Statistica Sinica 18(2008): Supplement, S91~S98

PSEUDO-LIKELIHOOD ESTIMATION METHOD FOR NONHOMOGENEOUS GAMMA PROCESS MODEL WITH RANDOM EFFECTS

Xiao Wang

University of Maryland

Supplementary Material

The proofs of the theorems are established similarly to the nonhomogeneous Poisson process models discussed by Wellner and Zhang (2000, 2007). Let C or C_i , $i = 1, 2, \ldots$, stand for generic constants which may change from line to line in the proof. Let \mathbb{P}_n denote the empirical measure and \mathbb{G}_n denote the empirical process. Denote $\Lambda(T_{K,j})$ and $\Lambda_0(T_{K,j})$ by $\Lambda_{K,j}$ and $\Lambda_{0,K,j}$, respectively. Let $\alpha = (\Lambda, \gamma, \delta)$ and $\tilde{\alpha}_n = (\tilde{\Lambda}_n, \tilde{\gamma}_n, \tilde{\delta}_n)$. The true parameters are represented by Λ_0 , γ_0 and δ_0 .

Proof of Theorem 1. Denote

$$\tilde{m}_{\alpha}(X) = \sum_{j=1}^{K} \left[\log \frac{\Gamma(\Lambda_{k,j} + \delta)}{\Gamma(\Lambda_{k,j})\Gamma(\delta)} + \Lambda_{k,j} \log \frac{Y_{k,j}}{Y_{k,j} + \gamma} + \delta \log \frac{\gamma}{Y_{k,j} + \gamma} \right],$$

 $\tilde{M}_n(\alpha) = \mathbb{P}_n \tilde{m}_\alpha(X)$ and $\tilde{M}(\alpha) = P \tilde{m}_\alpha(X)$. Then, the MPLE $\tilde{\alpha}_n = \arg \max_\alpha \tilde{M}_n(\alpha)$. Our proof of consistency will use the one-sided Glivenko-Cantelli theorem which is summarized as Theorem A.1 by Wellner and Zhang (2000). We first find the upper envelop function for the function class $\{\tilde{m}_\alpha(X) : \alpha \in \mathcal{F} \times \mathcal{R} \times \mathcal{R}\}$. Note that $H_\delta(x) = \log \Gamma(x+\delta) - \log \Gamma(x)$ is an increasing function of x. We have

$$\tilde{m}_{\alpha}(X) \leq \sum_{j=1}^{K} \log \frac{\Gamma(\Lambda_j + \delta)}{\Gamma(\Lambda_j)\Gamma(\delta)} \leq \sum_{j=1}^{K} [H_{\delta}(\Lambda(T)) - \log \Gamma(\delta)] \leq CK.$$

Next we show that $\tilde{\alpha}_n$ is uniformly bounded. $\tilde{\gamma}_n$ and δ_n is bounded because it is in the bounded compact set \mathcal{R} . We only need to show that $\tilde{\Lambda}_n$ is uniformly bounded. Since $\tilde{M}_n(\tilde{\alpha}_n) - \tilde{M}_n(\alpha_0) \geq 0$, it follows that

$$\mathbb{P}_n \sum_{j=1}^K \tilde{\Lambda}_{n,K,j} \le \mathbb{P}_n \sum_{j=1}^K \tilde{\Lambda}_{n,K,j} \log \frac{Y_j + \tilde{\gamma}_n}{Y_{K,j}}$$

$$\leq \mathbb{P}_n \sum_{j=1}^K \log \frac{\Gamma(\tilde{\Lambda}_j + \tilde{\delta})}{\Gamma(\tilde{\Lambda}_{K,j})\Gamma(\tilde{\delta})} + \tilde{\delta} \log \frac{\tilde{\gamma}}{Y_{K,j} + \tilde{\gamma}} - \tilde{M}_n(\alpha_0)$$

$$\leq \mathbb{P}_n \sum_{j=1}^K H_{\tilde{\delta}}(\Lambda(T)) - \log \Gamma(\tilde{\delta}) - \tilde{M}_n(\alpha_0) \leq \mathbb{P}_n CK - \tilde{M}_n(\alpha_0),$$

