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Abstract: Traditionally, the application of Bayesian testing procedures to classi-

cal nonparametric settings has been restricted by difficulties associated with prior

specification, prohibitively expensive computation, and the absence of sampling

densities for data. To overcome these difficulties, we model the sampling distri-

butions of nonparametric test statistics—rather than the sampling distributions of

original data—to obtain the Bayes factors required for Bayesian hypothesis tests.

We apply this methodology to construct Bayes factors from a wide class of non-

parametric test statistics having limiting normal distributions and illustrate these

methods with data. Finally, we consider the extension of our methodology to non-

parametric test statistics having limiting χ2 distributions.
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1. Introduction

In parametric settings, the use of Bayesian methodology for conducting hy-

pothesis tests has been limited by two factors. First, the calculation of Bayes

factors often involves the evaluation of high-dimensional integrals. This can be a

prohibitively expensive undertaking for non-statisticians, both from a numerical

and conceptual perspective. Second, Bayes factors require the specification of

informative prior densities on parameters appearing in the parametric statistical

models that comprise each hypothesis. And unlike Bayesian estimation proce-

dures, tests based on Bayes factors retain their sensitivity to prior assumptions

even when sample sizes become large. Prior specification is therefore an impor-

tant task and one which can be difficult in models containing many parameters.

In nonparametric hypothesis testing, a third difficulty arises. Namely, sam-

pling distributions for data are not specified. Without sampling distributions for

data, Bayesian hypothesis tests cannot be defined.

The goal of this article is to overcome these obstacles to Bayesian testing

by extending methodology proposed in Johnson (2005) to the classical non-

parametric setting. We accomplish this by using results from the asymptotic
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theory of U -statistics and linear rank statistics (e.g., Serfling (1980)) to define al-

ternative distributions for test statistics that take the form of Pitman translation

alternatives (e.g., Randles and Wolfe (1979)). In so doing, we obtain sampling

distributions for non-parametric statistics under alternative models that contain

only two unknown parameters: a scale parameter and an asymptotic test-efficacy

parameter.

Because the distribution of the test statistics under the null hypothesis is

known, by specifying a sampling distribution for nonparametric test statistics

under a class of alternative models we are able to eliminate two of the obstacles

to Bayesian hypothesis testing. That is, by modeling the distribution of test

statistics directly we obtain the sampling distributions required for the definition

of Bayes factors. We also obtain closed-form expressions for the resulting Bayes

factors, which means that numerical evaluation of their values is unnecessary.

The third obstacle to the use of Bayes factors—the specification of subjective

prior densities—is also considerably simplified. Within our framework, alterna-

tive models contain only two scalar parameters. One, the test-efficacy parameter,

is determined by the choice of the test statistic. In principle this leaves only a

scale parameter for which a prior density must be specified. Methods for handling

this parameter are discussed below.

To begin, it is worthwhile to review the definition of Bayes factors for the

case of nested models. Suppose then that data x arise from a sampling density

p(X|θ,φ) with unknown parameter vectors θ and φ, and suppose we wish to test

the null hypothesis H0 : θ = θ0 against the alternative hypothesis H1 : θ 6= θ0

where θ0 is assumed known. If p0(x) and p1(x) represent the marginal densities

of x under H0 and H1, then the Bayes factor between H0 and H1 can be expressed

B01 =
p0(x)

p1(x)
=

∫
p(x|θ0,φ)p(φ) dφ∫

p(x|θ,φ)p(θ,φ) dθ dφ
,

where p(φ) and p(θ,φ) are the prior densities on unknown parameters under

H0 and H1, respectively. Furthermore, if p(H0) and p(H1) denote the prior

probabilities assigned to H0 and H1, then the posterior odds of H0 versus H1 is

obtained from B01 according to

p(H0|x)

p(H1|x)
=

p(H0)

p(H1)
B01.

