POSITIVE FALSE DISCOVERY PROPORTIONS: INTRINSIC BOUNDS AND ADAPTIVE CONTROL

Zhiyi Chi and Zhiqiang Tan
University of Connecticut and Rutgers University

Supplementary Material

This note contains proofs for Theorems 4.2, 4.3, 5.1 and 5.2. The proofs for the first two theorems are similar to those for the other two. Since the latter ones are more of interest to applications, they will be demonstrated in detail. The proofs of Theorems 4.2 and 4.3 will be outlined afterwards.

S1. Notation

For random variables X_{n} and $Y_{n}, X_{n} \geq_{p} Y_{n}, X_{n} \leq_{p} Y_{n}$ and $X_{n} \sim_{p} Y_{n}$ denote $P\left(X_{n} \geq Y_{n}\right) \rightarrow 1, P\left(X_{n} \leq Y_{n}\right) \rightarrow 1$ and $X_{n} / Y_{n} \xrightarrow{\mathrm{P}} 1$, respectively. The notation $X_{n}=o_{p}\left(Y_{n}\right)$ means " $\left|X_{n}\right| \leq_{p} \epsilon\left|Y_{n}\right|$ for any $\epsilon>0$ ", whereas $X_{n}=O_{p}\left(Y_{n}\right)$ means "for any $\epsilon>0$, there are $M>0$ and $n_{0}>0$, such that $P\left(\left|X_{n}\right| \geq M\left|Y_{n}\right|\right)<\epsilon$ for all $n \geq n_{0}$ ". When it is necessary to indicate the number n of tested hypotheses, we use a superscript. For example, denote by $R^{(n)}$ the number of rejections when there are n null hypotheses.

It will be easier to work with continuous time to prove the theorems. For procedure (5.1), given p-values $\xi_{1}^{(n)}, \ldots, \xi_{n}^{(n)}$, the $R_{\tau_{n}}^{(n)}$ smallest ones are rejected, where

$$
\begin{equation*}
\tau_{n}=\sup _{t \in[0,1]}\left\{\operatorname{qbin}\left(\Gamma_{*}(t) ; R_{t}^{(n)}, \frac{n\left(t \vee \xi_{n: k_{n}}\right)}{R_{t}^{(n)} \vee k_{n}} \wedge 1\right) \leq \alpha\left(R_{t}^{(n)} \vee 1\right)\right\} \tag{S1.1}
\end{equation*}
$$

Denote $q_{n}(t ; z):=\operatorname{qbin}\left(z ; R_{t}^{(n)},\left(n t / R_{t}^{(n)}\right) \wedge 1\right)$. For brevity, write $\tau=\tau_{n}$, $R_{t}=R_{t}^{(n)}$ and $V_{t}=V_{t}^{(n)}$. By definition, $R=R_{\tau}$ and $V=V_{\tau}$. The same relationship holds for the BH procedure (4.4), except that

$$
\begin{equation*}
\tau=\tau_{n}=\sup \left\{t \in[0,1]: n t \leq R_{t}\right\} \tag{S1.2}
\end{equation*}
$$

S2. Subcritical case with increasingly sparse false nulls

Define $\eta_{t}=\eta^{(n)}=n t / R_{t}, \theta_{t}=\theta_{t}^{(n)}=t / F_{n}(t)$ and $\rho=1 / \alpha-1>0$. Then $q_{n}(z ; t)=\operatorname{qbin}\left(z ; R_{t}, \eta_{t} \wedge 1\right)$ and by $u_{n}=\alpha F_{n}\left(u_{n}\right)$,

$$
\begin{equation*}
\theta_{u_{n}}=\alpha, \quad\left(\pi_{n}+\rho\right) u_{n}=\pi_{n} G_{n}\left(u_{n}\right) \tag{S2.1}
\end{equation*}
$$

Under the subcritical condition (5.4), the following lemmas hold.
Lemma S2.1. For procedure (5.1) and the BH procedure (4.4), $\tau / u_{n} \xrightarrow{\mathrm{P}} 1$ and
(a) $\frac{G_{n}(\tau)}{G_{n}\left(u_{n}\right)} \xrightarrow{\mathrm{P}} 1$,
$(\mathrm{b}) \theta_{\tau} \xrightarrow{\mathrm{P}} \alpha$,
(c) $\eta_{\tau} \xrightarrow{\mathrm{P}} \alpha$,
(d) $\frac{R_{\tau}}{(\log n)^{4}} \xrightarrow{\mathrm{P}} \infty$.

Lemma S2.2. For both procedures, $\theta_{\tau} R_{\tau}-n \tau=\alpha R_{u_{n}}-n u_{n}+o_{p}\left(\sqrt{n u_{n}}\right)$.
Lemma S2.3. For procedure (5.1), $\alpha R_{\tau}=q_{n}(\tau ; \Gamma(\tau))+O_{p}(1)$ and for the $B H$ procedure (4.4), $\alpha R_{\tau}=n \tau$.

Let $R_{t-}=R_{t-}^{(n)}$ and $V_{t-}=V_{t-}^{(n)}$ be the numbers of rejected nulls and rejected true nulls, respectively, whose p-values are strictly less than t.

Lemma S2.4. Given $t \in(0,1)$ and $k>0$, for procedure (5.1), conditioning on $\tau=t$ and $R_{\tau-}=k, V_{\tau-} \sim \operatorname{Bin}\left(k, t / F_{n}(t)\right)$. The statement holds as well for the BH procedure (4.4).