where the right hand side has finite limit by strong law of large number. On the other hand,

$$\lim \sup_{n \to \infty} \mathbb{P}_n \sum_{j=1}^K \tilde{\Lambda}_{n,K,j} \ge \lim \sup_{n \to \infty} \mathbb{P}_n \sum_{j=1}^K \mathbb{1}_{[b,T]}(T_{K,j}) \tilde{\Lambda}_{n,K,j}$$
$$\ge \lim \sup_{n \to \infty} \tilde{\Lambda}_n(b) \sum_{j=1}^K \mathbb{1}_{[b,T]}(T_{K,j}) = \lim \sup_{n \to \infty} \tilde{\Lambda}_n(b) \mu([b,T]).$$

So, $\tilde{\Lambda}_n$ is uniformly bounded almost surely for $t \in [0, b]$ if $\mu([b, T]) > 0$ for some 0 < b < T or for $t \in [0, T]$ if $\mu(\{T\}) > 0$.

First consider the case when $\mu({T}) > 0$ and the other case is similar. We have

$$\lim \sup_{n \to \infty} \tilde{\Lambda}_n(b) \le \frac{C}{\mu(\{T\})} = M_T < \infty.$$

By Helly-Selection Theorem, $(\tilde{\Lambda}_n, \tilde{\gamma}_n, \tilde{\delta}_n)$ has a subsequence $(\tilde{\Lambda}_{n'}, \tilde{\gamma}_n, \tilde{\delta}_n)$ converges to $\alpha^+ = (\Lambda^+, \gamma^+, \delta^+)$ where Λ^+ is an increasing function on [0, T] taking values in $[0, M_T]$. Consider the function class

$$\aleph = \{ \tilde{m}_{\alpha}(X) : (\gamma, \delta) \in \mathcal{R} \times \mathcal{R}, \Lambda \in \mathcal{F}_T \},\$$

where $\mathcal{F}_T = \{\Lambda \in \mathcal{F} : \Lambda(T) \leq M_T + 1\}$. Note that \mathcal{F}_T is compact under d. Since $\tilde{M}_n(\alpha_0) \to \tilde{M}(\alpha_0)$ by strong law of large number and $\tilde{M}_n(\tilde{\alpha}_n) \geq \tilde{M}_n(\alpha_0)$, we have $\tilde{M}(\alpha_0) \leq \liminf_{n \to \infty} \tilde{M}_n(\tilde{\alpha}_n)$. Moreover, we showed that the function $\tilde{m}_\alpha(X)$ has an integrable envelope function. By one-sided Glivenko-Cantelli theorem, we have

$$\lim_{n \to \infty} \sup_{\alpha} (\mathbb{P}_n - P)(\tilde{m}_{\alpha}) \le 0, \quad a.s.$$

So, $\limsup_{n'\to\infty} \tilde{M}_{n'}(\tilde{\alpha}_{n'}) \leq \tilde{M}(\alpha^+).$

Next, we show that α_0 is the unique maximum of $\tilde{M}(\alpha)$. Taylor expansion of $\log(Y_{K,j} + \gamma)$ at γ_0 , we have

$$\log(Y_{K,j} + \gamma) = \log(Y_{K,j} + \gamma_0) + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}(k-1)!}{(Y_{K,j} + \gamma_0)^k} (\gamma - \gamma_0)^k.$$

Then,

$$E[\log(Y_{K,j}+\gamma)] = \psi_0(\Lambda_{0,K,j}) - \psi_0(\delta_0) + \log \gamma_0 + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}(k-1)! \prod_{i=0}^{k-1} (\delta_0 + i)}{\prod_{i=0}^{k-1} (\Lambda_{0,K,j} + \delta_0 + i)} \left(\frac{\gamma - \gamma_0}{\gamma_0}\right)^k, E\left[\frac{1}{Y_{K,j}+\gamma}\right] = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}k! \prod_{i=0}^{k-1} (\delta_0 + i)}{\prod_{i=0}^{k-1} (\Lambda_{0,K,j} + \delta_0 + i)} \frac{(\gamma - \gamma_0)^{k-1}}{\gamma_0^k}.$$

Direct calculation of $\tilde{M}(\alpha) = Pm_{\alpha}(X)$ yields that $\tilde{M}(\alpha)$ has its unique maximal when $\Lambda = \Lambda_0$, $\gamma = \gamma_0$ and $\delta = \delta_0$. Thus, $\alpha^+ = \alpha_0$, a.s. Finally, the dominated convergency theorem yields the consistency of $\tilde{\alpha}_n$ under d.

