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Appendix

Section A.1 details the spatial mixing and moment conditions used to es-

tablish the main results of the manuscript. Section A.2 provides some technical

lemmas to facilitate the proofs of the main results, which are presented in Sec-

tion A.3. In Section A.4, we describe a further result on EL inference under

parameter constraints. Section A.5 describes the spatial bootstrap method used

to implement the spatial EL Bartlett correction from Section 4 of the manuscript.

A.1. Assumptions

To establish the main results on the spatial EL, we require assumptions on

the spatial process and the potential vector Gθ of estimating functions. Recall

that we may collect observations from the real-valued, strictly stationary spatial

process {Zs : s ∈ Z
d} into m-dimensional vectors Ys = (Zs+h1

, . . . , Zs+hm)′,

s ∈ Z
d, using fixed lag vectors h1, . . . ,hm ∈ Z

d for a positive integer m ≥ 1.

Recall Rn = λnR0 ⊂ R
d denotes the sampling region for the process {Zs : s ∈ Z

d}
and Rm,n is the sampling region of the observed Ys, s ∈ Z

d. We first outline some

notation.

For A ⊂ R
d, denote the Lesbegue volume of an uncountable set A as vol(A)

and the cardinality of a uncountable set A as |A|. Limits in order symbols are

taken letting n→ ∞ and, for two positive sequences, we write sn ∼ tn if sn/tn →
1. For a vector x = (x1, . . . , xd)

′ ∈ R
d, let ‖x‖ and ‖x‖∞ = max1≤i≤d |xi| denote

the Euclidean and l∞ norms of x, respectively. Define the distance between two

sets E1, E2 ⊂ R
d as: dis(E1, E2) = inf{‖x − y‖∞ : x ∈ E1,y ∈ E2}.

Let FY (T ) denote the σ-field generated by the random vectors {Ys : s ∈ T},
T ⊂ Z

d, and define the strong mixing coefficient for the strictly stationary random

field {Ys : s ∈ Z
d} as

αY (v,w)=sup{α̃(T1, T2) : Ti ⊂ Z
d, |Ti|≤w, i=1, 2; dis(T1, T2)≥v}, v, w>0,

(8)
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where α̃Y (T1, T2) = sup{|P (A ∩ B) − P (A)P (B)| : A ∈ FY (T1), B ∈ FY (T2)}.
In the following assumptions, let θ0 denote the unique parameter value which

satisfies (1).

Throughout the sequel, we use C to denote a generic positive constant that

does not depend on n or any Z
d points and may vary from instance to instance.

Assumptions

1. As n→ ∞, b−1
n + b2n/λn = o(1) and, for any positive real sequence an → 0,

the number of cubes of anZ
d which intersect the closures R0 and Rd \ R0

is O(a
−(d−1)
n ).

2. There exist nonnegative functions α1(·) and q(·) such that α1(v) → 0 as

v → ∞ and αY (v,w) ≤ α1(v)q(w), v,w > 0. The non-decreasing function

q(·) is bounded for the time series case d = 1, but may be unbounded

q(w) → ∞ as w → ∞ for d ≥ 2.

3. For some 0 < δ ≤ 1, 0 < κ < (5d − 1)(6 + δ)/(dδ) and C > 0, it holds

that E {‖Gθ0
(Ys)‖

6+δ} < ∞,
∑∞

v=1 v
5d−1α1(v)

δ/(6+δ) < ∞, q(w) ≤ Cwκ,

w ≥ 1.

4. The r×r matrix Σθ0
=
∑

h∈Zd
Cov {Gθ0

(Ys), Gθ0
(Ys+h)} is positive definite.

The growth rate of the spatial block factor bn in Assumption 1 represents a

spatial extension of scaling conditions used for the blockwise EL for time series

d = 1 in Kitamura (1997); this entails the block condition (3). Additionally, to

avoid pathological sampling regions, a mild boundary condition on R0 implies

that the number of Z
d lattice points near the boundary of Rn = λnR0 is of smaller

order O(λd−1
n ) than the volume of the sampling region Rn. As a consequence, the

number n of Zs-sampling sites (i.e., Z
d points) contained in Rn is asymptotically

equivalent to the volume of Rn:

n = |Rn ∩ Z
d| ∼ vol(Rn) = λd

nvol(R0).