Recall that if $p_{n} \in(0,1)$ satisfies $n p_{n}\left(1-p_{n}\right) \rightarrow \infty$, then by Lindeberg's CLT, for $S_{n} \sim \operatorname{Bin}\left(n, p_{n}\right)$ and $z \in(0,1)$,

$$
\begin{equation*}
\frac{S_{n}-n p_{n}}{\sqrt{n p_{n}\left(1-p_{n}\right)}} \stackrel{d}{\rightarrow} N(0,1), \quad \frac{\mathrm{q} \operatorname{bin}\left(z ; n, p_{n}\right)-n p_{n}}{\sqrt{n p_{n}\left(1-p_{n}\right)}} \rightarrow \Phi^{*}(z) . \tag{S2.2}
\end{equation*}
$$

Proof of Theorem 5.1. Assume the Lemmas are true for now. We show (a)-(d) in sequel.
(a) By Lemma S2.1, we get $\eta_{\tau} \xrightarrow{\mathrm{P}} \alpha$ and $n \tau\left(1-\eta_{\tau}\right)=R_{\tau} \eta_{\tau}\left(1-\eta_{\tau}\right) \sim_{p} \alpha(1-$ $\alpha) R_{\tau} \xrightarrow{\mathrm{P}} \infty$. Then by Lemma S2.3,

$$
\begin{aligned}
P\left(V_{\tau}\right. & \left.\leq \alpha R_{\tau}\right)=P\left(V_{\tau} \leq q_{n}(\tau ; \Gamma(\tau))+O_{p}(1)\right)+o(1) \\
& =P\left(\frac{V_{\tau}-n \tau}{\sqrt{n \tau\left(1-\eta_{\tau}\right)}} \leq \frac{q_{n}(\tau ; \Gamma(\tau))-n \tau}{\sqrt{n \tau\left(1-\eta_{\tau}\right)}}+o_{p}(1)\right)+o(1)
\end{aligned}
$$

Since $q_{n}(\tau ; \Gamma(\tau))=\mathrm{qbin}\left(\Gamma(\tau) ; R_{\tau}, \eta_{\tau}\right)$ and $n \tau=R_{\tau} \eta_{\tau}$, Lindeberg's CLT yields

$$
\begin{equation*}
\frac{q_{n}(\tau ; \Gamma(\tau))-n \tau}{\sqrt{n \tau\left(1-\eta_{\tau}\right)}} \sim_{p} \Phi^{*}(\Gamma(\tau))=\sqrt{\frac{1-\tau}{1-\alpha}} \Phi^{*}(1-\gamma) \tag{S2.3}
\end{equation*}
$$

Write $\left(V_{\tau}-n \tau\right) / \sqrt{n \tau\left(1-\eta_{\tau}\right)}=Z_{1} Z+Z_{2}$, where

$$
Z_{1}=\frac{V_{\tau}-\theta_{\tau} R_{\tau}}{\sqrt{\theta_{\tau}\left(1-\theta_{\tau}\right) R_{\tau}}}, \quad Z=\sqrt{\frac{\theta_{\tau}\left(1-\theta_{\tau}\right) R_{\tau}}{n \tau\left(1-\eta_{\tau}\right)}}, \quad Z_{2}=\frac{\theta_{\tau} R_{\tau}-n \tau}{\sqrt{n \tau\left(1-\eta_{\tau}\right)}}
$$

By Lemma S2.4, conditioning on $\tau=t$ and $R_{\tau-}=k, V_{\tau-} \sim \operatorname{Bin}\left(k, \theta_{t}\right)$. By $R_{\tau}-R_{\tau-}, V_{\tau}-V_{\tau-} \in\{0,1\}$ and $\theta_{\tau} R_{\tau} \rightarrow \infty$, we get $Z_{1} \xrightarrow{d} N(0,1)$. By Lemma S2.1, $Z \xrightarrow{\mathrm{P}}$ 1. By Lemma S2.2, $Z_{2}=Z_{2}^{\prime}+o_{p}(1)$, where $Z_{2}^{\prime}=\left(\alpha R_{u_{n}}-\right.$ $\left.n u_{n}\right) / \sqrt{n \tau\left(1-\eta_{\tau}\right)}$. From $F_{n}\left(u_{n}\right)=u_{n} / \alpha \rightarrow 0, R_{u_{n}} \sim \operatorname{Bin}\left(n, F_{n}\left(u_{n}\right)\right), \tau / u_{n} \xrightarrow{\mathrm{P}}$ 1 and $\eta_{\tau} \xrightarrow{\mathrm{P}} \alpha$, it follows that

$$
Z_{2}^{\prime}=\frac{\alpha\left(R_{u_{n}}-n F_{n}\left(u_{n}\right)\right)}{\sqrt{n F_{n}\left(u_{n}\right)\left(1-F_{n}\left(u_{n}\right)\right)}} \sqrt{\frac{u_{n}\left(1-F_{n}\left(u_{n}\right)\right)}{\alpha \tau\left(1-\eta_{\tau}\right)}} \stackrel{d}{\rightarrow} \sqrt{\frac{\alpha}{1-\alpha}} N(0,1)
$$

and hence $Z_{2} \xrightarrow{d} \sqrt{\alpha /(1-\alpha)} N(0,1)$.
We now show $\left(Z_{1}, Z_{2}\right) \xrightarrow{d}\left(U_{1}, \sqrt{\alpha /(1-\alpha)} U_{2}\right)$, where U_{1}, U_{2} are i.i.d. \sim $N(0,1)$. Let $f(x, y)=E\left(e^{i x Z_{1}+i y Z_{2}}\right)$. Then by Lemma S 2.4 and CLT, for any $a_{n} \rightarrow \infty$ and $t_{n} \in(0,1)$, as long as $a_{n} \theta_{t_{n}}\left(1-\theta_{t_{n}}\right) \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} E\left(e^{i x Z_{1}} \mid R_{\tau}=a_{n}, \tau=t_{n}\right)=e^{-x^{2} / 2}
$$

Since Z_{2} is a deterministic function of τ and R_{τ}, by $R_{\tau} \theta_{\tau}\left(1-\theta_{\tau}\right) \xrightarrow{\mathrm{P}} \infty$ and dominated convergence,

$$
\begin{aligned}
E\left(e^{i x Z_{1}+i y Z_{2}}\right) & =E\left(E\left(e^{i x Z_{1}+i y Z_{2}} \mid R_{\tau}, \tau\right)\right) \\
& \sim e^{-x^{2} / 2} E\left(e^{i y Z_{2}}\right) \rightarrow \exp \left\{-\frac{x^{2}}{2}-\frac{\alpha y^{2}}{2(1-\alpha)}\right\}
\end{aligned}
$$