Proof of Theorem 2. We derive the rate of convergence of $(\tilde{\Lambda}_n, \tilde{\gamma}_n, \tilde{\delta}_n)$ by checking the conditions in Theorem 3.2.5 or Corollary 3.2.6 of van der Vaart and Wellner (1996). Since α_0 is the maximum of $\tilde{M}(\alpha)$, then the first derivative is zero at α_0 and the second derivative is negative definite. Thus, for α in a neighborhood of α_0 , there there exists a constant C such that $\tilde{M}(\alpha) - \tilde{M}(\alpha_0) \leq -Cd^2(\alpha, \alpha_0)$. Let

$$\tilde{M}_{\rho} = \{\tilde{m}_{\alpha}(X) - \tilde{m}_{\alpha_0}(X) : d(\alpha, \alpha_0) < \rho\}$$

be a class of functions. To find the convergence rate, we need to find $\phi(\rho)$ such that

$$E \sup_{d(\alpha,\alpha_0) < \rho} \| \mathbb{G}_n \|_{\tilde{M}_{\rho}} \le C \phi(\rho).$$

We shall find the bracket entropy number for class \tilde{M}_{δ} . Let $\mathcal{F}_{\rho} = \{\Lambda \in \mathcal{F} : \|\Lambda - \Lambda_0\|_{\mu} \leq \rho\}$. Since \mathcal{F}_{ρ} is the class of monotone function, it is well known that the set of all monotone functions possess a bracketing entropy of the order $1/\epsilon$. Therefore, for any $\epsilon > 0$, there exists a set of brackets $[\Lambda_1^l, \Lambda_1^u], \ldots, [\Lambda_q^l, \Lambda_q^u]$ with $q < \exp(M_1/\epsilon)$, such that for any $\Lambda \in \mathcal{F}_{\rho}, \Lambda_i^l(t) < \Lambda(t) < \Lambda_i^u(t)$ for all $t \in [T_l, T_u]$ for some i and $\|\Lambda_i^u - \Lambda_i^l\|_{\mu}^2 \leq \epsilon^2$. From Lemma 8.2 in Wellner and Zhang (2005), we also can make these bracketing functions satisfying that $\Lambda_i^u - \Lambda_i^l \leq \gamma_1 = 2\epsilon_2$ and $\Lambda_i^l \geq \gamma_2 = \Lambda_0(T_l) - \epsilon_2$ with $\epsilon_2 = (\sqrt{\epsilon^2 + \delta^2}/C)^{2/3}$ for all $t \in [T_l, T_u]$ and i for sufficient small ϵ and ρ .

Since γ and δ are in a compact set, we can construct an ϵ -net for both γ and δ , $\gamma_1, \ldots, \gamma_p$, with $p = M_2/\epsilon$ such that for any γ there is s such that $|\gamma_s - \gamma| \leq \epsilon$. Similarly we have an ϵ -net for δ , $\delta_1, \ldots, \delta_p$. We can construct a set of brackets for \tilde{M}_{ρ} : $[\tilde{m}_{i,s}^l, \tilde{m}_{i,s}^u]$, $i = 1, \ldots, q$, $s = 1, \ldots, p$, where

$$\tilde{m}_{i,s}^{l} = \sum_{j=1}^{K} \left[H_{\delta_{s_{1}}^{*}}(\Lambda_{i}^{l}(T_{K,j})) - \log \Gamma(\delta_{s_{2}}^{*}) + \Lambda_{i}^{u}(T_{K,j}) \log \frac{Y_{K,j}}{Y_{K,j} + \gamma_{s} + \epsilon} \right]$$