Thus, Bayes factors represent the weight of evidence contained in data in support

of each hypothesis. When deciding between two simple hypotheses, the Bayes

factor is simply the likelihood ratio; in more complicated settings it can be re-

garded as an integrated likelihood ratio. Further discussion of Bayes factors can

be found in, for example, Kass and Raftery (1995).
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Our motivation for defining Bayes factors based on nonparametric test statis-

tics is to avoid the many pitfalls inherent to the use of p values in formal test

procedures. For a discussion of these issues in the classical setting, interested

readers may consult (among many other articles) Berger and Delampady (1987),

Berger and Sellke (1987), and Goodman (1999a,b). Similar issues arise in the

use of Bayesian p values for testing model adequacy as described in, for example,

Gelman, Meng and Stern (1996) who base their definition of Bayesian p values

on posterior-predictive distributions. However, because posterior predictive p

values also represent tail-area probabilities, they too are subject to many of the

pitfalls inherent to classical p values.

As we demonstrate in the sequel, our methodology allows us to transform

nonparametric test statistics to an appropriate—and interpretable—probability

scale, rather than to what is essentially an uncalibrated and comparatively un-

interpretable p-value scale.

Our approach is based on the observation that, although the sampling den-

sity p(x|θ) of the data X may not be specified in nonparametric settings, the

distribution of the test statistic T (X) is often known under both null and alter-

native hypotheses, at least asymptotically. To make this notion more precise,

we assume for the remainder of this article that the sampling density of the test

statistic T (X) can be expressed as p(T (x)|θ), where the parameter θ may be

either a scalar or vector-valued parameter. Under the null hypothesis H0, we

assume that θ = θ0 for a known value θ0. Under the alternative hypothesis H1,

we assume that the sampling distribution of T is obtained by averaging over a

prior density p(θ) defined on the domain of θ. When these assumptions hold, the

Bayes factor based on t = T (X) can be defined as

BF01(t) =
p(t|θ0)∫

p(t|θ)p(θ) dθ
.

For suitable choices of p(θ), we find that Bayes factors based on nonparametric

test statistics can often be expressed in simple form. From such expressions,

it is possible to obtain an upper bound on the weight of evidence against the

null hypothesis. Such bounds are often useful and may serve to illustrate the

maximum extent to which data provide evidence against the null hypothesis.

Their use also eliminates much of the subjectivity associated with the definition

of Bayes factors.

2. Theory

Many nonparametric test statistics have limiting distributions that are either

normal or χ2. While our methods can sometimes be applied in finite sample
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settings, it is generally more straightforward to specify alternative distributions

in the large sample setting. For this reason, we restrict attention to this case and

begin with nonparametric statistics that have limiting normal distributions.

The asymptotic normality of a variety of nonparametric test statistics has

been established by the theory of U -statistics and linear rank statistics (e.g.,

Serfling (1980)). These results are widely used in practice to approximate the

exact sampling distributions of nonparametric test statistics, which often do not

have closed forms and have to be computed numerically.

The class of nonparametric test statistics with limiting normal distribu-

tions includes many commonly used nonparametric statistics. Among these are

the sign test and Wilcoxon signed rank test for one-sample location problems,

the Mann-Whitney-Wilcoxon test for two-sample location problems, the Ansari-

Bradley test and Mood test for scale problems, Kendall’s tau and Spearman

test for testing independence, the Theil test for slope parameters in regression

problems, the Mantel test (or logrank test), and the Hollander-Proschan test of

exponentiality in survival analysis.

In order to describe how statistics from these tests can be used to define Bayes

factors, let Tk, k = 1, 2 . . ., denote a sequence of nonparametric test statistics

based on nk observations, and suppose that nk → ∞ as k → ∞. Consider the

test of the null hypothesis

H0 : θ = θ0

versus the local alternative

H1(nk) : θk = θ0 + ∆/
√

nk,

where ∆ is a bounded constant. This form of the alternative hypothesis is often

called the Pitman translation alternative (e.g., Randles and Wolfe (1979)).