Combining all the above results, it follows that

$$
\frac{V_{\tau}-n \tau}{\sqrt{n \tau\left(1-\eta_{\tau}\right)}} \stackrel{d}{\rightarrow} \frac{U}{\sqrt{1-\alpha}} \quad \text { with } \quad U \sim N(0,1)
$$

which, together with $(\underline{S 2.3}$) and $\tau \xrightarrow{\mathrm{P}} 0$, implies

$$
P\left(V_{\tau} \leq \alpha R_{\tau}\right) \sim P\left(U \leq \sqrt{1-\alpha} \Phi^{*}(\Gamma(\tau))\right) \rightarrow 1-\gamma
$$

This completes the proof of part (a).
(b) This directly follows from Lemma S2.1(d).
(c) For the BH procedure (4.4), from (S1.2), $0 \leq \alpha R_{\tau}-n \tau \leq \alpha$. By Lemma $\mathrm{S} 2.2, P\left(V_{\tau} \leq \alpha R_{\tau}\right)=P\left(V_{\tau} \leq n \tau+O(1)\right)=P\left(Z_{1} \leq Z_{2}+o(1)\right)$, with

$$
\begin{aligned}
Z_{1} & =\frac{V_{\tau}-\theta_{\tau} R_{\tau}}{\sqrt{\theta_{\tau}\left(1-\theta_{\tau}\right) R_{\tau}}} \\
Z_{2} & =\frac{n \tau-\theta_{\tau} R_{\tau}}{\sqrt{\theta_{\tau}\left(1-\theta_{\tau}\right) R_{\tau}}}
\end{aligned}
$$

Following the argument for part $(\mathrm{a}),\left(Z_{1}, Z_{2}\right) \xrightarrow{d}\left(U_{1}, \sqrt{\alpha /(1-\alpha)} U_{2}\right)$, where U_{1} and U_{2} are i.i.d. $\sim N(0,1)$. As a result, $P\left(V_{\tau} \leq \alpha R_{\tau}\right) \rightarrow 1 / 2$.
(d) From (5.4), $n \pi_{n} \rightarrow \infty$. Since $n-N_{0} \sim \operatorname{Bin}\left(n, \pi_{n}\right)$, by the law of large numbers (LLN), $\left(n-N_{0}\right) /\left(n \pi_{n}\right) \xrightarrow{\mathrm{P}} 1$. By Lemmas S2.1, S2.2 and S2.4,

$$
\frac{R_{\tau}}{n F_{n}\left(u_{n}\right)} \xrightarrow{\mathrm{P}} 1, \quad \frac{R_{\tau}-V_{\tau}}{R_{\tau}} \xrightarrow{\mathrm{P}} 1-\alpha
$$

Therefore, by (S2.1) and $\pi_{n} \rightarrow 0$,

$$
\frac{\psi_{n}}{G_{n}\left(u_{n}\right)}=\frac{R_{\tau}-V_{\tau}}{G_{n}\left(u_{n}\right)\left(n-N_{0}\right)} \sim_{p} \frac{(1-\alpha) n F_{n}\left(u_{n}\right)}{G_{n}\left(u_{n}\right) n \pi_{n}}=\frac{\rho u_{n}}{\pi_{n} G_{n}\left(u_{n}\right)} \xrightarrow{\mathrm{P}} 1
$$

The proof for the BH procedure (4.4) is similar and hence is omitted.
To show the lemmas, the following representation of the p-values $\xi_{1}^{(n)}, \ldots$, $\xi_{n}^{(n)}$ will be used. Let $\zeta_{k}^{(n)}=F_{n}\left(\xi_{k}^{(n)}\right)$. Then $\zeta_{1}^{(n)}, \ldots, \zeta_{n}^{(n)}$ are i.i.d. $\sim U(0,1)$. Let

$$
\begin{equation*}
W_{t}:=W_{t}^{(n)}=\#\left\{k \geq 1: \zeta_{k}^{(n)} \leq t\right\} \tag{S2.4}
\end{equation*}
$$

so $R_{t}=W_{F_{n}(t)}$. Recall the following result Shorack and Wellner (1986, p.600). Let $b_{n}=\sqrt{2 \log \log n}, c_{n}=2 \log \log n+\log \sqrt{\log \log n}-\log \sqrt{4 \pi}$ and $Z_{t}=\left(W_{t}-\right.$ $n t) / \sqrt{n t(1-t)}$. Then for any $x \in(-\infty, \infty)$, as $n \rightarrow \infty$

$$
\begin{equation*}
P\left(b_{n} \sup _{t \in[0,1]}\left|Z_{t}\right| \geq c_{n}+x\right) \rightarrow e^{-4 e^{x}} \tag{S2.5}
\end{equation*}
$$

From (5.4), it can be seen that as $n \rightarrow \infty, n u_{n} /(\log n)^{4} \rightarrow \infty$ and

$$
\frac{\sqrt{n}}{(\log n)^{2}} \frac{\pi_{n}^{2}\left[\lambda G_{n}\left(u_{n}\right)-G_{n}\left(\lambda u_{n}\right)\right]}{\sqrt{u_{n}}} \rightarrow \begin{cases}\infty, & \text { if } \lambda>1 \tag{S2.6}\\ -\infty, & \text { if } 0<\lambda<1\end{cases}
$$

Indeed, because G_{n} is strictly concave, if $\lambda>1$, (5.4) implies that

$$
\frac{\sqrt{n u_{n}}}{(\log n)^{2}} \pi_{n}\left(\lambda-\frac{G_{n}\left(\lambda u_{n}\right)}{G_{n}\left(u_{n}\right)}\right) \rightarrow \infty
$$

Then the first limit in (S2.6) follows by (S2.1). The second limit similarly holds.
Proof of Lemma S2.1. We will only show the Lemma for procedure (5.1). The proof for the BH procedure (4.4) is similar.