$$+(\delta_s+\epsilon)\log\frac{\delta_s-\epsilon}{Y_{K,j}+\delta_s-\epsilon}$$

and

$$\tilde{m}_{i,s}^{u} = \sum_{j=1}^{K} \left[H_{\delta_{s_3}^*}(\Lambda_i^u(T_{K,j})) - \log \Gamma(\delta_{s_4}^*) + \Lambda_i^l(T_{K,j}) \log \frac{Y_{K,j}}{Y_{K,j} + \gamma_s - \epsilon} + (\delta_s - \epsilon) \log \frac{\delta_s + \epsilon}{Y_{K,j} + \delta_s + \epsilon} \right],$$

where $\delta_{s_i}^*$, i = 1, 2, 3, 4 are constants in $[\delta_s - \epsilon, \delta_s + \epsilon]$. In the following, we show that $\|\tilde{m}_{i,s}^u - \tilde{m}_{i,s}^l\|_{P,B} \leq C\epsilon^2$ where $\|\cdot\|_{P,B}$ is the "Bernstein norm" defined by

$$||f||_{P,B} = \sqrt{2P(e^{|f|} - 1 - |f|)}.$$

Since $2(e^x - 1 - x) \leq x^2 e^x$ for x > 0, we have $||f||_{P,B}^2 \leq P(e^{|f|}|f|^2)$. With simple algebra, we can see that $\tilde{m}_{i,s}^u - \tilde{m}_{i,s}^l$ are all uniformly bounded and there exists a constant C such that

$$\|\tilde{m}_{i,s}^u - \tilde{m}_{i,s}^l\|_{P,B} \le C\epsilon^2.$$

This shows that the total number of ϵ -brackets for \tilde{M}_{ρ} will be of order $M_1/\epsilon \exp(CM_2/\epsilon)$ and

$$\log N_{[]}(\epsilon, \tilde{M}_{\rho}, \|\cdot\|_{P,B}) \le \frac{C}{\epsilon}.$$

Similarly, we can show that $P(\tilde{m}_{\alpha}(X) - \tilde{m}_{\alpha_0}(X)) \leq C\rho^2$ for any $\tilde{m}_{\alpha}(X) - \tilde{m}_{\alpha_0}(X) \in \tilde{M}_{\rho}(\alpha_0)$. By Lemma 3.4.3 of van der Vaart and Wellner (1996) or Lemma 8.3 of van der Vaart (2002),

$$E_{P}^{*} \|\mathbb{G}_{n}\|_{\tilde{M}_{\rho}} \leq C J_{[]}(\rho, \tilde{M}_{\rho}, ||\cdot||_{P,B}) \left(1 + \frac{J_{[]}(\rho, \tilde{M}_{\rho}, ||\cdot||_{P,B})}{\rho^{2} \sqrt{n}}\right),$$

where

$$J_{[]}(\rho, \tilde{M}_{\rho}, \|\cdot\|_{P,B}) = \int_{0}^{\rho} \sqrt{1 + \log N_{[]}(\epsilon, \tilde{M}_{\rho}(\alpha_{0}), \|\cdot\|_{P,B})} d\epsilon$$
$$= C \int_{0}^{\rho} \sqrt{1 + \frac{1}{\epsilon}} d\epsilon \leq C \int_{0}^{\rho} \epsilon^{-\frac{1}{2}} d\epsilon \leq C \rho^{\frac{1}{2}}.$$

So, $\phi_n(\rho) = \rho^{1/2}(1+\rho^{1/2}/(\rho^2/\sqrt{n})) = \rho^{1/2}+\rho^{-1}/\sqrt{n}$, and $\phi_n(\rho)/\rho$ is a decreasing function of ρ , and $n^{2/3}\phi_n(n^{-1/3}) = 2n^{1/2}$. So, by Theorem 3.2.5 of van der Vaart and Wellner (1996), we have $n^{1/3}d(\tilde{\alpha}_n,\alpha_0) = O_p(1)$.