Our attention focuses on the asymptotic distribution of the standardized

value of Tk,

T ∗

k =
Tk − µk(θ0)

σk(θ0)
,

where µk and σk are the mean and standard deviation of Tk, respectively. Under

H0, we assume that T ∗

k has a limiting standard normal distribution. Under

H1(nk), the asymptotic distribution of T ∗
k is given in the following lemma. The

proof follows Noether (1955) and appears in the Appendix.

Lemma 1. Assume H1(nk) and

(A1) [Tk − µk(θk)]/σk(θk)
L−→ N(0, 1);

(A2) σk(θk)/σk(θ0)
p−→ 1;

(A3) µk(θ) is differentiable at θ0;
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(A4) µ
′

k(θ0)/
√

nkσk(θ0)
p−→ C where C is a constant.

Then T ∗

k

L−→ N(C∆, 1).

In typical settings where they are used, each of the nonparametric statistics

mentioned above satisfies these assumptions, and similar conditions are often

required in evaluating Pitman’s asymptotic relative efficiency (Noether (1955)).

The value of C is the efficacy of the test based on Tk. With the asymptotic

distribution of T ∗
k under both H0 and H1 known, the following result follows

from Bayes theorem.

Theorem 1. If assumptions A1–4 of Lemma 1 are satisfied, and the scalar

parameter ∆ is assumed a priori to follow a N(0, τ2) distribution, then the Bayes

factor based on T ∗
k is given by

BF01(T
∗) = (1 + C2τ2)

1
2 exp

{
− C2τ2T ∗

k
2

2(1 + C2τ2)

}
.

The prior density assumed for ∆ in the above theorem centers the distribu-

tion of θ on the null value of θ = θ0. Such centering is natural under classes of

local alternatives and is also consistent with the general philosophy advocated

by Jeffreys (1961).

The Bayes factor described in Theorem 1 depends on the values of the con-

stants C and τ . Values of C for several commonly used nonparametric test

statistics are listed in Table 1. (For convenience, we have also listed the related

constant for the logrank test that requires a slightly different alternative struc-

ture; see, for example, Fleming and Harrington (1991)). Unfortunately, the cal-

culation of C generally involves the density function of the data under the null

model, which is unknown in nonparametric hypothesis testing. This difficulty

may be circumvented in several ways. For example, Lehmann (1975) addresses

this problem by approximating the unknown null distribution by a parametric

distribution (e.g., a normal distribution) whose parameters are estimated from

data. Such parametric approximations are useful for a variety of purposes, in-

cluding the calculation of statistical power against specified alternatives.

A more direct solution is available if we set the value of the scale parameter

τ to its maximum marginal likelihood estimate (MMLE) under the alternative

hypothesis. By so doing, we obtain a limit on the Bayes factor that does not

depend on the unknown constant C.

Under the conditions of Theorem 1, the MMLE of τ2 under H1(n) is given

by

τ2 =
T ∗

k
2 − 1

C2
,
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Table 1. Some commonly used nonparametric test statistics and associated constants.

Test Statistic (T )a Standardized Test

Statistic (T ∗)
Cb

Sign test
n

P

i=1

ψi
T−n/2√

n/4
2p(0)

Wilcoxon signed

rank test

n
P

i=1

R1
iψi

T−n(n+1)/4√
n(n+1)(2n+1)/24

√
12

Z ∞

−∞

p2(x)dx

Mann-Whitney-

Wilcoxon

n1
P

i=1

R2
i

T−n1(N+1)/2√
n1n2(N+1)/12

√
12a1a2

Z ∞

−∞

p2(x)dx

Ansari-Bradley

test

n1
P

i=1

Si

T−n1(N+2)/4
r

n1n2(N+2)(N−2)
48(N−1)

, N even

T−n1(N+2)/4
r

n1n2(N+2)(N−2)
48(N−1)

, N odd

√
48a1a2

Z ∞

−∞

xp2(x)dx

Kendall’s tau
n

P

1≤i<j≤n

Q((Xi, Yi), (Xj , Yj))
T√

n(n−1)(2n+5)/18
1.5

Logrank test
PD

j=1(d1j−n1jdj/nj )
v

u

u

t

D
P

j=1

dj(nj−dj)n1jn2j

n2
j
(nj−1)

T
“

Z

π1π2

a1π1+a2π2
dΛ

”− 1
2

a Sample values are X = (X1, . . . ,Xn1 ) and Y = (Y1, . . . , Yn2). If Xi > 0, ψi = 1, otherwise

ψi = 0. R1
i is the rank of Xi among X; R2

i is the rank of Xi in the combined sample (X,Y).