Additionally, the boundary condition on R0 allows the number of blocks to be

quantified under different EL blocking schemes; see Lemma 2(i) of the following

Section A.3 for illustration.

Assumption 2 describes a mild bound on the mixing coefficient from (8)

with growth rates set in Assumption 3. These mixing assumptions permit mo-

ment bounds and a central limit theorem to be applied to sample means of the

form Ḡn =
∑

s∈Rm,n∩Z2 Gθ0
(Ys)/nm,n (Lahiri, 2003b); Lemma 2 in Section A.3

illustrates such moment bounds. The conditions on the mixing coefficient (8)

in Assumptions 2-3 apply to many weakly dependent random fields including

certain linear fields with a moving average representation, Gaussian fields with
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analytic spectral densities, Markov random fields as well as various time se-

ries; see Doukhan (1994). For d > 1, we allow (8) to become unbounded in w,

which is important in the spatial case to avoid a more restrictive form of mix-

ing; see Lahiri (2003a, p. 295). Assumption 4 implies that the limiting variance

Σθ0
= limn→∞ nm,nVar (Ḡn) is positive definite.

A.2. Preliminary results for main proofs

Lemma 2 gives moment bounds based on Doukhan (1994, p.9, 26) while

Lemma 2 provides some important distributional results for proving the main

EL results. In particular, parts (ii) and (iii) of Lemma 2 entail that, at the

true parameter value θ0, spatial block sample means Mθ0,i, i ∈ In, from the

EL construction (4) can be combined to produce normally distributed averages

or consistent variance estimators. Parts (iv)−(vi) of this lemma are used to

prove that, in a neighborhood of θ0, the EL ratio Rn(θ) from (4) can be finitely

computed and also that a sequence θ̂n of maximizers of Rn(θ) (i.e., the maximal

EL estimator) must exist in probability. Lemma 3 establishes the distribution of

the spatial log-EL ratio at the true parameter value θ0. Proofs of Lemmas 2 and

3 appear subsequently.

Lemma 1. (i) Suppose a random variable Xi is measurable with respect to FY (Ti)

for bounded Ti ⊂ Z
d, i = 1, 2 and let s, t > 0, 1/s+1/t < 1. If dis(T1, T2) > 0 and

expectations are finite, then |Cov (X1,X2)| ≤ 8{E (|X1|
s)}1/s{E (|X2|

t)}1/tαY(
dis(T1, T2);maxi=1,2 |Ti|

)1−1/s−1/t
.

(ii) Under Assumptions 2−3, for any real 1 ≤ k ≤ 6 and T ⊂ Z
d it holds that

E {‖
∑

s∈T G̃θ0
(Ys)‖

k} ≤ C|T |k/2, where G̃θ0
(Ys) = Gθ0

(Ys) − E {Gθ0
(Ys)}.

Lemma 2. Let In = IOLbn
or INOLbn

and NI = |In|. Under Assumptions 1−4.

(i) |IOLbn
| ∼ vol(Rm,n), nm,n ∼ vol(Rm,n), |INOLbn

| ∼ vol(Rm,n)/bdn and vol(Rm,n)

∼ vol(Rn) = λd
nvol(R0);

(ii) n
1/2
m,nM̄θ0

d
−→ N (0r,Σθ0

), where M̄θ0
≡
∑

i∈In
Mθ0,i/NI ;

(iii) Σ̂θ0
≡ bdn

∑
i∈In

Mθ0,iM
′
θ0,i/NI

p
−→ Σθ0

, with Σθ0
from Assumption 4;

(iv)P (Rn(θ0) > 0) → 1;

(v) maxi∈In ‖Mθ0,i‖ = Op

(
b−d
n n

5/12
m,n

)
;

(vi)P (infv∈Rr ,‖v‖=1 N
−1
I

∑
i∈In

b
d/2
n v′Mθ0,iI(v

′Mθ0,i > 0) > C) → 1 for some

C > 0, letting I(·) denote the indicator function.

Lemma 3. Under Assumptions 1−4 and In = IOLbn
or INOLbn

, it holds in (6) that

ℓn(θ0)
d

−→ χ2
r.

