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Abstract: A useful paradigm for multiple testing is to control error rates derived

from the false discovery proportion (FDP). The false discovery rate (FDR) is the

expectation of the FDP, which is defined to be zero if no rejection is made. How-

ever, since follow-up studies are based on hypotheses that are actually rejected, it

is important to control the positive FDR (pFDR) or the positive false discovery

excessive probability (pFDEP), i.e., the conditional expectation of the FDP or the

conditional probability of the FDP exceeding a specified level, given that at least

one rejection is made. We show that, unlike FDR, these two positive error rates may

not be controllable at a desired level. Given a multiple testing problem, there can

exist positive intrinsic lower bounds, such that no procedures can attain a pFDR

or pFDEP level below the corresponding bound. To reduce misinterpretations of

testing results, we propose several procedures that are adaptive, i.e., they achieve

pFDR or pFDEP control when the target control level is attainable, and make no

rejections otherwise. The adaptive control is established under a sparsity condition

where the fraction of false nulls is increasingly close to zero as well as under the con-

dition where the fraction of false nulls is a positive constant. We demonstrate that

the power of the proposed procedures is comparable to the Benjamini-Hochberg

FDR controlling procedure.

Key words and phrases: False discovery excessive probability, false discovery rate,

multiple testing, positive false discovery proportion, p-value, sparsity.

1. Introduction

Traditionally, multiple hypothesis testing aims to control familywise error

rate (FWER), i.e., the probability of falsely rejecting one or more null hypothe-

ses. To balance between error rate control and power, Benjamini and Hochberg

(1995) introduced the false discovery rate (FDR), and established that FDR can

be controlled at any specified level by a procedure originally due to Simes (1986),

henceforth referred to as the BH procedure. Since then, there have been con-

siderable researches on both the theory and applications of FDR control (cf.,

Benjamini and Hochberg (2000), Genovese and Wasserman (2002, 2004, 2006),

Lehmann and Romano (2005), Storey (2002, 2003), Storey, Taylor and Siegmund

(2004) and van der Laan, Dudoit and Pollard (2004) and references therein).
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FDR is defined as the expectation of the false discovery proportion (FDP),

which is the proportion of falsely rejected nulls among those rejected if there are

any, and 0 otherwise. Two aspects of FDP are of interest. First, control of FDP

can be considered in terms of the false discovery excessive probability (FDEP),

which is the probability that FDP exceeds a specified level. Several procedures

have been proposed for FDEP control. For example, Genovese and Wasserman

(2006) suggested an inversion-based procedure, and van der Laan et al. (2004)

proposed an augmentation-based procedure. These two procedures are equiva-

lent under mild conditions (Genovese and Wasserman, 2006), and both are built

on procedures that control FWER or k-FWER (i.e., the probability of falsely

rejecting at least k nulls) without making assumptions on statistical dependency

among p-values. On the other hand, Lehmann and Romano (2005) derived step-

down procedures to control FDEP and k-FWER.

Second, FDR combines two factors: the probability of making no discovery,

and the conditional expectation of FDP given that at least one discovery is made.

Storey (2002, 2003) referred to the latter as positive FDR (pFDR), and argued

that it is a more suitable error rate than FDR. By definition, pFDR is more

relevant than FDR to follow-up studies conducted once positive findings are ob-

tained. For the same reason, it is useful to consider positive FDEP (pFDEP), i.e.,

the conditional probability that FDP exceeds a specified level given that at least

one discovery is made. However, to our knowledge, there are no procedures that

realize control of pFDR or pFDEP when it is feasible. Storey (2002) proposed

estimates of FDR and pFDR for fixed rejection regions, and showed that they

are pointwise conservative. Storey et al. (2004) proved that these estimates are

simultaneously conservative for fixed rejection regions with thresholds bounded

away from 0, and that the procedure of Storey (2002) can achieve control of FDR

(but not pFDR) at any specified level.

The objective of this article is twofold: theoretically, to understand the con-

trollability of pFDR and pFDEP and methodologically, to develop suitable proce-

dures to control them. First we establish that, given a multiple testing problem,

there exists a possibly positive lower bound β∗ on pFDR and, if the exceedance

level for FDP is specified below β∗, there also exists a positive lower bound on the

pFDEP. Genovese and Wasserman (2002) and Chi (2007) showed a dichotomous

effect of β∗ on the BH procedure: the number of rejections grows to ∞ or con-

verges to a finite random variable as the number of tested hypotheses increases,

depending on whether the FDR control level is above or below β∗/(1−π), where

π is the fraction of false nulls being tested. As a result, the asymptotic power is

positive or zero.

Given a multiple testing problem, the above lower bounds are intrinsic, de-

termined solely by the data-generating distribution. Therefore, no procedure can
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ever attain a pFDR or pFDEP below the corresponding bound. The existence

of the bounds has serious implications. For example, the lower bound β∗ can be

arbitrarily close to 1. If β∗ = 0.9, say, given a nonempty set of rejected nulls, on

average 90% of them are false rejections whatever multiple testing procedure is

used. In this situation, it seems reasonable to require no rejections be made at

all, in order to avoid grossly mistaken interpretations about the results.

Because the intrinsic lower bounds are beyond control at the stage of data

analysis, and generally unknown, it is futile to seek a procedure that can control

pFDR or pFDEP at any specified level. From this perspective, we suggest that

a desirable procedure be adaptive, i.e., that it automatically achieves a specified

control level whenever the level is attainable, and avoids making any rejections

otherwise.

To develop a methodology of adaptive control, we consider two scenarios. In

the first, the fraction π of false nulls is known. We propose procedures that are

adaptive to control pFDR and pFDEP, respectively. In the second scenario, π is

unknown. The proposed procedures are similar to the previous ones, but with π

replaced by 0. The procedures are still adaptive, but are conservative. On the

other hand, they can achieve adaptive control even when π tends to 0.

The rest of the article is organized as follows. Section 2 describes the setup.

Section 3 studies the intrinsic lower bounds on pFDR and pFDEP and the re-

sulting “subcritical” and “supercritical” cases. Sections 4 and 5 present several

adaptive pFDR or pFDEP controlling procedures and related asymptotic results.

Section 6 reports a simulation study and an application to gene expression data.

Section 7 gives concluding remarks. The Appendix collects selected technical

details. Proofs of major theorems can be found in the Supplemental Materials.

2. Setup

Suppose that there are n (≥ 1) null hypotheses to be tested. For 1 ≤ i ≤ n,

let ξi be the p-value associated with the ith null, and let Hi = 0 (resp. 1) if the

ith null is true (resp. false). Consider the following mixture model (Efron et al.

(2001), Genovese and Wasserman (2002, 2004) and Storey (2003)):

(ξ1,H1), . . . , (ξn,Hn) are iid, such that

Hi ∼ Bernoulli(π), ξi |Hi = θ ∼

{
Uniform(0, 1), if θ = 0,

G with density g, otherwise.