Proof of Theorem 3. We first show the asymptotic normal distribution of $\tilde{\theta}_n = (\tilde{\gamma}_n, \tilde{\delta}_n)'$ with convergency rate \sqrt{n} . This is done by checking conditions A1-A6 of Theorem 7.1 in Wellner and Zhang (2005), which is a generalization of Huang (1996). Let $\alpha = (\Lambda, \gamma, \delta), \ \theta = (\gamma, \delta), \ \Lambda_t(y) = \int_0^y (1 + th(x)) d\Lambda(x)$ and $h_j = \int_0^{T_{K,j}} h(x) d\Lambda(x)$. Denote

$$\begin{split} m(\alpha) &= \sum_{j=1}^{K} \left[\log \frac{\Gamma(\Lambda_{K,j} + \delta)}{\Gamma(\Lambda_{K,j})\Gamma(\delta)} + \Lambda_{K,j} \log \frac{Y_{K,j}}{Y_{K,j} + \gamma} + \delta \log \frac{\gamma}{Y_{K,j} + \gamma} \right], \\ m_1(\alpha) &= \frac{\partial m}{\partial \theta} = \left(\sum_{j=1}^{K} \left[\frac{\delta}{\gamma} - \frac{\Lambda_{K,j} + \gamma}{Y_{K,j} + \gamma} \right], \sum_{j=1}^{K} \left[\psi_0(\Lambda_{K,j} + \delta) - \psi_0(\delta) + \log \frac{\gamma}{Y_{K,j} + \gamma} \right] \right) \\ m_2(\alpha)[h] &= \frac{\partial m(\Lambda_t, \gamma, \delta)}{\partial t} |_{t=0} = \sum_{j=1}^{K} \left[\psi_0(\Lambda_{K,j} + \delta) - \psi_0(\delta) + \log \frac{\gamma}{Y_{K,j} + \gamma} \right] h_j, \\ m_{11}(\alpha) &= \nabla_{\theta}^2 m = \left[\sum_{j=1}^{K} \left[-\frac{\delta}{\gamma^2} + \frac{\Lambda_{K,j} + \delta}{(Y_{K,j} + \gamma)^2} \right] \sum_{j=1}^{K} \left[\frac{1}{\gamma} - \frac{1}{Y_{K,j} + \gamma} \right] \right], \\ m_{12}(\alpha)[h] &= \frac{\partial m_2(\alpha)[h]}{\partial \theta} = \left(\sum_{j=1}^{K} \left[-\frac{h_j}{Y_{K,j} + \gamma} \right], \sum_{j=1}^{K} \left[\psi_1(\Lambda_{K,j} + \delta) - \psi_1(\Lambda_{K,j}) \right] h_j^1 h_j^2. \end{split}$$

Let $\dot{S}_{11} = Pm_{11}$, $\dot{S}_{12} = Pm_{21} = Pm_{12}$ and $\dot{S}_{22} = Pm_2$. The least favorable directions h_1^* and h_2^* are defined as $\dot{S}_{12} - \dot{S}_{22}[h^*, h] = 0$ for all h. After straightforward algebra, we may choose

$$h_{1j}^* = -\frac{\delta}{\gamma(\Lambda_{K,j} + \delta)(\psi_1(\Lambda_{K,j} + \delta) - \psi_1(\Lambda_{K,j}))},$$
$$h_{2j}^* = \frac{\psi_1(\Lambda_{K,j} + \delta)}{\psi_1(\Lambda_{K,j} + \delta) - \psi_1(\Lambda_{K,j})},$$

for j = 1, ..., K.

To verify A4, we need check $\mathbb{P}_n m_1(\tilde{\alpha}_n) = o_p(n^{-1/2})$ and $\mathbb{P}_n m_2(\tilde{\alpha}_n)[h^*] = o_p(n^{-1/2})$. The first part holds since $\tilde{\alpha}_n$ satisfies the pseudo-score function and $\mathbb{P}_n m_1(\tilde{\alpha}_n) = 0$. Since $(\tilde{\Lambda}_n, \tilde{\gamma}_n, \tilde{\delta}_n)$ maximizes $\mathbb{P}_n m(\Lambda, \gamma, \delta)$ over the feasible region, consider the path $(\tilde{\Lambda}_n + \epsilon h, \tilde{\gamma}_n, \tilde{\delta}_n)$ for nondecreasing h. Then,

$$\lim_{\epsilon \downarrow 0} \frac{d}{d\epsilon} \mathbb{P}_n m(\tilde{\Lambda}_n + \epsilon h, \tilde{\gamma}_n, \tilde{\delta}_n) = \mathbb{P}_n m_2(\tilde{\alpha}_n)[h] = 0.$$

We may choose $h = h_1^*$ and $h = -h_2^*$ to show the second part, where h_1^* is an increasing function and h_2^* is a decreasing function.