The main part of the proof is devoted to $\tau / u_{n} \xrightarrow{\mathrm{P}} 1$. Denote

$$
d_{n}=\sqrt{n \log \log n}, \quad f_{n}(t):=\pi_{n} G_{n}(t)-\left(\pi_{n}+\rho\right) t
$$

Because G_{n} is strictly concave, so is f_{n}. By (S2.1), $f_{n}\left(u_{n}\right)=0$. Also, $f_{n}(t)>$ $(<) 0$ for $t<(>) u_{n}$. Given $\lambda>1$, let $v_{n}=u_{n} / \lambda$. On the one hand, by (S2.2), $q_{n}\left(v_{n} ; \Gamma\left(v_{n}\right)\right) \leq n v_{n}+\sqrt{n v_{n}} A_{n}$, with $A_{n} \rightarrow \Phi^{*}\left(\Gamma\left(v_{n}\right)\right)$. On the other, by (S2.5), for large $n, R_{v_{n}}=W_{F_{n}\left(v_{n}\right)} \geq_{p} n F_{n}\left(v_{n}\right)-2 d_{n} \sqrt{F_{n}\left(v_{n}\right)}$. Therefore, by $F_{n}\left(v_{n}\right) \leq \alpha v_{n}$ and $F_{n}\left(v_{n}\right) \leq F_{n}\left(u_{n}\right)=u_{n} / \alpha$,

$$
\begin{aligned}
& R_{v_{n}}- \\
& \frac{1}{\alpha} q_{n}\left(v_{n} ; \Gamma\left(v_{n}\right)\right) \\
& \geq_{p} n\left(F_{n}\left(v_{n}\right)-(1+\rho) v_{n}\right)-\sqrt{\frac{n F_{n}\left(v_{n}\right)}{\alpha}} A_{n}-2 d_{n} \sqrt{F_{n}\left(v_{n}\right)} \\
& \geq_{p} n f_{n}\left(v_{n}\right)-3 d_{n} \sqrt{\frac{u_{n}}{\alpha}}
\end{aligned}
$$

By $\pi_{n}+\rho=\pi_{n} G_{n}\left(u_{n}\right) / u_{n}$,

$$
n f_{n}\left(v_{n}\right)=n \pi_{n}\left(G_{n}\left(v_{n}\right)-\frac{\pi_{n} G_{n}\left(u_{n}\right)}{u_{n}} v_{n}\right) \geq n \pi_{n}\left(G_{n}\left(\frac{u_{n}}{\lambda}\right)-\frac{G_{n}\left(u_{n}\right)}{\lambda}\right)
$$

From (S2.6), it follows that $n f_{n}\left(v_{n}\right)-3 d_{n} \sqrt{u_{n} / \alpha} \xrightarrow{\mathrm{P}} \infty$, yielding $\alpha R_{v_{n}}-$ $q_{n}\left(v_{n} ; \Gamma\left(v_{n}\right)\right) \xrightarrow{\mathrm{P}} \infty$ and hence $P\left(\tau>v_{n}\right) \rightarrow 1$.

Now let $w_{n}=\lambda u_{n}$. Then for all $t \geq w_{n}, F_{n}(t)<t / \alpha$. Similar to the above argument, the probability that

$$
R_{t}-\frac{1}{\alpha} q_{n}(t ; \Gamma(t)) \leq f_{n}(t)+3 d_{n} \sqrt{F_{n}(t)} \leq f_{n}(t)+3 d_{n} \sqrt{\frac{t}{\alpha}}, \quad \text { all } t \geq w_{n}
$$

tends to 1 . Because $f_{n}(t)$ is concave, it is upper bounded by $f_{n}\left(w_{n}\right) t / w_{n}$. Note $f_{n}\left(w_{n}\right)<0$. Therefore, the probability that

$$
\begin{aligned}
R_{t}-\frac{1}{\alpha} q_{n}(t ; \Gamma(t)) & \leq f_{n}\left(w_{n}\right) \frac{t}{w_{n}}+3 d_{n} \sqrt{\frac{t}{\alpha}} \\
& \leq \sqrt{\frac{t}{w_{n}}} \underbrace{\left(f_{n}\left(w_{n}\right)+3 d_{n} \sqrt{\frac{w_{n}}{\alpha}}\right)}_{x_{n}}
\end{aligned}
$$

tends to 1. Similar to the above argument, $x_{n} \rightarrow-\infty$ by (S2.6). Then $P(\tau \leq$ $\left.w_{n}\right) \rightarrow 1$. Together with $P\left(\tau>v_{n}\right) \rightarrow 1$ and $\lambda>1$ being arbitrary, $\tau / u_{n} \xrightarrow{\mathrm{P}} 1$. Now we can show parts (a)-(d) in sequel.
(a) Since G_{n} is concave, $G_{n}\left(u_{n} / \lambda\right)>G_{n}\left(u_{n}\right) / \lambda$ and $G_{n}\left(\lambda u_{n}\right)<\lambda G_{n}\left(u_{n}\right)$. Then from $\tau / u_{n} \xrightarrow{\mathrm{P}} 1, P\left(G_{n}\left(u_{n}\right) / \lambda \leq G_{n}(\tau)<\lambda G_{n}\left(u_{n}\right)\right) \rightarrow 1$ and hence $G_{n}(\tau) / G_{n}\left(u_{n}\right) \xrightarrow{\mathrm{P}} 1$.
(b) Since $F_{n}(t)=\left(1-\pi_{n}\right) t+\pi_{n} G_{n}(t)$, from the above results, it follows that $F_{n}(\tau) / F_{n}\left(u_{n}\right) \xrightarrow{\mathrm{P}} 1$. By $F_{n}\left(u_{n}\right)=u_{n} / \alpha, \theta_{\tau}=\tau / F_{n}(\tau) \xrightarrow{\mathrm{P}} \alpha$.
(c) Given $\lambda>1$, define v_{n} and w_{n} as above. By $P\left(R_{\tau}>R_{v_{n}}\right) \rightarrow 1$ and $P(\tau<$ $\left.w_{n}\right) \rightarrow 1, P\left(\eta_{\tau}<n w_{n} / R_{v_{n}}\right) \rightarrow 1$. On the other hand, since $n v_{n} \rightarrow \infty$, by the CLT in (S2.2), $R_{v_{n}}=W_{F_{n}\left(v_{n}\right)} \sim n F_{n}\left(v_{n}\right)$ and $w_{n} / F_{n}\left(v_{n}\right)=\lambda^{2} v_{n} / F_{n}\left(v_{n}\right) \leq \alpha \lambda^{2}$. Then $P\left(\eta_{\tau}<\alpha \lambda^{2}\right) \rightarrow 1$. Similarly, $P\left(\eta_{\tau}>\alpha / \lambda^{2}\right) \rightarrow 1$. Hence $\eta_{\tau} \xrightarrow{\mathrm{P}} \alpha$.
(d) This follows from $R_{\tau} \geq R_{v_{n}} \sim n F_{n}\left(v_{n}\right) \geq n v_{n}$ and $n v_{n} /(\log n)^{4} \rightarrow \infty$.