Under this model, each p-value ξi has the (marginal) distribution function

F (t) = (1 − π)t+ πG(t), t ∈ [0, 1].
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Formally, a multiple testing procedure is defined through a mapping

δ = (δ1, . . . , δn) : [0, 1]n → {0, 1}n,

such that the ith null is accepted ⇐⇒ δi(ξ1, . . . , ξn) = 0.
(2.1)

It follows that the set of rejected nulls is completely determined by the p-values

ξ1, . . . , ξn. As far as we know, all multiple testing procedures in the literature

are strictly based on p-values in the sense that δi = δj whenever ξi = ξj.

By the meaning of p-value, it is often required of a multiple testing proce-

dure that whenever a null is rejected, all those with smaller or equal p-values be

rejected as well. Equivalently, such a procedure can be identified with a “thresh-

old” function τ : [0, 1]n → [0, 1], such that δi = 1 {ξi ≤ τ(ξ1, . . . , ξn)} for each

1 ≤ i ≤ n. Section 3 will consider the controllability of pFDR and pFDEP under

the general form (2.1). On the other hand, the proposed procedures in Sections

4 and 5 all involve threshold functions.

Given a multiple testing procedure, denote by R the number of rejected

nulls and V that of rejected true nulls. A procedure is called trivial if it makes

no rejection, i.e., P (R = 0) = 1. For a nontrivial procedure, define

The False Discovery Rate as FDR = E[V/(R ∨ 1)],

The Positive false Discovery Rate as pFDR = E[V/R |R > 0],

The False Discovery Excessive Probability at FDP exceedance level α ∈ (0, 1)

as FDEPα = P [V/(R ∨ 1) > α],

The Positive False Discovery Excessive Probability at FDP exceedence level

α ∈ (0, 1) as pFDEPα = P [V/R > α R > 0],

where a ∨ b denotes the larger one between a and b. Apparently,

FDR = pFDR × P (R > 0) , FDEPα = pFDEPα × P (R > 0).

Therefore, FDR (resp. FDEP) consists of two conceptually distinct factors: P (R

= 0), i.e., the probability of rejecting no null and pFDR (resp. pFDEP), as a

measure of error conditional on rejecting at least one null.

A simple but important class of multiple testing procedures is to reject all

the nulls with p-values up to a fixed threshold. Let

Rt = # {i : ξi ≤ t} , Vt = # {i : Hi = 0, ξi ≤ t} , 0 ≤ t ≤ 1. (2.2)

Note that E(Rt/n) = (1 − π)t+ πG(t) and E(Vt/n) = (1 − π)t. Define

αt =
(1 − π)t

(1 − π)t+ πG(t)
, βt =

1 − π

1 − π + πg(t)
, (2.3)

where α0 is taken to be β0 by continuous extension, and βt is called the “local

FDR” (Efron et al. (2001) and Broberg (2005)). Therefore, the lowest attainable
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FDR and local FDR are

α∗ = inf
0≤t≤1

αt =
1 − π

1 − π + sup
0≤t≤1

G(t)

t

,

β∗ = inf
0≤t≤1

βt =
1 − π

1 − π + sup
0≤t≤1

g(t)
.

(2.4)

In general, suptG(t)/t ≤ supt g(t) and α∗ ≥ β∗, because G(t)/t = g(s) for some

s ∈ [0, t] by the Mean Value Theorem. On the other hand, if G is concave, then

αt ≤ βt and both are increasing in [0, 1] (Broberg (2005)), so α∗ ≤ β∗ and thus

α∗ = β∗.

The following proposition is straightforward but fundamental.

Proposition 2.1. Let 0 < t ≤ 1. Under the mixture model,

(a) H1, . . . ,Hn are independent given ξ1, . . . , ξn, and

P (Hi = 0 | ξi ≤ t) = αt, P (Hi = 0 | ξi = t) = βt, 1 ≤ i ≤ n;

(b) for 1 ≤ k ≤ n, conditioning on Rt = k, Vt is binomial on k trials and success

probability αt per trial (Bin(k, αt)).

Result (a) implies that given all the observed p-values, the probability that

an individual null is true is completely determined by its own p-value, regardless

of the others. Result (b) provides the conditional distribution of the number

of false rejections given the total number of rejections. It is the basis for the

procedures in Sections 4 and 5.

Notation. For a distribution function F , let F ∗(t) = inf{x : F (x) ≥ t},
0 < t < 1, be the corresponding quantile function. Denote by pbin(γ;n, p) the

distribution function of Bin(n, p), and by qbin(γ;n, p) the corresponding quantile

function. If n = 0 or p = 0, Bin(n, p) is concentrated at 0. Denote by Φ the

distribution function of N(0, 1). Finally, adopt the convention that max ∅ = 0.

As we only consider in-probability asymptotics of multiple testing proce-

dures, the sets of nulls for different n need not be nested. Henceforth, assume

that for each n, (ξ
(n)
1 ,H

(n)
1 ), . . . , (ξ

(n)
n ,H

(n)
n ) are iid from a mixture model, where

π = πn and G = Gn may depend on n. Denote by ξn:1 ≤ · · · ≤ ξn:n the order

statistics of the p-values.

3. Subcritical vs Supercritical Conditions

Given α, γ ∈ (0, 1), we say that (p)FDR is controlled at level α if (p)FDR

≤ α, and (p)FDEPα at level γ if (p)FDEPα ≤ γ. The BH procedure is useful

in that it can control FDR at any desired level α. However, several important
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issues remain. To what degree can the BH procedure control pFDR? Is there a

procedure that can control pFDR at any level α? Similar questions can be raised

for pFDEPα. As seen below, the answers depend critically on how large the level

α is.

To start, consider a procedure that rejects nulls with p-values no greater

than a fixed t ∈ (0, 1). Then R = Rt, V = Vt and, by Proposition 2.1,

E
( Vt

Rt
|Rt = k

)
= αt, (3.1)

P
( Vt

Rt
> α |Rt = k

)
= 1 − pbin(αk; k, αt) (3.2)

for any k ≥ 1. Therefore, pFDR = αt is lower bounded by α∗ ≥ β∗ defined in

(2.4). Likewise, pFDEPα is lower bounded by γ∗, where

γ∗ = γ∗(α) = 1 − sup
k≥1

pbin(αk; k, α∗). (3.3)

Note that γ∗ = 0 if α > α∗, and γ∗ > 0 if α < α∗. As a result, no procedure

with a fixed rejection threshold can attain pFDR below α∗ and, if α < α∗, no

such procedure can attain pFDEPα below γ∗. In general, similar results can be

established for nontrivial multiple testing procedures.

Proposition 3.1. Under the mixture model, the following statements hold for

any nontrivial multiple testing procedure (2.1).

(a) pFDR ≥ β∗.

(b) If α < β∗, then pFDEPα ≥ 1 − supk≥1 pbin(αk; k, β∗) > 0.