To verify A5, note that

$$\sqrt{n}(\mathbb{P}_n - P)(m_1(\alpha; X) - m_1(\alpha_0; X)) = \mathbb{G}_n a_\alpha(X),$$
$$\sqrt{n}(\mathbb{P}_n - P)(m_2(\alpha; X)[h^*] - m_2(\alpha_0; X)[h^*]) = \mathbb{G}_n b_\alpha(X),$$

where

$$\begin{split} a_{\alpha}(X) &= \bigg(\sum_{j=1}^{K} \bigg[\frac{\delta}{\gamma} - \frac{\delta_{0}}{\gamma_{0}} - \frac{\Lambda_{K,j} + \gamma}{Y_{K,j} + \gamma} + \frac{\Lambda_{0,K,j} + \gamma_{0}}{Y_{K,j} + \gamma_{0}} \bigg], \quad \sum_{j=1}^{K} \bigg[\psi_{0}(\Lambda_{K,j} + \delta) - \psi_{0}(\delta) \\ &- \psi_{0}(\Lambda_{0,K,j} + \delta_{0}) + \psi_{0}(\delta_{0}) + \log \frac{\gamma}{Y_{K,j} + \gamma} - \log \frac{\gamma_{0}}{Y_{K,j} + \gamma_{0}} \bigg] \bigg), \\ b_{\alpha}(X) &= \bigg(\sum_{j=1}^{K} \bigg[\psi_{0}(\Lambda_{K,j} + \delta) - \psi_{0}(\Lambda_{0,K,j} + \delta_{0}) - \psi_{0}(\delta) + \psi_{0}(\delta_{0}) + \log \frac{\gamma}{Y_{K,j} + \gamma} \\ &- \log \frac{\gamma_{0}}{Y_{K,j} + \gamma_{0}} \bigg] h_{1j}^{*}, \quad \sum_{j=1}^{K} \bigg[\psi_{0}(\Lambda_{K,j} + \delta) - \psi_{0}(\Lambda_{0,K,j} + \delta_{0}) - \psi_{0}(\delta) \\ &+ \psi_{0}(\delta_{0}) + \log \frac{\gamma}{Y_{K,j} + \gamma} - \log \frac{\gamma_{0}}{Y_{K,j} + \gamma_{0}} \bigg] h_{2j}^{*} \bigg). \end{split}$$

For any $\eta > 0$, define $A(\eta) = \{a_{\alpha} : d(\alpha, \alpha_0) \leq \eta\}$ and $B(\eta) = \{b_{\alpha} : d(\alpha, \alpha_0) \leq \eta\}$. Then by applying the same bracketing argument with the rate of convergence proof, we can show that both classes $A(\eta)$ and $B(\eta)$ are *P*-Donsker. We also can show that $\sup_{a \in A(\eta)} \rho_P(a_{\alpha}(X)) \to 0$ and $\sup_{b \in B(\eta)} \rho_P(b_{\alpha}(X)) \to 0$. Then, by Corollary 2.3.12 of van der Vaart and Wellner (1996), we have

$$\sup_{\substack{|\theta-\theta_0| \le \epsilon_n, \|\Lambda-\Lambda_0\|_{\mu} \le Cn^{-\frac{1}{3}}}} |\mathbb{G}_n a_{\alpha}(X)| = o_P(1)$$

and

$$\sup_{\substack{|\theta-\theta_0|\leq\epsilon_n, \|\Lambda-\Lambda_0\|_{\mu}\leq Cn^{-\frac{1}{3}}}} |\mathbb{G}_n b_{\alpha}(X)| = o_P(1).$$