By the weak version of Hungarian construction Shorack and Wellner (1986, p.494), for each n, there exist a Brownian bridge $B_{t}^{(n)} \stackrel{d}{=} Z_{t}-t Z_{1}$ and a stochastic process $r_{t}^{(n)}$ defined on the same probability space as $\zeta_{1}^{(n)}, \ldots, \zeta_{n}^{(n)}$, where Z_{t} is a standard Brownian motion, such that $\sup _{t \in[0,1]}\left|r_{t}^{(n)}\right|=O_{p}(1)$ and $W_{t}=$ $n t+\sqrt{n} B_{t}^{(n)}+r_{t}^{(n)}(\log n)^{2}$.
Proof of Lemma S2.2. By $R_{t}=W_{F_{n}(t)}$ and the Hungarian construction,

$$
\theta_{t} R_{t}-n t=\sqrt{n} \theta_{t} B_{F_{n}(t)}^{(n)}+(\log n)^{2} \theta_{t} r_{F_{n}(t)}^{(n)}
$$

Note $\theta_{u_{n}}=\alpha$ and by Lemma S2.1, $\theta_{\tau}=O_{p}(1)$. Since $(\log n)^{2} / \sqrt{n u_{n}} \rightarrow 0$ and $r_{t}^{(n)}$ is bounded, to show Lemma S2.2 for τ, it suffices to demonstrate

$$
\frac{1}{\sqrt{u_{n}}}\left[\theta_{\tau} B_{F_{n}(\tau)}^{(n)}-\alpha B_{F_{n}\left(u_{n}\right)}^{(n)}\right] \xrightarrow{\mathrm{P}} 0
$$

Write the left hand side as $I_{1}+\alpha I_{2}$, where $I_{1}=\left(\theta_{\tau}-\alpha\right) B_{F_{n}(\tau)}^{(n)} / \sqrt{u_{n}}$ and $I_{2}=\left(B_{F_{n}(\tau)}^{(n)}-B_{F_{n}\left(u_{n}\right)}^{(n)}\right) / \sqrt{u_{n}}$. Given $\lambda>1$, since $u_{n} \rightarrow 0, P\left(\tau<\lambda u_{n}\right) \rightarrow 1$ and $F_{n}\left(\lambda u_{n}\right)<\lambda F_{n}\left(u_{n}\right)=\lambda u_{n} / \alpha$, it is seen that $\left|B_{F_{n}(\tau)}^{(n)}\right|$ asymptotically is dominated by $\sup _{t \leq \lambda u_{n} / \alpha}\left|B_{t}^{(n)}\right|$, hence stochastically dominated by $\sup _{t \leq \lambda u_{n} / \alpha}\left|Z_{t}\right|+$ $\left(\lambda u_{n} / \alpha\right)\left|Z_{1}\right|$. Then $B_{F_{n}(\tau)}^{(n)} / \sqrt{u_{n}}=O_{p}(1) . \mathrm{By} \theta_{\tau} \xrightarrow{\mathrm{P}} \alpha, I_{1} \xrightarrow{\mathrm{P}} 0$.

Similarly, letting $D_{n}=\lambda u_{n}-u_{n} / \lambda, B_{F_{n}(\tau)}^{(n)}-B_{F_{n}\left(u_{n}\right)}^{(n)}$ asymptotically is stochastically dominated by $\sup _{t \in\left[0, D_{n}\right]}\left|Z_{t}\right|+D_{n}\left|Z_{1}\right|$. Therefore, I_{2} asymptotically is stochastically dominated by $\sqrt{\lambda-1 / \lambda} \sup _{t \in[0,1]}\left|Z_{t}\right|+o_{p}(1)$. Because λ is arbitrary, $I_{2} \xrightarrow{\mathrm{P}} 0$.

Recall that $\operatorname{qbin}(z ; n, p)$ is increasing and left-continuous in z and p respectively; for $z, p \in(0,1)$,

$$
\lim _{x \downarrow z} \operatorname{qbin}(x ; n, p), \quad \lim _{x \downarrow p} \operatorname{qbin}(z ; n, x) \in\{\operatorname{qbin}(z ; n, p), \operatorname{qbin}(z ; n, p)+1\} ;
$$

and $\operatorname{qbin}(z ; n, p) \leq \operatorname{qbin}(z ; n-1, p)+1$.

Proof of Lemma S2.3. By the definition of τ, when $\tau>0$ and $R_{\tau}>0$, for all $t>\tau, q_{n}(t ; \Gamma(t))>\alpha R_{t}$. If $t-\tau>0$ is small enough, $R_{t}=R_{\tau}$. Since $\Gamma(t)$ is decreasing in $t, \operatorname{qbin}\left(\Gamma(\tau) ; R_{\tau}, n t / R_{\tau}\right) \geq \alpha R_{\tau}$. Letting $t \downarrow \tau$ then yields $q_{n}(\tau, \Gamma(\tau)) \geq \alpha R_{\tau}-1$.