Note that the lower bounds in Proposition 3.1 are intrinsic to a multiple

testing problem, regardless of the procedure applied. The lower bounds reveal

an important difference between pFDR (resp. pFDEP) and FDR (resp. FDEP):

the latter can be made arbitrarily small since P (R > 0) can be arbitrarily close

to 0. This difference seems not yet well appreciated in the literature. In the

context of FDR control using a fixed rejection region, Storey et al. (2004) noted

that pFDR and FDR are asymptotically equivalent, and any asymptotic results

on FDR can essentially be directly translated into results on pFDR. Nevertheless,

this perspective of asymptotic equivalence cannot generally be extended to data-

dependent random rejection regions, because the presumption that P (R > 0)

tends to 1 may no longer hold. Indeed, by Proposition 3.1, any procedure that

controls FDR at level α < β∗ necessarily makes no rejection with a positive

probability,

P (R = 0) = 1 −
FDR

pFDR
≥ 1 −

α

β∗
> 0.
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As an example, consider the BH procedure when the fraction π of false nulls

is known and incorporated (cf. (4.3)). The behavior of the procedure is categor-

ically changed when α is decreased below β∗ (Genovese and Wasserman (2002)

and Chi (2007)). When α > β∗, the number of rejections grows approximately

linearly with the number of tested nulls; the pFDR is approximately equivalent to

FDR and hence is controlled at level α. When α < β∗, the number of rejections

converges in distribution to a finite random variable that has a positive proba-

bility of being zero; meanwhile the pFDR approaches β∗. When π is unknown,

the BH procedure (4.4) has a similar “phase transition” in its behavior, but with

a higher critical value β∗/(1 − π) for α, due to the conservative estimation of an

unknown π by 0.

The discussion so far has only involved the marginal distributions of V/R

and R. The next result concerns their joint distribution. It implies that, when

the number n of tested nulls is large, it is essentially impossible to have both

V/R ≤ α < β∗ and R ∼ ǫn, no matter how close α is to β∗ and how small ǫ > 0

is.

Proposition 3.2. Under the mixture model, if α < β∗, then there exists a

constant c > 0 such that, with probability one, V ≤ αR implies R ≤ c log n for

all n large enough.

Since setting the FDR or FDP exceedence level α above or below β∗ has

critical consequences for the control of false discovery proportions, we distinguish

between the two cases. We call the case α > β∗ subcritical and the case α <

β∗ supercritical. The critical case α = β∗ rarely occurs in practice and is not

considered.

In principle, when β∗ = 0, i.e., sup0≤t≤1 g(t) = ∞, any FDR or FDP ex-

ceedence level leads to a subcritical case. However, situations where β∗ > 0 can

arise rather naturally.

Example 3.1. For 1 ≤ i ≤ n, let Xi be a test statistic with continuously differ-

entiable distribution function Q0 under Hi = 0, or Q1 under Hi = 1. Suppose

that for each null, rejection is made on the left tail of Xi, and the associated

p-value is ξi = Q0(Xi). Then ξi has distribution function

G(t) = P (ξi ≤ t |Hi = 1) = P (Xi ≤ Q∗
0(t) |Hi = 1) = Q1(Q

∗
0(t)),

with density function

g(t) =
Q′

1(Q
∗
0(t))

Q′
0(Q

∗
0(t))

= likelihood ratio of Q∗
0(t). (3.4)
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Therefore, g is bounded on [0, 1] if and only if Q′
1(x)/Q

′
0(x) is bounded on

(−∞,∞). By Proposition 3.1, we obtain

β∗ = infimum of pFDR

=
1 − π

1 − π + π × (supremum of likelihood ratio)
. (3.5)

Consider the following examples of Q0 and Q1.

(1) Let Q0 be the distribution function of N(0, 1) and Q1 that of N(−a, 1), with

a > 0. Then

g(t) =
exp

{
−

(Q∗
0(t) + a)2

2

}

exp
{
−
Q∗

0(t)
2

2

} = exp
{
− aQ∗

0(t) −
a2

2

}
, 0 ≤ t ≤ 1,

is strictly decreasing. It is easy to see that sup0≤t≤1 g(t) = limt→0 g(t) = ∞.

Therefore, β∗ = 0.

(2) Let Q0 be the distribution function of a Uniform(0, 1) and Q1 that of a

Beta(1, b), with b > 1, i.e., Q1(x) = 1 − (1 − x)b, x ∈ [0, 1]. Then

g(t) = b[1 −Q∗
0(t)]

b−1 = b(1 − t)b−1 0 ≤ t ≤ 1,

is strictly decreasing. Because sup0≤t≤1 g(t) = limt→0(t) = b, β∗ > 0.

(3) Let Q0 be the standard Cauchy distribution function and Q1 a scaled version

of Q0 with scaling factor c > 1. Then

Q0(x) =
1

2
+

arctan x

π
, Q1(x) = Q0

(x
c

)
, −∞ < x <∞,

g(t) =
c

1 + (c2 − 1) sin2(πt)
, 0 ≤ t ≤ 1,

so g is strictly decreasing if t < 1/2 and strictly increasing otherwise. Because

sup0≤t≤1 g(t) = limt→0 g(t) = limt→1 g(t) = c, β∗ > 0.

As noted in the Introduction, the lowest attainable pFDR level β∗ can be

arbitrarily close to 1. This can be seen from (3.5). Indeed, if the likelihood ratios

associated with the test statistics are uniformly bounded, then the smaller the

fraction π of false nulls, the closer β∗ is to 1. As a result, it becomes increasingly

difficult to pick true discoveries out of any nonempty set of rejections. It is worth

pointing out again that this difficulty is not due to the multiple testing procedure

but to the problem itself.

In what follows, we assume G is concave on [0, 1]. By (3.4), the assumption

means that for each null, the smaller the associated test statistic is, the stronger
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the evidence against the null. The global concavity assumption simplifies tech-

nicalities but is not essential for our results. Thus (1) αt ≤ βt and both are

increasing on [0, 1]; and (2) α∗ = β∗ = α0 = (1 − π)/(1 − π + πg(0)).

4. Procedure: Fixed Known Fraction of False Nulls

In this section, we take πn ≡ π ∈ (0, 1) known, and Gn ≡ G unknown, with a

continuous and strictly decreasing density g. The purpose is twofold: to illustrate

the basic ideas underlying the proposed procedures, and to accommodate the

possibility that the fraction of false nulls can be found either from prior knowledge

or by estimation (cf. Benjamini and Hochberg (2000), Langaas, Lindqvist and

Ferkingstad (2005), and Storey (2002)).

4.1. Motivation

Our procedures are motivated by the idea that (p)FDR or (p)FDEP control

can be realized by using the estimated conditional distribution of the number of

false rejections given the total number of rejections; see Proposition 2.1. Given

0 < t < 1, if Rt > 0, then αt = (1 − π)nt/E(Rt) can be estimated by α̂t =

(1 − π)nt/Rt, with Rt in place of E(Rt). Then by (3.1) and (3.2), E(Vt/Rt |Rt)

and P (Vt/Rt > α |Rt) can be estimated, respectively, by

Ê
( Vt

Rt
|Rt

)
= α̂t =

(1 − π)nt

Rt
, (4.1)

P̂
( Vt

Rt
> α |Rt

)
= 1 − pbin(αRt;Rt, α̂t). (4.2)

In Storey (2002), α̂t was used as an estimate of E(Vt/(Rt∨1)) and α̂t/[1−(1−t)n]

as an estimate of E(Vt/Rt |Rt > 0) . The factor 1 − (1 − t)n is asymptotically 0

for fixed t > 0, and has no effect on our proposed procedures.