Proof of Lemma 2. Assumption 1 yields part(i) of the lemma. We shall sketch

the proof for vol(Rm,n) and the number |IOLbn
| of OL blocks; the remaining cases
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follow similarly and more details on counting results can be found in Nordman
and Lahiri (2004). For a positive integer j, define

Jn(j) = {i ∈ Z
d : (i + j[−1, 1]d) ∩Rn 6= ∅, (i + j[−1, 1]d) ∩ (Rd \ Rn) 6= ∅},

where again Rn = λnR0, and note that for an = j/λn

|Jn(j)|≤(2j+1)d
∣∣{i∈anZ

d : cube i+an[−1, 1]d intersects both R0 and Rd\R0

}∣∣

=(2j + 1)dO(a−(d−1)
n ) = O(jλd−1

n ) (9)

by the R0-boundary condition in Assumption 1. The bound in (9) also holds if
we replace a fixed integer j by the sequence of block factors bn (i.e., replace j,
Jn(j) with bn, Jn(bn)).

Recall that Rm,n = {s ∈ Rn : s+h1, . . . , s+hm ∈ Rn} ⊂ R
d is defined with

respect to m fixed lags {hi}
m
i=1 ⊂ Z

d. Let h = max1≤i≤m ‖hi‖∞ and note that

vol(Rn) − vol(Rn \ R∗
m,n) = vol(R∗

m,n) ≤ vol(Rm,n) ≤ vol(Rn)

where R∗
m,n = {s ∈ Rn : s + h[−1, 1]d ⊂ Rn}. Then, for fixed h by (9), we

find vol(Rn \ R∗
m,n) ≤ (2h)d|Jn(h)| = O(λd−1

n ) so that vol(Rm,n) ∼ vol(Rn) =
λd

nvol(R0) follows. Likewise, n = |Zd∩Rn| ∼ vol(Rn) holds from
∣∣n−vol(Rn)

∣∣ ≤
2d|Jn(1)| and then |IOLbn

| ∼ vol(Rn) follows from n − |Jn(bn)| ≤ |IOLbn
| ≤ n and

|Jn(bn)| = O(bnλ
d−1) = o(vol(Rn)).

To prove parts of Lemma 2(ii) and (iii), we treat only the OL block case
In = IOLbn

; the NOL case follows similarly and we shall describe the modifi-
cations required for handling NOL blocks. Defining the overall sample mean

Ḡn ≡ n−1
m,n

∑
s∈Rm,n∩Zd

Gθ0
(Ys), it holds that n

1/2
m,nḠn

d
−→ N (0r,Σθ0

) under As-
sumptions 1-3 by applying the spatial central limit theorem result in Theorem 4.2
of Lahiri (2003b). Now define a scaled difference between Ḡn and the average of
block sample means M̄θ0

as

An ≡ Ḡn − n−1
m,nNIM̄θ0

= n−1
m,n

∑

s∈Rm,n∩Zd

wsGθ0
(Ys),

where the last representation uses weights ws ∈ [0, 1] for each s ∈ Rm,n ∩ Z
d

where

ws = 1 − b−d
n × “# of OL blocks among {Bbn(i) ≡ i + bn(−1

2 ,
1
2 ]d : i ∈ IOLbn

}

containing s”.

Because ws = 0 if s + bn[−1, 1]d ⊂ Rm,n, it holds that |{s ∈ Rm,n ∩ Z
d : ws 6=

0}| ≤ |Jn(bn)| ≤ Cbnλ
d−1
n from (9) and Rm,n ⊂ Rn. Consequently, letting 0 ∈ Z

d

denote the zero vector, we have

nm,nE (A2
n) ≤ n−1

m,n|{s ∈ Rm,n ∩ Z
d : ws 6= 0}|

∑

h∈Zd

‖Cov {Gθ0
(Y0), Gθ0

(Yh)}‖
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≤ Cbnλ
d−1
n n−1

m,n = O
( bn
λn

)
= o(1)

follows from Lemma 2(i) along with
∑

h∈Zd,h6=0

‖Cov (Gθ0
(Y0), Gθ0

(Yh))‖

≤ C

∞∑

v=1

αY (v; 1)
δ

6+δ |{h ∈ Z
d : ‖h‖∞ = v}| <∞, (10)