Si is the score assigned to Xi in such a way that a score of 1 is assigned to the smallest and

largest observations in the combined sample (X,Y), a score of 2 is assigned to the second

smallest and second largest in the combined sample, and so on. Q((Xi, Yi), (Xj , Yj)) = 1 if

(Yj − Yi)(Xj − Xi) > 0, otherwise Q = −1. For the logrank test, t1 < · · · < tD denote the

distinct event times in the pooled sample. At tj , there are d1j events out of n1j subjects at risk

in sample X; similarly for d2j and n2j for sample Y; dj = d1j + d2j and nj = n1j + n2j .
bp(x) denotes density function under the null. a1 = n1/N and a2 = n2/N where N = n1 + n2.

For the logrank test, (Ti, Ci), i = 1, 2, are independent failure and censoring time variables for

two samples, and Xi = min(Ti, Ci). πi = p(Xi ≤ t). Λ is the null distribution of cumulative

hazard.

provided T ∗
k

2 exceeds its expectation under H0 (i.e. T ∗
k

2 > 1). The Bayes factor

obtained by setting τ to its MMLE is

B̃F 01(T
∗) = |T ∗

k |exp

(
1 − T ∗

k
2

2

)
.

This value represents an upper bound on the weight of evidence against H0. Note

that B̃F 01(T
∗) does not depend on the constant C. If equal probabilities are

assigned to H0 and H1 a priori, the corresponding lower bound on the posterior

probability of H0 satisfies

P (H0|x) ≥ P̃ (H0|x) =

(
1 +

1

|T ∗

k |
e

T∗
k

2
−1

2

)−1

. (1)
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Here and throughout the remainder of the paper, B̃F and P̃ (H0|x) indicate values

of the Bayes factor and marginal posterior probability of the null hypothesis

obtained by setting scale parameters appearing in the alternative model equal

to their MMLE; BF and P (H0|x) refer to the corresponding values for a fixed

value of the scale parameter.

Unfortunately, seeking an upper bound on the weight of evidence in favor of

the null hypothesis is not practically useful unless constraints are first imposed on

the value of τ . Without constraints, the alternative model can usually be assigned

negligible probability simply by letting τ become large. Such values correspond

to arbitrarily diffuse priors on the space of alternative models. On the other hand,

values of τ that are close to 0 make the alternative model indistinguishable from

the null, leading to a Bayes factor that is close to 1. Thus, useful upper bounds on

the evidence in favor of the null model can only be obtained by deterministically

constraining the value of τ , or by imposing a prior distribution on it.

Note that evidence in favor of the null hypothesis is obtained whenever T ∗

k
2

is less than its expectation under H0 (i.e., T ∗
k

2 < 1). In this case it follows that

the maximum value of the Bayes factor in favor of the alternative model is 1 and

is achieved for τ = 0. That is, the most likely alternative model is obtained by

letting the alternative distribution collapse onto the null distribution. When H0

and H1 are equally likely a priori, the lower bound on the probability of the null

model is then given by P̃ (H0|x) = 0.5.

3. Applications

In this section, we illustrate our methodology in several examples using com-

mon nonparametric test statistics.

Wilcoxon signed rank test for depression data

Figure 1 displays data from a study of the effectiveness of a new therapy for

reducing symptoms of depression. The data reflect changes to Hamilton depres-

sion scale Factor IV measurements (the suicidal factor) for nine patients with

anxiety or depression before and after tranquilizer therapy (Hollander and Wolfe

(1999)).