Consider controlling (p)FDR based on the estimate (4.1): reject the R small-

est p-values, where

R = max
{
k ≥ 1 : for t = ξn:k, Ê

( Vt

Rt
|Rt

)
≤ α

}

= max
{
k ≥ 1 :

(1 − π)nξn:k

k
≤ α

}

= max {k ≥ 1 : (1 − π)nξn:k ≤ αk} , (4.3)

with max ∅ defined to be 0. The procedure is a BH procedure with π being

known. If 1 − π is replaced by 1, it becomes the original BH procedure, which

rejects the R smallest p-values with

R = max {k ≥ 1 : nξn:k ≤ αk} . (4.4)
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Benjamini and Hochberg (2000) and Storey et al. (2004) showed that procedure

(4.3) has FDR = α, whereas procedure (4.4) has FDR = (1 − π)α.

Similar to (4.3), one possible way to control (p)FDEPα at level γ is as follows:
reject the R smallest p-values, where

R = max
{
k ≥ 1 : for t = ξn:k, P̂

( Vt

Rt
> α |Rt

)
≤ γ

}

= max
{
k ≥ 1 : pbin

(
αk; k,

(1 − π)nξn:k

k

)
≥ 1 − γ

}

= max
{
k ≥ 1 : qbin

(
1 − γ; k,

(1 − π)nξn:k

k

)
≤ αk

}
. (4.5)

This procedure is structurally similar to procedure (4.3), except that quantiles

of binomial distributions are used rather than expected values.

4.2. Modification

Because G is concave, α∗ = β∗. By Proposition 3.1, no procedure can attain
pFDR < α∗, and no procedure with FDP exceedence level α < α∗ can attain

pFDEPα < γ∗. Since α∗ is unknown, the best possibility for a pFDR controlling

procedure is that it be adaptive to both subcritical and supercritical conditions.

That is, if α > α∗, the procedure attains pFDR ≤ α; and if α < α∗, it almost

never makes rejections, thus indicating that the pFDR cannot be controlled at

level α. Likewise, the best possibility for a pFDEP controlling procedure is as

follows: if α > α∗ or α < α∗ but γ > γ∗, the procedure attains pFDEPα ≤ γ;

and if α < α∗ and γ < γ∗, it almost never makes rejections.
In order to modify (4.3) and (4.5) to achieve adaptive control, we first need

to deal with the fluctuation in α̂t if t → 0 as n → ∞. Although α̂t converges to

αt for each fixed 0 < t < 1, the process (α̂t)0<t<1 does not converge uniformly

to (αt)0<t<1. For example, α̂ξn:1
converges in distribution to an exponentially

distributed random variable with mean α∗ rather than to the constant α∗. To

avoid such instability, we replace α̂t with

α̃t =
(1 − π)n(t ∨ ξn:kn

)

Rt ∨ kn
, where kn → ∞,

kn

n
→ 0.

It follows that α̂ξn:kn
converges to α∗, and hence the process (α̃t)0<t<1 converges

uniformly to (αt)0<t<1, i.e. sup0<t<1 |α̃t − αt| → 0.

By substituting α̃t for α̂t in (4.3), we get the following adaptive pFDR con-

trolling procedure at target pFDR control level α.

PFDR control with known π: Reject the R smallest p-values, where

R = max
{
k ≥ 1 :

(1 − π)nξn:(k∨kn)

k ∨ kn
≤ α

}
. (4.6)
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To modify (4.5) in order to control pFDEPα at level γ, in addition to the

fluctuation in αt, we also need to deal with the fluctuation in the number of nulls.

We first present a modification that correctly incorporates the fluctuations, and

then give a heuristic argument.

PFDEP control with known π: Reject the R smallest p-values, where

R = max
{
k ≥ 1 : qbin

(
Γ∗(ξn:k); k,

(1 − π)nξn:(k∨kn)

k ∨ kn

)
≤ αk

}
(4.7)

with

Γ∗(t) = Φ
(√

1 +
α− (1 − π)t

1 − α
1 {t > ξn:kn

}Φ∗(1 − γ)
)
.

Note that any kn → ∞ of order o(n) can be used in (4.7) to yield the same

asymptotic behavior of the procedure. In practice, we have taken kn = c log n,

with c a positive constant.

Overall, procedure (4.7) accommodates both sub- and supercritical cases

automatically. When α > α∗, R grows roughly linearly in n and (4.7) is asymp-

totically

R = max

{
k : qbin

(
Γ(ξn:k); k,

(1 − π)nξn:k

k

)
≤ αk

}
, (4.7a)

where Γ(t) = Φ[
√

(1 − (1 − π)t)/(1 − α) Φ∗(1 − γ)] (cf. Theorem 4.2). On the

other hand, when α < α∗, R converges to a finite random variable and (4.7) is

asymptotically (cf. Theorem 4.3)

R = max

{
k : qbin

(
1 − γ; k,

(1 − π)nξn:kn

kn

)
≤ αk

}
. (4.7b)

Heuristics. The supercritical case (4.7b) is straightforward, following the same

idea as (4.6). For the subcritical case (4.7a), it remains to be seen why 1 − γ

in (4.5) should be replaced with Γ(ξn:k) so that P (V ≤ αR) ≈ 1 − γ. Let θ be

the correct replacement. By the definition of R, qbin(θ;R, ζn/R) ≈ αR, where

ζ = (1 − π)ξn:R. Now

{V ≤ αR} =

{
V − ζn

σR
≤

qbin
(
θ;R, ζn

R

)
− ζn

σR

}

where, for each k, σk is the standard deviation of Bin(n, ζn/k). By the normal

approximation, the second fraction on the right side converges to Φ∗(θ). On
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the other hand, V is the number of true nulls with p-values no greater than

ξn:R. Loosely speaking, under the mixture model, the probability that a p-

value is no greater than ξn:R and associated with a true null is (1 − π)ξn:R = ζ.

Therefore V ∼ Bin(n, ζ), with standard deviation σ′ =
√
ζ(1 − ζ)n. Because

σR ≈
√
ζn(1 − ζn/R) ≈

√
ζn(1 − α),

P (V ≤ αR) ≈ P
(V − ζn

σ′
≤

√
1 − α

1 − ζ
Φ∗(θ)

)
≈ Φ

(√1 − α

1 − ζ
Φ∗(θ)

)
.

Therefore, if θ = Γ(ξn:R) = Γ(ζ/(1 − π)), then P (V ≤ αR) ≤ 1 − γ.

4.3. Asymptotic results

By assumption, F (u) = (1 − π)u + πG(u) is concave on [0, 1]. The case

α ≥ 1 − π is trivial since all the null hypotheses can be rejected with pFDR

= 1 − π ≤ α. For α ∈ (α∗, 1 − π), define

u∗ = u∗(α) = the unique u ∈ (0, 1) with (1 − π)u = αF (u) ,

which is a counterpart of the solution to u = αF (u) for the original BH procedure

(4.4) (Genovese and Wasserman (2002) and Chi (2007)).

For comparison with our procedures, Proposition 4.1 summarizes the asymp-

totic behavior of the BH procedure (4.3) under the subcritical and the supercrit-

ical conditions, respectively.