To verify A6, direct algebra yields

$$P\Big\{m_1(\alpha; X) - m_1(\alpha_0; X) - m_{11}(\alpha_0; X)(\theta - \theta_0) - m_{12}(\alpha_0; X)[\Lambda - \Lambda_0]\Big\}$$

$$\leq C(\|\theta - \theta_0\|^2 + \|\Lambda - \Lambda_0\|_{\mu}^2) = o(|\gamma - \gamma_0|) + o(|\delta - \delta_0|) + O(\|\Lambda - \Lambda_0\|_{\mu}^2).$$

Similarly, we can show that

$$P\Big\{m_2(\alpha; X)[h^*] - m_2(\alpha_0; X)[h^*] - m_{21}(\alpha_0; X)[h^*](\theta - \theta_0)\Big\}$$

$$-m_{22}(\alpha_0; X)[h^*, \Lambda - \Lambda_0] \}$$

$$\leq C(\|\theta - \theta_0\|^2 + \|\Lambda - \Lambda_0\|_{\mu}^2)$$

So we finish the proof of the first part of Theorem 3.

Recall that

$$u_{l} = u_{l}(\gamma) = \frac{1}{\omega_{l}} \sum_{i=1}^{n} \sum_{j=1}^{K_{i}} \left(\log \frac{Y_{K_{i},j}}{Y_{K_{i},j} + \gamma} \right) \mathbb{1}_{\{T_{K_{i},j}^{(i)} = t_{l}\}}, \quad l = 1, \dots, m,$$

and the isotonic version of $u_1(\tilde{\gamma}_n), \ldots, u_m(\tilde{\gamma}_n)$, say $\tilde{\Upsilon}_n(t; \tilde{\gamma}_n)$, is the estimate of function $\Upsilon(t) = -h_{\delta_0}(\Lambda_0(t))$. Since $\tilde{\Lambda}_n(t) = h_{\tilde{\delta}_n}^{-1}(-\tilde{\Upsilon}_n(t; \tilde{\gamma}_n))$, we first derive the asymptotic distribution of $\tilde{\Upsilon}_n(t; \tilde{\gamma}_n)$ and then use the Δ -method to obtain the asymptotic distribution of $\tilde{\Lambda}_n(t_0)$. Define two stochastic processes:

$$V_n(t;\tilde{\gamma}_n) = \sum_{l=1}^m \omega_l u_l(\tilde{\gamma}_n) \mathbb{1}_{\{T_{K_i,j}^{(i)} = t_l\}}, \qquad U_n(t) = \sum_{l=1}^m \omega_l \mathbb{1}_{\{T_{K_i,j}^{(i)} = t_l\}}.$$

Following the same arguments of Theorem 4.3 in Wellner and Zhang (2000), we have

$$P\Big[n^{\frac{1}{3}}(\tilde{\Upsilon}_{n}(t_{0};\tilde{\gamma}_{n})-\Upsilon(t_{0})) \leq x\Big]$$

= $P\Big[\arg\min_{h}\{V_{n}(t_{0}+n^{-\frac{1}{3}}h;\tilde{\gamma}_{n})-(\Upsilon(t_{0})+n^{-\frac{1}{3}}x)U_{n}(t_{0}+n^{-\frac{1}{3}}h)\} \geq 0\Big].$ (1)

Now rewrite V_n and U_n as

$$V_n(t;\gamma) = \sum_{i=1}^n \sum_{j=1}^{K_i} (\log \frac{Y_{K_i,j}}{Y_{K_i,j} + \gamma}) \mathbb{1}_{\{T_{K_i,j}^{(i)} \le t\}} = n \mathbb{P}_n \sum_{j=1}^K (\log \frac{Y_{K,j}}{Y_{K,j} + \gamma}) \mathbb{1}_{\{T_{K,j} \le t\}},$$
$$U_n(t) = \sum_{i=1}^n \sum_{j=1}^{K_i} \mathbb{1}_{\{T_{K_i,j}^{(i)} \le t\}} = n \mathbb{P}_n \sum_{j=1}^K \mathbb{1}_{\{T_{K,j} \le t\}}.$$