To test for a treatment effect, we apply the Wilcoxon signed rank test. For

these data, the standardized value of this statistic is W ∗ = −2.07. This corre-

sponds to an exact p value of 0.0382. The large sample approximation to the

p value is 0.0391, which is similar to the exact value. This suggests that the

asymptotic approximation to the sampling distribution of the Wilcoxon statistic

can be used to obtain an approximate Bayes factors from these data, even though

the sample size is only 9. For both values, the hypothesis of no treatment effect

is rejected in a 5% significance test.
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Figure 1. Hamilton depression scale Factor IV measurements (the suicidal

factor) for nine patients with anxiety or depression before and after tran-

quilizer therapy.

In contrast to the p value, the lower bound B̃F 01(W
∗) is 0.399. If H0 and

H1 are given equal weight a priori, this means that the posterior probability that

H0 is true is at least P̃ (H0|W ∗) = 0.285. That is, the posterior odds that the

treatment has an effect are then at most 2.5:1, which is a much weaker finding

than the p value suggests.

The sensitivity of the posterior probability of H0 to the choice of τ can be

calculated by assuming that the density function for the raw data is approxi-

mately normal (e.g., Lehmann (1975)). Using the data provided in Figure 1 to

estimate the mean and variance of this normal distribution, and assuming that

H0 and H1 are equally likely a priori, this approximation leads to the posterior

probabilities of H0 displayed in Figure 2.

The posterior probabilities in Figure 2 can be interpreted in several ways. For

example, suppose that a change in median depression score equal to the standard

deviation of these scores (0.72) is regarded as clinically significant. Then a value

of τ = 0.72 might be used to specify the distribution of the test statistic under

the alternative hypothesis. This value of τ leads to a Bayes factor of 0.40 and a

corresponding posterior probability of H0 equal to 0.286 (again assuming equal

odds a priori). More generally, by identifying a range of clinically-important ef-

fect sizes, it is possible to obtain explicit Bayes factors instead of a lower bound.

Alternatively, one might specify a prior distribution over a range of scale parame-

ter values and execute a one-dimensional numerical integration scheme to obtain

the resulting Bayes factor. Of course, both solutions require knowledge of, or an

approximation to, the efficacy parameter C.
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Figure 2. Posterior probability of H0 under different values of τ for the

depression data.

Logrank test for ovarian cancer treatment data

Armstrong et al. (2006) reported results of a randomized, Phase III clini-
cal trial in which a regimen of six cycles of treatment with intravenous pacli-
taxel followed by intravenous cisplatin (intravenous therapy) was compared to
treatment with six cycles of intervenous paclitaxel followed by intraperitoneal

cisplatin and intraperitoneal paclitaxel (intraperitoneal therapy) in women with
previously untreated stage III ovarian cancer. The primary study endpoints were
progression-free survival and overall survival. Two hundred and ten women re-
ceived intravenous therapy and 205 received intraperitoneal therapy. The logrank
test was used to test whether there was a survival difference between therapies;

the value of the test statistic resulted in p values of 0.05 and 0.03 for progression-
free survival and overall survival, respectively. The authors concluded that in-
traperitoneal therapy was a more effective treatment for ovarian cancer in this
population of patients.

For these data, the upper bounds on the Bayes factors against the null hy-

pothesis of no treatment difference were 0.47 and 0.34 for progression-free survival
and overall survival, respectively. If the null and the alternative hypothesis are
assumed to be equally likely a priori, the posterior odds that intraperitoneal
therapy is better than intravenous therapy are at most 2.11 for progression-free
survival and 2.94 for overall survival. Thus, the data provide some evidence that

intraperitoneal therapy improves survival, but are not as strongly as the p values
cited by Armstrong et al. would suggest.

4. Simulation Studies

For one reason or another, Neyman-Pearson tests are typically conducted to

bound the Type I error at 5%. In this section, we examine values of Bayes factors
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obtained from several nonparametric test statistics when those statistics fall on

the boundary of their 5% critical region.