which holds by Lemma 1 with Assumptions 2-3 and |{h ∈ Z
d : ‖h‖∞ = v}| ≤

2(2v+ 1)d−1, v ≥ 1. Hence, in the OL block case, n
1/2
m,nAn

p
−→ 0 and part(ii) fol-

lows from the normal limit of n
1/2
m,nḠn along with Slutsky’s theorem and n−1

m,nNI

→ 1 for OL blocks by Lemma 2(i). (In the NOL block case, we define a difference
An ≡ Ḡn −n−1

m,nb
d
nNIM̄θ0

= n−1
m,n

∑
s∈Rm,n∩Zd

wsGθ0
(Ys), where weight ws = 1 if

site s ∈ Rm,n∩Z
d belongs to some NOL block in the collection {Bbn(i) : i ∈ INOLbn

}

and ws = 0 otherwise. Then, n
1/2
m,nAn

p
−→ 0 holds for NOL blocks by the same ar-

gument and part(ii) then follows by Slutsky’s theorem along with n−1
m,nb

d
nNI → 1

for NOL blocks by Lemma 2(i).)
We next establish Lemma 2(iii) for OL blocks In = IOLbn

. Writing h =
(h1, . . . , hd)

′ ∈ Z
d, note that by the Dominated Convergence Theorem and (10)

we have that

E (Σ̂θ0
) = bdnE (Mθ0,0M

′
θ0,0) = b−d

n Var

( ∑

s∈Bbn (0)∩Zd

Gθ0
(Ys)

)

= b−d
n

∑

‖h‖∞≤bn

Cov (Gθ0
(Y0), Gθ0

(Yh))

d∏

i=1

(bn − |hi|) → Σθ0
,

for expectation over the cube Bbn(0) = bn(−1/2, 1/2]d . Hence, for part(iii) it
suffices to show Var (v′1Σ̂θ0

v2) = o(1) for any vi ∈ R
r, ‖vi‖ = 1, i = 1, 2. Fix

v1, v2 and expand the variance

Var (v′1Σ̂θ0
v2)

= N−2
I b2d

n

∑

h∈Zd

|{i ∈ In : i + h ∈ In}|Cov {(v′1Mθ0,0M
′
θ0,0v2), (v

′
1Mθ0,hM

′
θ0,hv2)}

≡ A1n +A2n

by considering two sums of covariances at displacements h ∈ Z
d with ‖h‖∞ ≤

bn (i.e., A1n) or ‖h‖∞ > bn (i.e., A2n). Then, applying the Cauchy-Schwartz
inequality with Lemma 1(ii) and Assumption 3, we have for h ∈ Z

d

|Cov {(v′1Mθ0,0M
′
θ0,0v2), (v

′
1Mθ0,hM

′
θ0,hv2)}|
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≤ Var (v′1Mθ0,0M
′
θ0,0v2) ≤ E (‖Mθ0,0‖

4) ≤ Cb−2d
n ,

so that |A1n| ≤ CN−1
I |{h ∈ Z

d : ‖h‖∞ ≤ bn}| = O(bdn/λ
d
n) = o(1) by Lemma 2(i)