Proposition 4.1. The following are true for the procedure at (4.3).

(a) If α ∈ (α∗, 1 − π) then, as n → ∞, R/n
P

−→ F (u∗), pFDR → α, and

pFDEPα → 1/2.

(b) If α ∈ (0, α∗) then, as n→ ∞, R
d
→ κ, pFDR → α∗, and

pFDEPα → 1 −
∞∑

k=1

pbin(αk; k, α∗)qk

where, letting c = α/α∗, qk = kk(1 − c)cke−kc/k!.

Our first result states that procedure (4.6) is adaptive for pFDR control.

Specifically, in the subcritical case, the pFDR is asymptotically controlled at the

target level, whereas in the supercritical case, the number of rejections tends to

0.

Theorem 4.1. (pFDR control with known π) The following are true for proce-

dure (4.6) as n→ ∞.

(a) If α ∈ (α∗, 1 − π), the procedure is asymptotically the BH procedure (4.3), so

that R/n
P

−→ F (u∗) and pFDR → α.
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(b) If α ∈ (0, α∗), the procedure is asymptotically trivial: P (R = 0) → 1.

The adaptability of the pFDEP controlling procedure (4.7) is established
next. First, in the subcritical case, the procedure can asymptotically control
pFDEPα at any specified level. For the BH procedure (4.3), by Proposition

4.1(a), pFDEPα → 1/2. Second, in the supercritical case for procedure (4.7),
R asymptotically can take at most two values, and pFDEPα is asymptotically
controlled if the specified level is attainable. For the BH procedure (4.3), by

Proposition 4.1(b), R can take a large value with a positive probability, and
pFDEPα tends to a constant level.

Theorem 4.2. (Subcritical pFDEP control with known π) Let α∗ < α < 1 − π
and 0 < γ < 1. The following are true for procedure (4.7) as n→ ∞.

(a) R/n
P

−→ F (u∗), pFDR → α, and pFDEPα → γ.

(b) The probability that (4.7) and (4.7a) are identical tends to 1.

Theorem 4.3. (Supercritical pFDEP control with known π) Let 0 < α < α∗.

Define ℓ0 = max{k ≥ 1 : qbin(1 − γ; k, α∗) ≤ αk} and ℓ1 = max{k ≥ 1 :
qbin(1 − γ; k, α∗) + 1 ≤ αk}. The following statements hold for procedure (4.7)
as n→ ∞.

(a) P (R ∈ {ℓ0, ℓ1}) → 1.

(b) For ℓ = ℓ0, ℓ1, V |R = ℓ
d
→ Bin(ℓ, α∗).

(c) If γ > γ∗, then lim pFDEPα ≤ γ; if γ < γ∗, then P (R = 0) → 1.
(d) The probability that (4.7) and (4.7b) are identical tends to 1.

We next consider power of the proposed adaptive procedures. Let N0 be the
total number of true nulls. Then the realized power is

ψn =
(R − V )

(n−N0)
. (4.8)

The result below shows that the powers of procedures (4.6), (4.7) and (4.3) are

asymptotically the same. Consequently, procedures (4.6) and (4.7) asymptoti-
cally maintain the same power as the BH procedure (4.3), but achieve a stricter
control in terms of pFDR and pFDEP.

Proposition 4.2. If α ∈ (α∗, 1 − π), then ψn
P

−→ G(u∗) for procedures (4.3),

(4.6), and (4.7). If α ∈ (0, α∗), then ψn
P

−→ 0 for the three procedures.

5. Procedure: Unknown Fraction of False Nulls and Increasingly

Sparse False Nulls

We now consider that both πn and Gn are unknown, but that Gn has a
continuous and strictly decreasing density. We restrict our discussion to pFDEP

control. pFDR control can be treated similarly.
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5.1. Description

Our approach is to modify procedure (4.7) for pFDEP control. Because πn

is unknown, we replace it with the most conservative estimate for the fraction of

false nulls, i.e., 0. Then we obtain the following procedure.

PFDEP control with unknown πn: Reject the R smallest p-values, where

R = max

{
k : qbin

(
Γ∗(ξn:k); k,

nξn:(k∨kn)

k ∨ kn

)
≤ αk

}
(5.1)

with kn ∼ c log n as n→ ∞, where c is a positive constant and

Γ∗(t) = Φ
(√

1 +
α− t

1 − α
1 {t > ξn:kn

}Φ∗(1 − γ)
)
.

Under the conditions of Theorem 5.1, any kn → ∞ of order o((log n)4) can be

used in (5.1) to yield the same asymptotic behavior of the procedure. In practice,

we have used kn ∼ c log n with c a positive constant.

Similar to (4.7), procedure (5.1) adapts to both sub- and supercritical cases.

Note that, because 1 − πn is not incorporated in (5.1), given the value of α, the

FDR and FDP exceedance level actually realized by the procedure is (1 − πn)α

(cf. Benjamini and Hochberg (2000) and Storey et al. (2004)). For this reason,

the sub- and supercritical cases need to be written as

subcritical: lim
n

α
(n)
∗

(1 − πn)
< α,

supercritical: lim
n

α
(n)
∗

(1 − πn)
> α.

(5.2)

Recall α
(n)
∗ = 1/F ′

n(0). In the subcritical case, asymptotically,

R = max

{
k : qbin

(
Γ(ξn:k); k,

nξn:k

k

)
≤ αk

}
, (5.1a)

where Γ(t) = Φ(
√

(1 − t)/(1 − α) Φ∗(1 − γ)). In the supercritical case, asymp-

totically,

R = max

{
k : qbin

(
1 − γ; k,

nξn:kn

kn

)
≤ αk

}
. (5.1b)

First, suppose πn ≡ π > 0 and Gn ≡ G. For procedure (5.1), the critical

value of the level α that divides the subcritical and the supercritical cases is
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α∗/(1 − π) due to the conservative estimation of π by 0. This follows from a

similar argument for the BH procedure (4.4) in Genovese and Wasserman (2002)

and Chi (2007).

In the supercritical case α < α∗/(1 − π), it is straightforward to extend

Theorem 4.3: procedure (5.1) asymptotically controls pFDEPα if γ > γ∗, and

makes no rejection if γ < γ∗. In the subcritical case α > α∗/(1−π), both the BH

procedure (4.4) and procedure (5.1) asymptotically control pFDEPα, and in fact

become more conservative than the target pFDR control level α and pFDEPα

control level γ:

pFDR → (1 − π)α, pFDEPα → 0.

Such “over-control” is known for the BH procedure (4.4) (cf. Benjamini and

Hochberg (2000), Finner and Roters (2001), Storey (2002) and Storey et al.

(2004)), and can be similarly demonstrated for procedure (5.1).

Nevertheless, the over-control of pFDEP is an asymptotic behavior of proce-

dure (5.1), and is evident only when n is sufficiently large. In fact, the smaller π

is, the larger n has to be for the asymptotic behavior to take effect; see Section

6. In this situation, it seems more relevant to characterize the performance of

procedure (5.1) when π is close to 0 but relatively, n is not large enough. It is also

of interest to address the same question for the BH procedure (4.4) and to com-

pare the two procedures. The approach we take is to investigate the asymptotic

behaviors when false null hypotheses become increasingly sparse, i.e., πn → 0 as

n→ ∞.

