, x)dH(u − αT
0 x)

]−2 ∫ ∞

y
S(t|u, x)dH(y − αT

0 x)

×

[
∫ ∞

−∞

u exp (β0u) S(t|u, x)dH(u − αT
0 x)g(η, Zi)

+

∫ ∞

−∞

ξ(η0, t, u, x, Zi)dH(u − αT
0 x)−

∫ ∞

−∞

S(t|u, x)dh(α0, u, x;Zi)

]

.

Proof of Theorem 2. Since ROCC(v; t, x) is a composite functional of S(t|y, x)
and H(α̂, y − α̂x), under Assumption H, by the functional delta method, n1/2

{R̂OCC(·; t;x) − ROCC(·; t, x)} converges to a Gaussian process GC(·; t, x) on
[p, q]. Specifically, using the functional Taylor expansion, we have

n
1

2

{

R̂OCC(v; t, x) − ROCC(v; t, x)
}

= n
1

2

n
∑

i=1

ϕi(v; t, x) + op(1),

where

ϕi(v; t, x)=ζi

{

FPR−1(v; t, x)
}

−f1

{

FPR−1(v; t, x); t, x
}̟i

{

FPR−1(v; t, x); t, x
}

f0

{

FPR−1(v; t, x); t, x
} .

Thus cov{GC(v1; t, x),GC(v2; t, x)} = cov{ϕi(v1; t, x), ϕi(v2; t, x)}.

Similarly, we can show that n1/2{R̂OCI(·; t;x)−ROCI(·; t, x)} converges to a
Gaussian process GI(·; t, x) on [p, q] with mean zero and covariance cov{GI (v1; t, x),
GI(v2; t, x)} = cov{ϕ∗

i (v1; t, x), ϕ∗
i (v2; t, x)}, where

ϕ∗
i (v; t, x)

= n
1

2

n
∑

i=1

ζ∗i
{

FPR−1(v; t, x)
}

−f∗
1

{

FPR−1(v; t, x); t, x
}̟i

{

FPR−1(v; t, x); t, x
}

f0

{

FPR−1(v; t, x); t, x
} .
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