for OL blocks. For h ∈ Z
d with ‖h‖∞ > bn, it holds that dis[Bbn(0),Bbn(h)] ≥ 1

so that by Assumption 3 and Lemma 1(i) (i.e., taking s = t = 3/(6 + δ) there

for δ in Assumption 3), we may bound the covariance |Cov {(v′1Mθ0,0M
′
θ0,0v2),

(v′1Mθ0,hM
′
θ0,hv2)}| by the quantity C{E (‖Mθ0,0‖

(12+2δ)/3)}6/(6+δ)αY (dis[Bbn(0),

Bbn(h)], bdn)δ/(6+δ) where the moment satisfies {E (‖Mθ0,0‖
(12+2δ)/3)}6/(6+δ) ≤

Cb−2d
n by Lemma 1(ii). By Lemma 2(i) and Assumptions 2-3, we then bound

|A2n| ≤
b2d
n

NI

∑

h∈Zd,‖h‖∞>bn

{E (‖Mθ0,0‖
12+2δ

3 )}
6

6+δαY

(
dis[Bbn(0),Bbn(h)], bdn

) δ
6+δ

≤
C

NI

∞∑

k=1

k(k + bn)d−1αY (k, bdn)
δ

6+δ

≤
C

NI

bn∑

k=1

k(k + bn)d−1 +
Cb

dκδ
6+δ
n

NI

∞∑

k=bn+1

(
k

bn

)4d−1

kdα1(k)
δ

6+δ

≤ Cλ−d
n bd+1

n + Cλ−d
n bdn

∞∑

k=bn+1

k5d−1α1(k)
δ

6+δ = o(1),

using |{h ∈ Z
d : dis[Bbn(0),Bbn(h)] = k}| ≤ Ck(k + bn)d−1, k ≥ 1, in the

second inequality and substituting (k/bn)4d−1 ≥ 1 in the second sum of the third

inequality. So part(iii) follows for OL blocks. (We note that, in the case of NOL

blocks, the above argument that Var (v′1Σ̂θ0
v2) = o(1) must be slightly modified.

When In = INOLbn
and NI = |INOLbn

|, then

Var (v′Σ̂θ0
v)

=
b2d
n

NI

∑

h∈Zd

|{i∈In : i+bnh∈In}|Cov {(v′1Mθ0,0M
′
θ0,0v2), (v

′
1Mθ0,bnhM

′
θ0,bnhv2)}

≡ A1n +A2n

where A1n = N−1
I b2d

n Var (v′1Mθ0,bnhM
′
θ0,bnh

v2) = O(N−1
I ) = o(1) corresponds to

the covariance sum at lag h = 0 and A2n = o(1) represents the sum of covariance

terms over non-zero lags ‖h‖ > 0.)

In proving the remaining parts of Lemma 2, we need not make a distinction

between OL or NOL blocks. To show part(iv) of Lemma 2, we will assume

part(vi) holds. We argue that a contradiction arises by supposing that the event

in probability statement of part(vi) holds and the zero vector 0r ∈ R
r is not

interior to the convex hull of {Mθ0,i : i ∈ In}. If 0r is not interior, then by
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supporting/separating hyperplane theorem there exists some v ∈ R
r, ‖v‖ = 1

where v′Mθ0,i ≤ v′0r = 0 holds for all i ∈ In; however, this contradicts the event

in the probability statement of part(vi), which implies that v′Mθ0,i > 0 holds for

some i ∈ In. Therefore, whenever the event in part(vi) holds, then 0r must be

interior to the convex hull of {Mθ0,i : i ∈ In}, which implies Rn(θ0) > 0 by (5).

Hence, part(vi) implies part(iv) of the lemma.

To show part(v), note

E (max
i∈In

‖Mθ0,i‖) ≤ E

{(∑

i∈In

‖Mθ0,i‖
6
) 1

6

}
=

{∑

i∈In

E (‖Mθ0,i‖
6)

} 1

6

≤ Cb
− d

2
n N

1

6

I

by Lemma 1(ii) so that n
−5/12
m,n bdn maxi∈In ‖Mθ0,i‖=Op(n

−1/4
m,n b

d/2
n )=Op(λ

−d/4
n b

d/2
n )

= op(1) by Assumption 1, Lemma 2(i) and NI ≤ nm,n.

Finally, to establish part(vi), we employ an empirical distribution of block

means F̂ (v) = N−1
I

∑
i∈In

I(b
d/2
n Mθ0,i ≤ v), v ∈ R

r. For fixed v ∈ R
d, it holds

that |F̂n(v) − P (Z ≤ v)| = op(1) where Z denotes a normal N (0r,Σθ0
) random

vector. This can be shown using E {F̂n(v)} = P (b
d/2
n Mθ0,0 ≤ v) → P (Z ≤ v)

under Assumptions 1-3 by applying a central limit theorem for the block sample

mean b
d/2
n Mθ0,0 (Theorem 4.2, Lahiri, 2003b) and verifying Var {F̂n(v)} = o(1)

similar to the proof of Lemma 2(iii). Consequently, supv∈Rr |F̂n(v) − P (Z ≤

v)| = op(1) holds by Polya’s theorem and, from this and part(iii), one can prove

convergence of the following absolute “half-space” moments of F̂n(·)

sup
v∈Rr ,‖v‖=1

∣∣N−1
I

∑

i∈In

bd/2
n |v′Mθ0,i| − E |v′Z|

∣∣ = op(1).