5.2. Asymptotic results

The presence of sparsity raises some interesting questions ( Abramovich et al.

(2006) and Donoho and Jin (2004, 2005)). Previous studies showed that, when

false nulls become increasingly sparse, the disparity between the null and alterna-

tive distributions must increase accordingly in order to achieve good estimation.

The same point applies to pFDEP control.

First, consider the subcritical case. Under the increasing sparsity condition,

the subcritical case defined in (5.2) can be rewritten as

πn → 0, lim
n→∞

α
(n)
∗ < α. (5.3)

In order to achieve pFDEP control, some constraints are necessary on how fast

the fraction of false nulls can decrease and, at the same time, how fast the dispar-

ity between the null and alternative distributions should increase. In Theorem

5.1 below, the constraints are specified by condition (5.4). The result reveals a

significant difference between procedure (5.1) and the BH procedure (4.4): the
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former asymptotically achieves exact control of pFDEP whereas the latter grad-

ually fails to control pFDEP.
For each large n, let

un = the unique point u ∈ (0, 1) such that u = αFn(u).

By the concavity of Fn and condition (5.3), un is well-defined for large n.

Theorem 5.1. (Subcritical pFDEP control with vanishing πn) Under condition

(5.3) suppose that, for any λ 6= 1,

nunπ
2
n

(log n)4

[
λ−

Gn(λun)

Gn(un)

]2

→ ∞. (5.4)

Then the following statements hold as n→ ∞.

(a) For procedure (5.1), R
P

−→ ∞ and pFDEPα → γ. That is, both FDEPα and

pFDEPα are asymptotically controlled exactly at γ.

(b) The probability that (5.1) and (5.1a) are identical tends to 1.

(c) In contrast to (a), for the BH procedure (4.4), pFDEPα → 1/2.
(d) For both procedures (4.4) and (5.1), the power ψn as defined in (4.8) satisfies

ψn/Gn(un)
P

−→ 1.

As an example of condition (5.4), let Gn(u) = uθn with θn ↓ 0. Because

G′
n(0) = ∞, the procedure is always subcritical. Let c = 1/α − 1. Then un =

αFn(un) implies un = [πn/(c + πn)]1/(1−θn). From Gn(λun)/Gn(un) = λθn → 1,

θn → 0, and πn → 0, it follows that Gn(un) ∼ π
θn/(1−θn)
n and (5.4) is equivalent

to nπ
2+1/(1−θn)
n /(log n)4 → ∞. Therefore, if πn ∼ n−1/3+ǫ with ǫ > 0, then (5.4)

is satisfied.

Next consider the supercritical case where

πn → 0, lim
n→∞

α
(n)
∗ > α. (5.5)

Theorem 5.2. (Supercritical pFDEP control with vanishing πn) Under condi-

tion (5.5), the probability that procedures (5.1) and (5.1b) are identical tends to

1, and there is a constant K0 such that P (R < K0) → 1.

Furthermore, suppose that

lim
n→∞

α
(n)
∗ = lim

n→∞

F ∗
n

(kn

n

)

kn

n

< 1, (5.6)

and denote the limit by α∗. Let ℓ0 = max{k ≥ 1 : qbin(1 − γ; k, α∗) ≤ αk} and

ℓ1 = max{k ≥ 1 : qbin(1 − γ; k, α∗) + 1 ≤ αk}. Then the following statements

hold for procedure (5.1) as n→ ∞.
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(a) P (R ∈ {ℓ0, ℓ1}) → 1.

(b) For ℓ = ℓ0, ℓ1, V |R = ℓ
d
→ Bin(ℓ, α∗).

(c) If γ > γ∗, then lim pFDEPα ≤ γ; if γ < γ∗, then P (R = 0) → 1.

(d) For both procedures (5.1) and (4.4), the power satisfies ψn
P

−→ 0.

6. Numerical Studies

In this section, we report numerical studies based on simulated data and on

a set of gene expression data to assess the proposed procedures. We label the

procedures as CT and compare them with the BH procedure (4.4) and the proce-

dures proposed by van der Laan et al. (2004, VDP) and Lehmann and Romano

(2005, LR). The VDP procedure rejects the smallest RVDP = ⌊RHommel/(1 − α)⌋

p-values, where ⌊·⌋ denotes the floor function and

RHommel = max
{
k : ξ1:n ≤

γ

n
, · · · , ξk:n ≤

γ

(n+ 1 − k)

}
.

The LR procedure rejects the smallest RLR p-values, where

RLR = max
{
k : ξ1:n ≤

γα1

Cn
, · · · , ξk:n ≤

γαk

Cn

}

with αk = (⌊αk⌋ + 1)/(⌊αk⌋+ n+ 1− k) and Cn =
∑⌊αn⌋+1

j=1 1/j. The VDP and

LR procedures yield FDEPα ≤ γ under arbitrary statistical dependency among

the p-values.

6.1. Simulation study

Throughout, α = 0.2 and γ = 0.05. We examine the performances of the pro-

cedures in terms of several quantities, including P (R > 0), pFDEPα = P (V/R >

α |R > 0), and power = E[(R − V )/(n − N0)], where N0 is the total number

of true nulls. All quantities are computed as Monte Carlo averages from 10, 000

repeated simulations.

In each simulation, the parameter π is the fraction of false nulls under the

mixture model, while the alternative distribution G is a Beta distribution with

density b(1 − x)b−1. As a result, the distribution of p-values has density (1 −

π)x+ πb(1 − x)b−1, and hence α∗/(1 − π) = 1/[1 + (b− 1)π].

Table 1 summarizes the simulation results for procedure (5.1) under four

subcritical configurations, with (π, b) = (0.1, 100), (0.05, 199), (0.02, 496), and

(0.01, 991), respectively. In these configurations, the alternative distribution G is

increasingly concentrated near 0, but the fraction π of false nulls is decreasing to

0, so that α∗/(1−π) is fixed at 1/10.9 = 0.09. Recall that procedure (5.1) involves

a sequence kn ∼ c log n, with c a positive constant. We apply the procedure for
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kn = ⌊log n⌋ and for 2 ⌊log n⌋. Table 1 shows that the results are similar. It also

shows that procedure (5.1) controls pFDEP0.2 at level γ = 0.05 for all the four

configurations when n = 20, 000, but not for π = 0.01 or 0.02 when n = 2, 000.

In the latter cases, π is close to 0 but n is not sufficiently large for the asymptotic

control to take effect. In fact, although R → ∞ in probability as n → ∞, the

probability that R = 0 is 0.54 or greater for π = 0.01 or 0.02 and n = 2, 000.

Table 2 summarizes the simulation results for procedure (5.1) under four

supercritical configurations, with (π, b) = (0.1, 10), (0.05, 19), (0.02, 46), and

(0.01, 91), respectively. The distribution G is increasingly concentrated near 0

and the fraction π is decreasing to 0 as in Table 1, but α∗/(1 − π) is now fixed

at 1/1.9 = 0.53. In this case, it is not possible for any procedure to control

pFDEP0.1 at level γ = 0.05. Procedure (5.1) responds to this fact by almost

never making rejections. In fact, for each configuration of (π, b), rejections only

occur in 0−2 simulations out of 10,000.