On the other hand, there is a sequence $t_{j} \uparrow \tau$, such that $q_{n}\left(t_{j} ; \Gamma\left(t_{j}\right)\right) \leq \alpha R_{t_{j}}$. If R_{t} is continuous at τ, then for large $j, R_{t_{j}}=R_{\tau}$ and letting $j \rightarrow \infty$ yields $q_{n}(\tau, \Gamma(\tau)) \leq \alpha R_{\tau}$. If R_{t} has a jump at τ, then for large $j, R_{t_{j}}=R_{\tau}-1$ and letting $j \rightarrow \infty$ yields

$$
\begin{aligned}
& \operatorname{qbin}\left(\Gamma(\tau) ; R_{\tau}-1, \frac{n \tau}{R_{\tau}-1}\right) \leq \alpha R_{\tau}+1 \\
\Longrightarrow & \operatorname{qbin}\left(\Gamma(\tau) ; R_{\tau}, \frac{n \tau}{R_{\tau}-1}\right) \leq \alpha R_{\tau}+2
\end{aligned}
$$

Then $q_{n}(\tau, \Gamma(\tau))-\alpha R_{\tau} \leq \operatorname{qbin}\left(\Gamma(\tau) ; R_{\tau}, n \tau /\left(R_{\tau}-1\right)\right)-\alpha R_{\tau} \leq 2$.
The proof that for the BH procedure (4.4) is standard so is omitted.
Proof of Lemma S2.4. Let $\mathcal{F}_{t}=\sigma\left(1\left\{\xi_{i} \leq s\right\}, s \in[t, 1], i=1, \ldots, n\right)$. Then for t running backward from 1 to $0, \mathcal{F}_{t}$ consist a filtration and for both procedure (5.1) and the BH procedure (4.4), τ is a stopping time with respect to the filtration. In particular, $\{\tau \geq t\} \cap\left\{R_{\tau-}=k\right\} \in \mathcal{F}_{t}$. Let $i_{1}, \ldots, i_{R_{t-}}$ be the random indices of those ξ_{i} that are strictly less than t. By the independence of $\left(\xi_{1}, H_{1}\right), \ldots,\left(\xi_{n}, H_{n}\right)$ and $V_{t-}=H_{i_{1}}+\ldots+H_{R_{t-}}$, it is not difficult to see that for any $t, A \in \mathcal{F}_{t}, k \geq 0$, and $n_{1}<\ldots<n_{k}$, conditioning on $E=\left\{R_{t-}=k, i_{1}=n_{1}, \ldots i_{k}=n_{k}\right\}, V_{t-}$ and A are independent, i.e. $P\left(\left\{V_{t-}=v\right\} \cap A \mid E\right)=P\left(\left\{V_{t-}=v\right\} \mid E\right) \times P(A \mid E)$. Consequently, $P\left(V_{t-}=v \mid \tau=t, E\right)=P\left(V_{t-}=v \mid E\right)$. By Proposition 2.1, the right end is $P(S=v)$, with $S \sim \operatorname{Bin}\left(k, n t / G_{n}(t)\right)$. Since the conditional probability does not involve n_{1}, \ldots, n_{k}, then $P\left(V_{t-}=v \mid \tau=t, R_{t-}=k\right)=P(S=v)$.

S3. Supercritical case with increasing sparsity of false nulls

Let $\zeta_{k}^{(n)}$ be defined as in (S2.4). We need two lemmas in order to prove Theorem 5.2.

Lemma S3.1. Given $p_{0} \in(0,1)$, for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \sup _{p \in\left[p_{0}, 1\right]} P\left(\left|X_{1, p}+\cdots+X_{n, p}-n p\right| \geq \epsilon n\right)=0
$$

where for each $p, X_{1, p}, X_{2, p}, \ldots$ are i.i.d. $\sim \operatorname{Bernoulli}(p)$.
Lemma S3.2. If $k_{n} \leq n$ satisfies $k_{n} \rightarrow \infty$, then

$$
\sup _{k_{n} \leq k \leq n}\left|\frac{\zeta_{n: k}}{k / n}-1\right| \xrightarrow{\mathrm{P}} 0 .
$$

Proof of Theorem 5.2. Assume the lemmas are true for now. Fix $\epsilon>0$ such that $(1-\epsilon)^{2} \varliminf_{n \rightarrow \infty} \alpha_{*}^{(n)}>\alpha$. Then by condition (5.5), for n large enough, $(1-\epsilon)^{2} / F_{n}^{\prime}(0)=(1-\epsilon)^{2} \alpha_{*}^{(n)} /\left(1-\pi_{n}\right)>\alpha$.

First, we show that for some $K_{0}>0, P\left(R_{\tau}<K_{0}\right) \rightarrow 1$. Let $m_{n}(t)=R_{t} \vee k_{n}$. Then

$$
\begin{equation*}
\frac{n\left(t \vee \xi_{n: k_{n}}\right)}{R_{t} \vee k_{n}} \geq \frac{n F_{n}^{*}\left(\zeta_{m_{n}(t)}\right)}{m_{n}(t)} \tag{S3.1}
\end{equation*}
$$

By the selection of $k_{n}, m_{n}(t) \rightarrow \infty$. Then by the convexity of $F_{n}^{*}(x)$ (because F_{n} is concave) and Lemma S3.2,

$$
\begin{align*}
& \frac{n F_{n}^{*}\left(\zeta_{m_{n}(t)}\right)}{m_{n}(t)} \geq_{p} \frac{F_{n}^{*}\left((1-\epsilon) m_{n}(t) / n\right)}{m_{n}(t) / n} \\
& \quad \geq(1-\epsilon)\left(F_{n}^{*}\right)^{\prime}(0)=\frac{1-\epsilon}{F_{n}^{\prime}(0)} \geq \frac{\alpha}{1-\epsilon} \tag{S3.2}
\end{align*}
$$

and hence by Lemma S3.1, there is $K_{0}>0$, such that for all $K \geq K_{0}$,

$$
\operatorname{qbin}\left(1-\gamma ; K, \frac{1-\epsilon}{F_{n}^{\prime}(0)}\right)>\frac{(1-\epsilon)^{2} K}{F_{n}^{\prime}(0)}>\alpha K
$$

Combined with (S3.1) and (S3.2), this implies

$$
P\left(\bigcap_{t: R_{t} \geq K_{0}}\left\{\operatorname{qbin}\left(1-\gamma ; R_{t}, \frac{n\left(t \vee \xi_{n: k_{n}}\right)}{R_{t} \vee k_{n}}\right)>\alpha R_{t}\right\}\right) \rightarrow 1
$$

As a result, $P\left(R_{\tau}<K_{0}\right) \rightarrow 1$.
Now suppose condition (5.6) is satisfied. We show parts (a) -(d) in sequel.
(a) Note that

$$
R_{\tau}=\max \left\{k \geq 1: \operatorname{qbin}\left(1-\gamma ; k, \frac{n \xi_{n:\left(k \vee k_{n}\right)}}{k \vee k_{n}} \wedge 1\right) \leq \alpha k\right\}
$$