Using this along with b
1/2
n M̄θ0

p
−→ 0r by part(ii), where M̄θ0

= N−1
I

∑
i∈In

Mθ0,i,

we have

sup
v∈Rr ,‖v‖=1

∣∣N−1
I

∑

i∈In

bd/2
n v′Mθ0,iI(v

′Mθ0,i > 0) − 2−1E |v′Z|
∣∣ = op(1)

because v′Mθ0,iI(v
′Mθ0,i > 0) = (|v′Mθ0,i| + v′Mθ0,i)/2 for i ∈ In, v ∈ R

r. Now

part(vi) follows using the fact that infv∈Rr ,‖v‖=1 E |v′Z| ≥ C holds for some C > 0

since Var (Z) = Σθ0
is positive definite by Assumption 4.

Proof of Lemma 3. By Lemma 2(iv), a positive Rn(θ0) exists in probability and

can be written, from (5), as Rn(θ0) =
∏

i∈In
(1 + γθ0,i)

−1 with γθ0,i = t′θ0
Mθ0,i <

1, where tθ0
∈ R

r satisfies Q1n(θ0, tθ0
) = 0r in (15). By Lemma 2, it holds

that Zθ0
≡ maxi∈In ‖Mθ0,i‖ = op(b

−d
n n

1/2
m,n). We now modify an argument from
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Owen (1990, p. 101) by writing tθ0
= ‖tθ0

‖uθ0
with uθ0

∈ R
r, ‖uθ0

‖ = 1, and

then expanding Q1n(θ0, tθ0
) = 0r to find

0 = −n1/2
m,nu

′
θ0
Q1n(θ0, tθ0

) =
n

1

2
m,n‖tθ0

‖

NI

∑

i∈In

u′θ0
Mθ0,iM

′
θ0,iuθ0

1 + γθ0,i
− n

1

2
m,nu

′
θ0
M̄θ0

≥
n

1

2
m,nb−d

n ‖tθ0
‖u′θ0

Σ̂θ0
uθ0

1 + (n
− 1

2
m,nbdnZθ0

)(n
1

2
m,nb

−d
n ‖tθ0

‖)
− n

1

2
m,n‖M̄θ0

‖ (11)

where the inequality follows upon replacing each γθ0,i with Zθ0
‖tθ0

‖ and u′θ0
M̄θ0

with ‖M̄θ0
‖ and using the definitions of M̄θ0

, Σ̂θ0
from Lemma 2. Then combin-

ing the facts that n
−1/2
m,n bdnZθ0

= op(1), that n
1/2
m,n‖M̄θ0

‖ = Op(1) by Lemma 2(ii),

and that P (u′θ0
Σ̂θ0

uθ0
> C) → 1 for some C > 0 by Lemma 2(iii) and As-

sumption 4, we deduce ‖tθ0
‖ = Op(b

d
nn

−1/2
m,n ) from (11). From this, we also have

maxi∈In |γθ0,i| ≤ ‖tθ0
‖Zθ0

= op(1).

As Σ̂θ0
is positive definite in probability, we may algebraically solve Q1n(θ0,

tθ0
) = 0r for tθ0

= bdnΣ̂−1
θ0
M̄θ0

+ φθ0
where

‖φθ0
‖ ≤

Zθ0
‖tθ0

‖2‖Σ̂−1
θ0

‖‖Σ̂θ0
‖

1 − ‖tθ0
‖Zθ0

= op(b
d
nn

− 1

2
m,n). (12)

Applying a Taylor expansion gives log(1 + γθ0,i) = γθ0,i − γ2
θ0,i/2 + ∆i for each

i ∈ In so that

ℓn(θ0) = 2Bn

∑

i∈In

log(1+γθ0,i) = nm,n(M̄ ′
θ0

Σ̂−1
θ0
M̄θ0

−b−2d
n φ′θ0

Σ̂θ0
φθ0

)+2Bn

∑

i∈In

∆i

(13)

where Bn = nm,n/(b
d
nNI). By Lemma 2(ii)−(iii), nm,nM̄

′
θ0

Σ̂−1
θ0
M̄θ0

d
−→ χ2

r and

it also holds that b−2d
n nm,nφ

′
θ0

Σ̂θ0
φθ0

= op(1) from (12). Finally, we may bound

2Bn

∑

i∈In

|∆i| ≤
b−2d
n nm,n2Zθ0

‖tθ0
‖3‖Σ̂θ0

‖

(1 − Zθ0
‖tθ0

‖)2
= op(1). (14)

Lemma 3 then follows by Slutsky’s Theorem.