Considering first the one-sample Wilcoxon test, we simulated random sam-

ples of size n = 50 with equal probability from H0 : X ∼ t4(0, 1) or H1 : X ∼
t4(µ, 1), where t4(µ, 1) denotes a t-distribution with mean µ, scale parameter 1

and 4 degrees of freedom. Under H1, we generated the location parameter µ from

a N(0, τ2/n) distribution for various values of τ . Samples of 50 observations were

generated in this way until we obtained 1,000 samples that resulted in p values

between 0.045 and 0.055. Based on these 1,000 samples (i.e., conditioning on

samples with p values approximately equal to 0.05), we calculated the posterior

probability of H0, P (H0|X), based on the Wilcoxon test statistic and compared

this probability with the true proportion of samples generated from H0.

Figure 3a depicts P (H0|X) obtained at the correct (known) value of τ , the

lower bound P̃ (H0|X) based on (1), and the proportion of samples actually gener-

ated from H0 versus τ . Interestingly, the lower bound P̃ (H0|X) is approximately

0.3 for a wide range of alternatives. Thus, a p value of 0.05 corresponds to at

least a 30% probability that the null hypothesis is true for this class of alterna-

tive hypotheses when null and alternative hypotheses are assigned equal weight

a priori. This result is comparable to those reported by Berger and Delampady

(1987), Berger and Sellke (1987) and Johnson (2005). As expected, the posterior

probability of H0 based on the Bayes factor with the correctly specified scale

parameter τ is very close to the true proportion of null models that were used to

generate the data.

To assess the robustness of our Bayes factor to the misspecification of the

prior distribution of µ, we also simulated µ from a t4(0, τ/
√

n) distribution rather

than a normal distribution. As Figure 3b illustrates, this does not cause signifi-

cant degradation of the estimate of P (H0|X).

A similar study was performed to evaluate the performance of our method us-

ing the Mann-Whitney-Wilcoxon test statistic. In this simulation, we repeatedly

generated two samples of size 50 by drawing independent t4(0, 1) and t4(µ, 1) ran-

dom variables. Under H0, the value of µ was fixed at 0 so that all 100 observations

were independent and identically distributed. Two models for µ were considered

under the alternative model: either the location parameter µ was generated from

a N(0, τ2/n) distribution, or µ was drawn from a t4(0, τ/
√

n) distribution. Under

both scenarios 1,000 datasets that had p values between 0.045 and 0.055 were

obtained through simulation. We then applied our method to these datasets to

compare Bayes factors and marginal posterior model probabilities under various

model assumptions. Results from this simulation are displayed in Figure 3c and

3d. As in the case of the one-sample Wilcoxon test, when τ is assumed to be

known there is excellent agreement between the exact marginal probabilities
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Figure 3. This figure depicts P (H0|X) as a function of τ , the lower bound

P̃ (H0|X) (dashed line), and the actual probability that a sample was gen-

erated from H0 (solid line) for data sets yielding p values of approximately

0.05 for the one-sample Wilcoxon test as the prior distribution of µ under H1

is (a) normally distributed or (b) t distributed, and for the Mann-Whitney-

Wilcoxon test as the prior distribution of µ under H1 is (c) normally dis-

tributed or (d) t distributed.

computed from the full data model and the Bayes factors based on the Mann-

Whitney-Wilcoxon test statistic. Also, the lower bound on the probability of the

null hypothesis provides a reasonable approximation to these marginal probabil-

ities for moderate values of τ .

Finally, we examined the accuracy of our method in small and moderate
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Figure 4. This figure depicts P (H0|X) evaluated at true value of τ = 2,

the lower bound P̃ (H0|X) (dashed line), and the actual probability that a

sample was generated from H0 (solid line) for data sets yielding p values of
approximately 0.05 for (a) the one-sample Wilcoxon test and (b) the Mann-

Whitney-Wilcoxon test as sample sizes are varied.

sample settings. As before, we focused attention on values of the one-sample

Wilcoxon statistic and Mann-Whitney-Wilcoxon statistic that led to p values

near 0.05. Figure 4 displays the following: (i) the lower bound P̃ (H0|X), (ii)

P (H0|X) evaluated at the true value of τ , and (iii) the actual proportion of test

statistics drawn from H0. When sample sizes were larger than approximately 8

or 9, Figure 4 shows that the asymptotic approximation to the sampling distri-

butions of both the one-sample Wilcoxon test and the Mann-Whitney-Wilcoxon

test yield marginal model probabilities that are close to their nominal values.