Finally, Table 3 summarizes the simulation results for procedure (5.1), BH,

VDP, and LR with (π, b) = (0.05, 199) and (0.05, 19). The results are qualita-

tively similar. Note that the four procedures are not strictly comparable as they

are designed for different purposes: procedure (5.1) for pFDEP control, the BH

procedure for FDR control, and the VDP and LR procedures for FDEP control.

Nevertheless, three observations are worth mentioning. First, procedure (5.1)

is adaptive, making rejections appropriately under the subcritical configuration,

Table 1. Simulation results for procedure (5.1): subcritical case, α = 0.2,

γ = 0.05. For each pair (n, kn), results are obtained for 4 different (π, b),

with π the fraction of the alternative Beta(1, b) distribution, b = 100, 199,

496, and 991, respectively. Top kn = ⌊logn⌋. Bottom: kn = 2 ⌊logn⌋.

π 0.1 0.05 0.02 0.01 0.1 0.05 0.02 0.01

n = 2000, kn = 7 n = 20, 000, kn = 9

P (R > 0) 0.9960 0.8502 0.4588 0.2795 1 1 1 0.9951

pFDR 0.13 0.13 0.12 0.12 0.17 0.17 0.16 0.15

FDR 0.13 0.11 0.054 0.034 0.17 0.17 0.16 0.15

pFDEP
α

0.011 0.046 0.10 0.14 0 0.01 0.034 0.045

FDEPα 0.011 0.039 0.047 0.038 0 0.01 0.034 0.045

Power 0.70 0.48 0.19 0.12 0.85 0.83 0.78 0.70

n = 2000, kn = 14 n = 20, 000, kn = 18

P (R > 0) 0.9950 0.8289 0.3545 0.1091 1 1 1 0.9952

pFDR 0.13 0.13 0.13 0.15 0.17 0.17 0.16 0.15

FDR 0.13 0.11 0.045 0.017 0.17 0.17 0.16 0.15

pFDEP
α

0.011 0.046 0.11 0.20 0 0.01 0.034 0.045

FDEPα 0.011 0.038 0.039 0.022 0 0.01 0.034 0.045

Power 0.70 0.48 0.18 0.067 0.85 0.83 0.78 0.70
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Table 2. Simulation results for procedure (5.1): supercritical case, α =

0.2, γ = 0.05.

π 0.1 0.05 0.02 0.01 0.1 0.05 0.02 0.01

n = 2, 000, kn = 7 n = 20, 000, kn = 9

P (R > 0) 0 0.0002 0 0 0 0 0.0002 0

pFDR NA 0.30 NA NA NA NA 0.55 NA

FDR 0 <0.0001 0 0 0 0 0.0001 0

pFDEP
α

NA 0.50 NA NA NA NA 1 NA

FDEPα 0 0.0001 0 0 0 0 0.0002 0

Power 0 <0.0001 0 0 0 0 <0.0001 0

n = 2, 000, kn = 14 n = 20, 000, kn = 18

P (R > 0) 0 0 0 0 0 0 0 0

pFDR NA NA NA NA NA NA NA NA

FDR 0 0 0 0 0 0 0 0

pFDEP
α

NA NA NA NA NA NA NA NA

FDEPα 0 0 0 0 0 0 0 0

Power 0 0 0 0 0 0 0 0

and almost never under the supercritical configuration. Second, the BH proce-

dure controls the FDR at the specified level α = 0.1 but, unlike procedure (5.1),

fails to control FDEP0.1 or pFDEP0.1 under the subcritical configuration. Third,

although the VDP and LR procedures are able to control FDEP for any de-

pendency structure of the p-values, they appear substantially less powerful than

procedure (5.1) and the BH procedure, especially in the subcritical case.

6.2. Application to gene expression

We analyze the data reported in the study of Hedenfalk et al. (2001),

who sought to identify differentially expressed genes between breast cancer

tumors in patients who were BRCA1- and BRCA2-mutation-positive (cf.

http://research.nhgri.nih.gov/microarray/NEJM Supplement/). The raw

data consist of 3,226 genes on 7 BRCA1 arrays and 8 BRCA2 arrays. For ease of

comparison, we remove the genes with measurements exceeding 20 and analyze

the data for the remaining 3,170 genes on the log2 scale.

First, following Storey and Tibshirani (2003), we used a two-sample t-

statistic and compute its p-value based on permutations of array labels to test

each gene for differential expression between BRCA1 and BRCA2 arrays. Next

we applied procedure (5.1), as well as the BH (4.4), VDP, and LR procedures, to

the resulting p-values. For this example, Storey and Tibshirani (2003) estimated

that 67% of the genes are not differentially expressed. Based on this estimate,

we also applied procedures (4.7) and (4.3) with 1−π ≈ 0.67. For all the adaptive
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Table 3. Comparison of simulation results for procedures: α = 0.2, γ = 0.05.

π = .05 CT BH VDP LR CT BH VDP LR

Subcritical n = 2, 000, kn = 7 n = 20, 000, kn = 9

P (R > 0) 0.8502 1 0.4260 0.0768 1 1 0.4168 0.0615

pFDR 0.13 0.19 0.084 0.10 0.17 0.19 0.091 0.082

FDR 0.11 0.19 0.036 0.0077 0.17 0.19 0.038 0.0051

pFDEP
α

0.046 0.39 0.10 0.10 0.01 0.22 0.12 0.086

FDEPα 0.039 0.39 0.044 0.0078 0.01 0.22 0.048 0.0053

Power 0.48 0.89 0.0051 0.0007 0.83 0.89 0.0005 0.0001

Supercritical n = 2, 000, kn = 7 n = 20, 000, kn = 9

P (R > 0) 0.0002 0.3749 0.0892 0.0151 0 0.3862 0.0953 0.0114

pFDR 0.30 0.49 0.48 0.52 NA 0.50 0.51 0.49

FDR <0.0001 0.18 0.043 0.0079 0 0.19 0.048 0.0056

pFDEP
α

0.50 0.69 0.49 0.52 NA 0.70 0.52 0.50

FDEPα 0.0001 0.26 0.044 0.0079 0 0.27 0.050 0.0057

Power <0.0001 0.0049 0.0005 <0.0001 0 0.0005 <.0001 <.0001

procedures, we used kn = ⌊log n⌋ and 2 ⌊log n⌋. We only report the results

obtained with kn = ⌊log n⌋. The results obtained with kn = 2 ⌊log n⌋ are similar.