A.3. Proofs of the main results

Proof of Theorem 1. In the case that H(θ) = θ is the identity mapping, the

result follows immediately from Lemma 3. From this, Theorem 1 follows for a

general smooth H(·) as in the proof of Theorem 2.1 of Hall and La Scala (1990).
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Proof of Theorem 2. Set Θn = {θ ∈ Θ : ‖θ − θ0‖ ≤ n
−5/12
m,n }, ∂Θn = {θ ∈ Θ :

‖θ−θ0‖ = n
−5/12
m,n } and define M̄θ =

∑
i∈In

Mθ,i/NI , Σ̂θ = bdn
∑

i∈In
Mθ,iM

′
θ,i/NI ,

θ ∈ Θn and functions

Q1n(θ, t) =
1

NI

∑

i∈In

Mθ,i

1 + t′Mθ,i
, Q2n(θ, t) =

b−d
n

NI

∑

i∈In

(∂Mθ,i

∂θ

)′
t

1 + t′Mθ,i
, (15)

on Θ × R
r. For i = 1, 3, set Jn,i =

∑
s∈Rm,n∩Zd

J i(Ys)/nm,n, noting Ji,n = Op(1)

by EJ3(Ys) < ∞; again J(·) is assumed to be nonnegative. To establish Theo-
rem 2, we proceed in three steps to show, that with arbitrarily large probability
as n → ∞, the following hold: Step 1. the log EL ratio ℓn(θ) exists finitely on
Θn and is continuously differentiable and hence a sequence of minimums θ̂n ex-
ists of ℓn(θ) on Θn (i.e., θ̂n is a maximizer of Rn(θ)); Step 2. θ̂n 6∈ ∂Θn and
∂ℓn(θ)/∂θ = 0p at θ = θ̂n; Step 3. θ̂n has the normal limit stated in Theorem 2.

Step 1. Note that

sup
v∈Rr,‖v‖=1

θ∈Θn

∣∣∣∣N
−1
I

∑

i∈In

(
v′Mθ,iI(v

′Mθ,i > 0) − v′Mθ0,iI(v
′Mθ0,i > 0)

)∣∣∣∣

≤ sup
θ∈Θn

∑

i∈In

‖Mθ,i −Mθ0,i‖

NI
,

which is bounded by CJn,1 supθ∈Θn ‖θ − θ0‖ = Op(n
−5/12
m,n ) = op(b

−d/2
n ). From

this and Lemma 2(vi), it holds that, for some C > 0,

P

(
inf

‖v‖=1,θ∈Θn

∑

i∈In

b
d
2
nv

′Mθ,i
I(v′Mθ,i > 0)

NI
> C

)
→ 1

As proof of Lemma 2(iv), when the event in the above probably statement holds,
then for any θ ∈ Θn, we may write Rn(θ) =

∏
i∈In

(1 + γθ,i) > 0 where γθ,i =
t′θMθ,i and Q1n(θ, tθ) = 0r.

Let Ωθ = max{n
−1/2
m,n , ‖θ−θ0‖}, θ ∈ Θn. Expanding both M̄θ and Σ̂θ around

θ0, we find

sup
θ∈Θn

‖M̄θ‖

Ωθ
≤ n

1

2
m,n‖M̄θ0

‖ + CJn,1 sup
θ∈Θn

Ω−1
θ ‖θ − θ0‖ = Op(1), (16)

sup
θ∈Θn

‖Σ̂θ − Σθ0
‖ ≤ sup

θ∈Θn

‖Σ̂θ − Σ̂θ0
‖ + ‖Σ̂θ0

− Σθ0
‖ = op(1),

by applying Lemma 2(ii)−(iii) above along with Ω−1
θ ≤ n

1/2
m,n and

sup
θ∈Θn

‖Σ̂θ − Σ̂θ0
‖ ≤ sup

θ∈Θn

bdn
NI

∑

i∈In

‖Mθ0,i‖‖Mθ0,i −Mθ,i‖(1 + ‖Mθ0,i −Mθ,i‖) ≡ An
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E (An) ≤ Cn
− 5