In general, however, Bayes factors generated from our approach cannot be ex-

pected to provide accurate results whenever the asymptotic approximation to

the distribution of the nonparametric test statistic is not accurate. Discussion of

the accuracy of such asymptotic approximations can be found in, for example,

Gibbons and Chakraborti (2003).

5. Extension to χ2 Distributed Test Statistics

When testing for differences between the distribution of values obtained from
three or more populations, most nonparametric test statistics do not have a lim-
iting normal distribution. Instead, their limiting distribution is often χ2. Such is
the case for the Kruskal-Wallis test in one-way ANOVA problems and Friedman’s
test in two-way ANOVA settings. We illustrate the extension of our methodol-
ogy to such settings in the context of the Kruskal-Wallis test (Kruskal and Wallis
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(1952)).
The Kruskal-Wallis test is a direct generalization of the two-sided Mann-

Whitney-Wilcoxon test to the k ≥ 3 sample location problem. To fix notation,
let X11, . . . ,X1n1 , . . . ,Xk1, . . . ,Xknk

denote k independent samples from contin-
uous distributions F (x− θ1), . . . , F (x− θk), respectively, where θ1, . . . , θk denote
medians of the k populations. Also, let the total sample size be n =

∑k
i=1 ni and

suppose interest focuses on testing H0 : θ1 = · · · = θk versus H1 : θi 6= θj for
some i 6= j.

If Rij denotes the rank of Xij among X11, . . . ,X1n1 , . . . ,Xk1, . . . ,Xknk
, then

the Kruskal-Wallis statistic W is defined as

W =
12

n(n + 1)

k∑

i=1

ni

(
R̄i −

n + 1

2

)2

,

where R̄i is the average of the ranks associated with the ith sample, i.e., R̄i =
(1/ni)

∑ni
j=1 Rij .

Under H0, W has an asymptotic χ2 distribution with k−1 degrees of freedom
as all ni → ∞ simultaneously (Kruskal and Wallis (1952)). Because the test
statistic W is consistent against fixed alternatives, we again consider testing H0

against the sequence of local alternatives

H1(n) : θi = θ0 + ∆i/
√

n, i = 1, . . . , k,

where the {∆i} are not all equal.
Assuming ni/n → ai > 0 where ai is a constant for i = 1, . . . , k, Andrews

(1954) showed that under H1(n) the limiting distribution of W is a χ2
k−1(ρ) distri-

bution with non-centrality parameter ρ = 12
{∫

∞

−∞
p2(x) dx

}2 ∑k
i=1 ai(∆i − ∆̄)2,

where p(·) denotes the density function of the data under the null hypothesis and
∆̄ =

∑k
i=1 ai∆i. The non-centrality parameter ρ can be written as a quadratic

form according to

ρ = 12

{∫
∞

−∞

p2(x) dx

}2

∆
′

P
′

QP∆,

where

∆ =




∆1
...

∆k


 , P = I −




a1 · · · ak

...
...

a1 · · · ak


 , Q =




a1 0 0

0
. . . 0

0 0 ak


 .