Figure 1 shows the number of rejections (i.e., significant genes) by the tested

procedures across a range of values of α ≤ 0.2 and γ ≤ 0.2. Each procedure de-

clares a gene significant if the associated p-value is below a threshold. Therefore,

the sets of significant genes generated by the procedures are nested within each

other. Note that the procedures are based on different criteria of controlling false

discoveries and therefore are not strictly comparable. Compared with the BH

procedures (4.4) and (4.3), the proposed procedures (4.7) and (5.1) control the

FDP in terms of excessive probability rather than expectation, and therefore are

stricter when it comes to labelling genes as significant. For example, at control

level α = 0.1, 221 genes are rejected by the BH procedure (4.4), but only 125 of

them are rejected by the procedure (5.1) with pFDEP0.1 ≤ γ = 0.05. That is,

in order to have false discovery proportion below 0.1 with 95% of chance, only

about 1/2 the genes can be rejected by procedure (5.1). The nonparametric VDP

and LR procedures yield much more conservative results. Across all the range

of values of α ≤ 0.02 and γ ≤ 0.2, the VDP procedure rejects at most 10, and

the LR procedure rejects at most 5 genes. Finally, by using the estimate 0.67 of

1 − π instead of 1, each procedure yields more genes declared significant at the

same level of α and γ, leading to improved power.

7. Remarks

The work can be extended in several directions. First, our results are ob-

tained under a mixture model where p-values are independent. This simple set-
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Figure 1. Comparison of procedures applied to gene expression data.

Left : BH and CT stand for procedures (4.4) and (5.1), respectively. Right :

BH and CT stand for procedures (4.3) and (4.7) with kn = 8, respectively,

both using 1−π ≈ 0.67. For γ = 0.2, 0.1 and 0.05, the number of significant

genes are 8−10, 6−7 and 2 with VDP, 1−5, 1−2, and 1 with LR.

ting helps us in understanding the intrinsic nature of pFDR and pFDEP and

the mechanisms that can be exploited to achieve adaptive control. The insights

gained here are valuable for further investigation of the control of pFDR or

pFDEP in more general settings. A potentially important idea is to estimate

the distribution or the mean and variance of the number of false rejections given

the total number of rejections. Resampling techniques can be employed for this

purpose in multiple testing problems with dependent p-values.

Second, we have used point estimates of pFDR and pFDEP for fixed rejec-

tion regions to construct procedures to control pFDR and pFDEP. It would be

interesting to study the variations of the point estimates, and to investigate how

to incorporate interval estimates (Storey (2002)).

Third, the fraction of false nulls, if unknown, is underestimated by 0 in

the proposed procedures. This fraction may be estimated from data, and a

less biased estimate may yield higher power given the same level of control; see

Benjamini and Hochberg (2000) and Storey (2002), and our example in Section

6.2. It would be interesting to investigate how to estimate this fraction, and

important to evaluate how uncertainty in the estimate might affect the proposed

procedures.
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Appendix: Selected Theoretical Details

A1. Proof of Proposition 3.1

(a) According to (2.1), let δ = (δ1, . . . , δn) be a multiple testing procedure.
Then, given ξk = tk, k = 1, . . . , n, the set of rejected nulls is uniquely deter-
mined. Thus R is uniquely determined as well. Because (ξ1,H1), . . . , (ξn,Hn)
are independent, by Proposition 2.1(b), for each k,

P (Hk = 0 | ξj = tj, j = 1, . . . , n) = P (Hk = 0 | ξk = tk) = βtk ≥ β∗.

Then for t1, . . . , tn with R > 0,

E (V/R ξj = tj, t = 1, . . . , n)

=E

(
1

R

n∑

k=1

(1 −Hk) ξj = tj, t = 1, . . . , n

)

=
1

R

n∑

k=1

E(1 −Hk | ξj = tj , t = 1, . . . , n) ≥ β∗.

Take the expectation over those t1, . . . , tn for which R > 0. Then pFDR ≥ β∗.
If G(t) is concave, then α∗ = β∗ and hence pFDR ≥ α∗.

(b) Given R = r > 0, let ξi1, . . . , ξir be the rejected p-values. By Proposition 2.1,
the Hik are independent of each other and P (Hik = 0) ≥ β∗. As a result, V =∑r

k=1(1−Hik) dominates Z1 + . . .+Zr, where Z1, . . . , Zr are iid ∼ Bernoulli(β∗).
Therefore,

P (V > αr |R = r) ≥ P (Z1 + . . .+ Zr > αr) ≥ 1 − sup
k≥1

pbin(αk; k, α).

Because the procedure is nontrivial, i.e., P (R > 0) > 0, taking expectation over
r > 0, we get P (V > αR |R > 0) ≥ 1 − supk≥1 pbin(αk; k, α).

A2. Proof of Proposition 3.2

Given R = r > 1, let ξi1, . . . , ξir be the p-values associated with rejected
nulls. As in the proof of Proposition 3.1, V stochastically dominates Z1+. . .+Zr,
where Z1, . . . , Zr are iid ∼ Bernoulli(β∗). Then

P
(V
R

≤ α |R = r, ξik , k = 1, . . . , r, are rejected p-values
)

≤P (Z1 + . . .+ Zr ≤ αn).

Since α < β∗, I = supt<0[αt− logE(etZ1)] > 0. On the other hand, by Chernoff’s
inequality, P (Z1 + . . . + Zr ≤ αr) ≤ e−rI . Because the bound is independent of
ξik , P (V/R ≤ α |R = r) ≤ e−rI . Fix c > 0. For any n,

P
(V
R

≤ α,R ≥ c log n
)
≤ max

r≥c log n
e−rI ≤ n−cI .
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If c > 1/I, then Pn := P (V/R ≤ α,R ≥ c log n) has a finite sum over n and
hence, by the Borel-Cantelli lemma, with probability 1, for all large n, the events
that V/R ≤ α and R ≥ c log n cannot happen at the same time. This completes
the proof.

A3. Sketch proofs of main theorems

Theorems 4.2 and 5.1 deal with the subcritical case. The proof of Theorem
4.2 follows closely the heuristics given in Section 4.2. The proof of Theorem 5.1
follows the same idea. The only subtle point is that the fraction of false nulls is
increasingly smaller. In order for the Central Limit Theorem (CLT) to still apply,
we need to show (1) although the number of rejections R is o(n), it converges to
∞, and (2) the number of false rejections, V , closely follows Bin(R,α) as n→ ∞.
These two facts guarantee that the argument based on the CLT in the heuristics
still holds, hence leading to the desired convergence. Condition (5.4) will be used
to establish the two facts.

Theorems 4.3 and 5.2 deal with the supercritical case. For Theorem 4.3,
first, R is bounded (in probability) as n → ∞. Indeed, if R → ∞, then by the
weak law of large numbers (WLLN), it can be shown that (1−π)nξn:(k∨kn)/(k ∨
kn) → (1 − π)/F ′(0) = β∗. Then by (4.7), one would have qbin(θ;R,β∗) ≤
αR, where θ is a positive constant. However, because β∗ > α, by the WLLN,
qbin(θ; kβ∗) = (1 + o(1))β∗k > αk as k → ∞. This contradiction implies that
R is finite. This is the main step of the proof. Then, because kn → ∞, (4.7) is
asymptotically the same as (4.7b), which implies that R must be the largest k
satisfying qbin(1 − γ; k, β∗) ≤ αk. The remainder of the proof of Theorem 4.3
follows from this observation. Theorem 5.2 can be proved in a similar way.

For more details of the proofs, see Supplemental Materials.
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