Then the argmin term in right hand side of (1) can be rewritten as

$$\arg\min_{h} \left\{ V_{n}(t_{0} + n^{-\frac{1}{3}}h;\tilde{\gamma}_{n}) - (\Upsilon(t_{0}) + n^{-\frac{1}{3}}x)U_{n}(t_{0} + n^{-\frac{1}{3}}h) \right\}$$

$$= \arg\min_{h} \left\{ n^{\frac{2}{3}} \mathbb{P}_{n} \sum_{j=1}^{K} \left(\log \frac{Y_{K,j} + \gamma_{0}}{Y_{K,j} + \tilde{\gamma}_{n}} \right) \left(1_{\{T_{K,j} \le t+n^{-\frac{1}{3}}h\}} - 1_{\{T_{K,j} \le t\}} \right) + n^{-\frac{1}{3}} V_{n}(t_{0} + n^{-\frac{1}{3}}h;\gamma_{0}) - n^{-\frac{1}{3}} \left(\Upsilon(t_{0}) + n^{-\frac{1}{3}}x \right) U_{n} \left(t_{0} + n^{-\frac{1}{3}}h \right) \right\}.$$

By applying the same bracketing argument with the rate of convergence proof, we also have, for $\epsilon_n = O_p(n^{-1/2})$,

$$\sup_{|\gamma-\gamma_0| \le epsilon_n} n^{\frac{2}{3}} \mathbb{P}_n \sum_{j=1}^K \left(\log \frac{Y_{K,j} + \gamma_0}{Y_{K,j} + \gamma} \right) \left(\mathbb{1}_{\{T_{K,j} \le t + n^{-\frac{1}{3}}h\}} - \mathbb{1}_{\{T_{K,j} \le t\}} \right) = o_p(1).$$

Wellner and Zhang (2000) also showed that

...

$$n^{-\frac{1}{3}}V_n(t_0+n^{-\frac{1}{3}}h;\gamma_0) - n^{-\frac{1}{3}}(\Upsilon(t_0)+n^{-\frac{1}{3}}x)U_n(t_0+n^{-\frac{1}{3}}h)$$

$$\to^D \sqrt{\sigma^2(t_0)G'(t_0)}\mathbb{Z}(h) + \frac{1}{2}\Upsilon'(t_0)G'(t_0)h^2 - G'(t_0)xh.$$

Thus, combining the above results, by the Argmax Continuous Mapping Theorem (Van der Varr and Wellner 1996, page 286), we have the following limiting process:

$$\arg\min_{h} \left\{ V_{n}(t_{0} + n^{-\frac{1}{3}}h; \tilde{\gamma}_{n}) - (\Upsilon(t_{0}) + n^{-\frac{1}{3}}x)U_{n}(t_{0} + n^{-\frac{1}{3}}h) \right\}$$

$$\rightarrow^{D}\arg\min_{h} \left\{ \sqrt{\sigma^{2}(t_{0})G'(t_{0})}\mathbb{Z}(h) + \frac{1}{2}\Upsilon'(t_{0})G'(t_{0})h^{2} - G'(t_{0})xh \right\}.$$

Hence,

$$n^{\frac{1}{3}} \Big(\tilde{\Upsilon}_n(t_0; \tilde{\gamma}_n) - \Upsilon(t_0) \Big) \to^d \Big[\frac{\sigma(t_0)^2 \Upsilon'_0(t_0)}{2G'(t_0)} \Big]^{\frac{1}{3}} 2 \arg \max_h \{ \mathbb{Z}(h) - h^2 \},$$

where $\sigma^2(t_0) = \operatorname{var}(\log \frac{Y(t_0)}{Y(t_0) + \gamma_0})$. Further, since the convergence rate for $\tilde{\delta}_n$ is \sqrt{n} ,

$$n^{\frac{1}{3}} \Big[h_{\tilde{\delta}_n}^{-1} (\tilde{\Upsilon}_n(t_0; \tilde{\gamma}_n)) - h_{\delta_0}^{-1} (\tilde{\Upsilon}_n(t_0; \tilde{\gamma}_n)) \Big] = o_p(1).$$

Finally, by Δ -method, we have the proof of the second part of Theorem 3.

Department of Mathematics and Statistics, University of Maryland, Baltimore, MD 21250, U.S.A.

E-mail: wangxiao@umbc.edu

(Received November 2006; accepted March 2007)