Because P
′

QP is a non-negative definite matrix with rank k − 1, there exists a
nonsingular k × k matrix R such that

P
′

QP = R
′

(
Ik−1 0

0 0

)
R.
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To obtain a Bayes factor based on W , it is thus necessary to assume a
prior distribution on ∆. A convenient prior for this purpose can be obtained by
assuming that ∆ follows a multivariate normal distribution of the form

∆ ∼ Nk(0, c(R
′

R)−1),

where c is a scaling constant.
Letting τ = 12c{

∫
∞

−∞
p2(x) dx}2, it follows that τ−1ρ follows a χ2 distribution

with k − 1 degrees of freedom. The conditional distribution of W given ρ, say
p(W |ρ), is thus a χ2

k−1(ρ) distribution, and the prior distribution on ρ, say p(ρ),
is a scaled χ2 distribution τχ2

k−1. It then follows that the marginal distribution
of W under H1(n) can be expressed as

p1(W ) =

∫
∞

0
p(W |ρ)p(ρ) dρ = Ga

(
W |k − 1

2
,

1

2(τ + 1)

)
, (2)

where Ga(·) denotes a gamma distribution. Thus, the Bayes factor based on W
is

BF01(W ) = (τ + 1)
k−1

2 exp

{
− τW

2(τ + 1)

}
.

The value of τ that maximizes p1(W ) in (2) is {W −(k−1)}/(k−1), provided
that W exceeds its expectation under H0. Setting τ at this value, we find that
the upper bound of the Bayes factor against H0 is

B̃F 01(W ) =

(
W

k − 1

) k−1
2

exp

{
−W − (k − 1)

2

}
.

Generalizations to other nonparametric test statistics that have limiting χ2

distributions under the null hypothesis can be derived in a similar way.
To illustrate the application of our method to the Kruskal-Wallis test, we

consider the study of Curtin et al. (2005) that compared genome-wide alterations
in four types of melanoma based on exposure to ultraviolet light. One hundred
and twenty-six patients were included in the study and there was special interest
in examining whether the extent of chromosomal aberration varied by melanoma
type. To this end, a Kruskal-Wallis test was applied and yielded a p value of
0.004. The hypothesis of no difference in the degree of chromosomal aberrations
among the four types of melanoma is therefore rejected in a 5% significance test;
in classical jargon this result is “highly significant.”

Applying our method, we find that the Bayes factor corresponding to the
upper bound on the weight of evidence against H0 is 0.054, which leads to a
value of P̃ (H0|W ) = 0.057 when the null and alternative hypothesis are given
equal weight a priori. This value suggests strong evidence that these four groups
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of melanoma have different degrees of chromosomal aberrations. This conclusion

is consistent with the p value, but the Bayes factor provides a more natural and

well-calibrated measure of evidence in terms of a probability.

6. Conclusion

Traditionally, the application of Bayesian testing procedures to classical non-

parametric settings has been hindered by the absence of sampling densities for

data. In this article, we have demonstrated how this difficulty can be circum-

vented by modeling the distribution of test statistics directly. Use of this method-

ology allows scientists to summarize the results of tests in terms of model prob-

abilities and Bayes factors rather than p values, and thereby represents an im-

portant advance in the field of nonparametric statistical hypothesis testing. By

reducing the subjectivity typically associated with the use of Bayes factors, we

also hope to alleviate objections from those opposed to subjective test procedures.

Methodology proposed in this article relies on asymptotic approximations to

the distribution of common nonparametric test statistics. However, numerical

evidence presented in Section 4 suggests that Bayes factors based on such ap-

proximations are not particularly sensitive to the large sample approximations to

the distributions of at least two common test statistics. For both one-sample and

two-sample Wilcoxon tests, our method appears to give accurate results when

sample sizes are larger than 8.
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Appendix

Proof of Lemma 1.

T ∗
k =

Tk − µ(θ0)

σk(θ0)
=

Tk − µ(θk) + µ(θk) − µ(θ0)

σk(θ0)

≃ Tk − µ(θk) + µ
′

(θ0)(θk − θ0)

σk(θ0)
=

Tk − µ(θk)

σk(θ0)
+

µ
′

(θ0)√
nkσk(θ0)

∆.

Now,

Tk − µ(θk)

σk(θ0)
=

Tk − µ(θk)

σk(θk)

σk(θk)

σk(θ0)

L−→ N(0, 1),

so application of Slutsky’s theorem gives the desired result.
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