Because $P\left(R_{\tau}<K_{0}\right) \rightarrow 1$ and $k_{n} \rightarrow \infty, P\left(R_{\tau}=R_{n}^{\prime}\right) \rightarrow 1$, where

$$
R_{n}^{\prime}=\max \left\{k \geq 1: \operatorname{qbin}\left(1-\gamma ; k, p_{n} \wedge 1\right) \leq \alpha k\right\}
$$

with $p_{n}=n \xi_{n: k_{n}} / k_{n}$. Since $p_{n} \xrightarrow{\mathrm{P}} \alpha_{*}$, by the properties of qbin as listed before the proof of Lemma S2.3, part (a) then follows from

$$
P\left(\operatorname{qbin}\left(1-\gamma ; k, p_{n}\right) \in\left\{\operatorname{qbin}\left(1-\gamma ; k, \alpha_{*}\right), \operatorname{qbin}\left(1-\gamma ; k, \alpha_{*}\right)+1\right\}\right) \rightarrow 1 .
$$

(b) Since F_{n} is concave, given $R_{\tau}=\ell>0$ and $\tau=t, V_{\tau}$ is stochastically dominated by $\operatorname{Bin}\left(\ell,\left(1-\pi_{n}\right) t / F_{n}(t)\right)$, but stochastically dominates $\operatorname{Bin}(\ell$, $(1-$ $\left.\left.\pi_{n}\right) / F_{n}^{\prime}(0)\right)$. Because $\tau \xrightarrow{\mathrm{P}} 0,\left(1-\pi_{n}\right) \tau / F_{n}(\tau) \xrightarrow{\mathrm{P}} \alpha_{*}$. Part (b) therefore follows.
(c) Let Z_{1}, Z_{2}, \ldots be i.i.d. $\sim \operatorname{Bernoulli}\left(\alpha_{*}\right)$. If $\gamma<\gamma_{*}$, then $\ell_{0}=0$, or else there were $k>0$ such that $P\left(Z_{1}+\cdots+Z_{k} \leq \alpha k\right) \geq 1-\gamma$. Then $\gamma \geq 1-P\left(Z_{1}+\cdots+Z_{k} \leq\right.$ $\left.\alpha_{k}\right) \geq \gamma_{*}$, which is a contradiction. It is clear that $\ell_{1}=0$. Therefore, by part (a), $R_{\tau} \xrightarrow{\mathrm{P}} 0$. On the other hand, if $\gamma>\gamma_{*}$, then $\ell_{0}>0$. By part (b), $P\left(V_{\tau} \leq \alpha R_{\tau} \mid R_{\tau}=\ell_{0}\right) \rightarrow P\left(Z_{1}+\cdots+Z_{\ell_{0}} \leq \alpha \ell_{0}\right) \geq 1-\gamma$, and hence $\varlimsup_{n} P\left(V_{\tau} / R_{\tau}>\alpha \mid R_{\tau}=\ell_{0}\right) \leq \gamma$. The case $R_{\tau}=\ell_{1}$ can be similarly shown as long as $\ell_{1}>0$. This completes the proof of (c).
(d) For both procedure (5.1) and the BH procedure (4.4), in order to show that their respective powers tend to 0 , by $P\left(R \leq K_{0}\right) \rightarrow 1$, it is enough to show $n-N_{0} \xrightarrow{\mathrm{P}} \infty$. Denote $s_{n}=F_{n}^{*}\left(k_{n} / n\right)$. Since $M_{n}:=\#\left\{i \leq n: \xi_{i}^{(n)} \leq\right.$ $\left.s_{n}, H_{i}^{(n)}=1\right\} \sim \operatorname{Bernoulli}\left(n, \pi_{n} G_{n}\left(s_{n}\right)\right)$ and $M_{n} \leq n-N_{0}$, it is enough to show $n \pi_{n} G_{n}\left(s_{n}\right) \rightarrow \infty$. Since $k_{n} / n=F_{n}\left(s_{n}\right)=\left(1-\pi_{n}\right) s_{n}+\pi_{n} G_{n}\left(s_{n}\right)$ and $s_{n} / F_{n}\left(s_{n}\right) \rightarrow \alpha_{*}<1$,

$$
\frac{\pi_{n} G_{n}\left(s_{n}\right)}{k_{n} / n}=1-\frac{\left(1-\pi_{n}\right) s_{n}}{F_{n}\left(s_{n}\right)} \rightarrow 1-\alpha_{*}>0
$$

yielding $n \pi_{n} G_{n}\left(s_{n}\right) \sim\left(1-\alpha_{*}\right) k_{n} \rightarrow \infty$.
Proof of Lemma S3.1. It is enough to show

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup _{p \in\left[p_{0}, 1\right]} P\left(X_{1, p}+\cdots+X_{n, p}>(p+\epsilon) n\right)=0, \quad \text { and } \\
& \lim _{n \rightarrow \infty} \sup _{p \in\left[p_{0}, 1\right]} P\left(X_{1, p}+\cdots+X_{n, p}<(p-\epsilon) n\right)=0 .
\end{aligned}
$$

We will only show the first limit. The second one can be shown similarly.
Clearly, when $p \geq 1-\epsilon, P\left(X_{1, p}+\cdots+X_{n, p}>(p+\epsilon)\right)=0$. If $p<1-\epsilon$, then by Chernoff's inequality, $P\left(X_{1, p}+\cdots+X_{n, p}>(p+\epsilon) n\right) \leq e^{-n I(p)}$, where $I(p)=\sup _{t>0}\left((p+\epsilon) t-\Lambda_{p}(t)\right)$, with $\Lambda_{p}(t)=\log \left(1-p+p e^{t}\right)$. Since $\Lambda_{p}(t)$ is convex and $\Lambda_{p}^{\prime}(0)=p, I(p)>0$. It can be verified that $I(p)$ is continuous on $[0,1-\epsilon)$. Letting $I(p)=\infty$ for $p \geq 1-\epsilon$, it follows that $\inf _{p \geq p_{0}} I(p)>0$, which implies the limit.
Proof of Lemma S3.2. $\xi_{n: 1}, \ldots, \xi_{n: n}$ have the same joint distribution as

$$
\left(\frac{S_{1}}{S_{n+1}}, \ldots, \frac{S_{n}}{S_{n+1}}\right)
$$

where $S_{k}=U_{1}+\cdots+U_{k}$ and U_{1}, U_{2}, \ldots are i.i.d. $\sim \operatorname{Exp}(1)$. By the LLN, $S_{n+1} / n \xrightarrow{\mathrm{P}} 1$. Therefore, it is enough to show $\sup _{k \geq k_{n}}\left|S_{k} / k-1\right| \xrightarrow{\mathrm{P}} 0$, which follows from the strong law of large numbers (SLLN).

S4. Nonsparse case

Proof of Theorem 4.1. The proof of part (a) is omitted because it follows closely Genovese and Wasserman (2002). For part (b), let R^{\prime} be the number of projections in (4.3). Then by Proposition 4.1, $P\left(R^{\prime}>k_{n}\right) \rightarrow 0$. Since $P(R>$ $0) \leq P\left(R^{\prime}>k_{n}\right)$, part (b) follows.

To prove Theorem 4.2, we need the following standard result for empirical processes.
Lemma S4.1. Suppose τ_{n} is a sequence of random variables taking values in $[0,1]$, such that for some $u \in(0,1), \tau_{n} \xrightarrow{d} u$ as $n \rightarrow \infty$. Then, letting $\pi_{0}=1-\pi$,

$$
\frac{V_{\tau_{n}}-n \pi_{0} \tau_{n}}{\sqrt{n \pi_{0} u\left(1-\pi_{0} u\right)}} \xrightarrow{d} N(0,1) .
$$

Following the proof for the sparse case, for procedure (4.7), define

$$
\tau_{n}=\sup \left\{t \in[0,1]: q \operatorname{bin}\left(\Gamma_{*}(t) ; R_{t}, \frac{\pi_{0} n\left(t \vee \xi_{n: k_{n}}\right)}{R_{t} \vee k_{n}} \wedge 1\right) \leq \alpha\left(R_{t} \vee 1\right)\right\}
$$

and for the BH procedure (4.3), define $\tau_{n}=\sup \left\{t \in[0,1]: \pi_{0} n t \leq R_{t}\right\}$. Then following the same notations, $R=R_{\tau}$ and $V=V_{\tau}$.

The proof of Theorem 4.2 follows closely that of Theorem 5.1, so we only give its sketch.
Proof of Theorem 4.2. (a) Following Genovese and Wasserman (2002), $\tau \xrightarrow{\mathrm{P}}$ u^{*}, with $u^{*} \in(0,1)$ the only positive solution to $\pi_{0} u=\alpha F(u)$. By the definition of R and $P\left(\xi_{i} \leq u^{*}, H_{i}=1\right)=F\left(u^{*}\right)$, from LLN, it follows that $R / n \xrightarrow{\mathrm{P}}$ $F\left(u^{*}\right)>0$ and hence $\mathrm{pFDR} \sim \mathrm{FDR}=\alpha$. Furthermore, $\Gamma_{*}(t)$ can be replaced with $\Gamma(t)$ and by Lemma S2.3,

$$
P\left(V_{\tau} \leq \alpha R_{\tau}\right)=P\left(V_{\tau} \leq \operatorname{qbin}\left(\Gamma(\tau) ; R_{\tau}, \frac{\pi_{0} n \tau}{R_{\tau}} \wedge 1\right)+O_{p}(1)\right) .
$$

Denote the binomial quantile on the right hand side by K. Applying the CLT to the binomial distributions, from $\tau \xrightarrow{d} u^{*}$, it follows that

$$
\frac{K-\pi_{0} n \tau}{\sqrt{n \pi_{0} u^{*}(1-\alpha)}} \sim_{p} \frac{K-\pi_{0} n \tau}{\sqrt{\pi_{0} n \tau\left(1-\pi_{0} n \tau / R_{\tau}\right)}} \xrightarrow{\mathrm{P}} \Phi^{*}\left(\Gamma\left(u^{*}\right)\right) .
$$

Combining this with Lemma S4.1 yields

$$
P\left(V_{\tau} \leq \alpha R_{\tau}\right) \rightarrow P\left(\sqrt{\frac{1-\pi_{0} u^{*}}{1-\alpha}} Z \leq \Phi^{*}\left(\Gamma\left(u^{*}\right)\right)\right)=1-\gamma
$$

(b) Since $k_{n} / n \rightarrow 0$ whereas $R / n \xrightarrow{d} F\left(u^{*}\right)>0$, part (b) easily follows.

Proof of Proposition 4.1. (a) Following the proof of Theorem 4.2 (a),

$$
P\left(V_{\tau} \leq \alpha R_{\tau}\right) \rightarrow P\left(\sqrt{\frac{1-\pi_{0} u^{*}}{1-\alpha}} Z \leq 0\right)=\frac{1}{2}
$$

where, for the BH procedure (4.3),

$$
\tau=\tau_{n}=\sup \left\{t \in[0,1]: \pi(1-\pi) n t \leq R_{t}\right\}
$$

(b) See Chi (2007).

The proof of Theorem 4.3 is almost identical to that of Theorem 5.2 and so is omitted.
Proof of Proposition 4.2. When $\alpha \in\left(\alpha_{*}, 1-\pi\right)$, then $\tau \xrightarrow{\mathrm{P}} u^{*}$. Because $R-V=\#\left\{k \leq n: H_{k}=1, \xi_{k}^{(n)} \leq \tau\right\}$ and $n-N_{0}=\#\left\{k \leq n: H_{k}=1\right\}$, by the $\mathrm{LLN}, \psi_{n} \xrightarrow{\mathrm{P}} P\left(\xi \leq u^{*} \mid H=1\right)=G\left(u^{*}\right)$. On the other hand, when $\alpha<\alpha_{*}$, then for procedures (4.6) and (4.7), by Theorem 4.1 and 4.2 , it is apparent that $\psi_{n}=O_{p}(1 / n)$, and for the BH procedure (4.3), from Chi $(2007), \psi_{n} \xrightarrow{\mathrm{P}} 0$ as well.