12
m,n b

d
n{E [J(Y0)3]}

2

3

{
E (‖Mθ0,0‖

3) + [E (‖Mθ0,0‖
3)]2
} 1

3

≤ Cn
− 5

12
m,n b

d
2
n = o(1),

which follows from Holder’s inequality, nm,n ∼ vol(R0)λ
d
n by Lemma 2(i), and

using Lemma 2(ii) in the last line. Hence, by the positive definiteness of Σθ0
in

Assumption 4, Σ̂−1
θ exists uniformly in θ ∈ Θn. Also, the positive definiteness of

Σ̂n by (16) implies, for each fixed θ ∈ Θn, ∂Q1n(θ, t)/∂t is negative definitive for

t ∈ {t ∈ R
r : 1 + t′Mθ,i ≥ 1/NI , i ∈ In} so that, by implicit function theorem

using Q1n(θ, tθ) = 0r, tθ is a continuously differentiable function of θ on Θn

and the function ℓn(θ) = −2Bn logRn(θ) is as well (e.g., Qin and Lawless, 1994,

p. 304-305). Hence, with large probability as n → ∞, the minimizer of ℓn(θ)

exists on Θn.

Step 2. Let Zθ ≡ maxi∈In ‖Mi,θ‖, θ ∈ Θn. Using b2n/λn = o(1) by Assumption 1,

supθ∈Θn Ωθ ≤ n
−5/12
m,n , and Lemma 2 [parts (i) and (v)], we may expand the block

means Mθ,i, i ∈ In around θ0 to find

sup
θ∈Θn

Ωθb
d
nZθ ≤ bdnn

− 5

12
m,n

(
max
i∈In

‖Mi,θ0
‖ + sup

θ∈Θn

C‖θ − θ0‖(nm,nJn,3)
1

3

)

≤ op(1) +Op(b
d
nn

− 1

2
m,n) = op(1). (17)

Now using (16) and (17) and that Q1n(θ, tθ) = 0r for θ ∈ Θn, we can repeat the

same essential argument in (11) (i.e., replace θ0, n
1/2
m,n there with θ,Ω−1

θ ) to find

0 ≥
Ω−1

θ b−d
n ‖tθ‖u

′
θΣ̂θuθ

1 + (ΩθbdnZθ)(Ω
−1
θ b−d

n ‖tθ‖)
− Ω−1

θ ‖M̄θ‖
(
with tθ = ‖tθ‖uθ, ‖uθ‖ = 1

)

and then show supθ∈Θn Ω−1
θ b−d

n ‖tθ‖ = Op(1). From this (and analogous to (12)

from the proof of Lemma 3), we expand Q1n(θ, tθ) = 0r to yield tθ = bdnΣ̂−1
θ M̄θ +

φθ for θ ∈ Θn where supθ∈Θn Ω−1
θ b−d

n ‖φθ‖ = op(1). Using now these orders of

‖φθ‖, ‖tθ‖ and Zθ with arguments as in (13) and (14), we may then expand ℓn(θ)

uniformly in θ ∈ Θn as

sup
θ∈Θn

n−1
m,nΩ−2

θ |ℓn(θ) − nm,nM̄
′
θΣ̂

−1
θ M̄θ|

≤ Op

(

Ω−2
θ b−2d

n sup
θ∈Θn

[

φ′θΣ̂θφθ +
2Zθ‖tθ‖

2‖Σ̂θ‖

(1 − Zθ‖tθ‖)2

])

= op(1)

and then using (16)

sup
θ∈Θn

n−1
m,nΩ−2

θ |ℓn(θ) − nm,nM̄
′
θΣ̂

−1
θ0
M̄θ| = op(1)
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follows. For each θ ∈ Θn, we may write M̄θ = M̄θ0
+ D̄θ0

(θ − θ0) + Eθ for

D̄θ0
= N−1

I

∑
i∈In

∂Mθ0,i/∂θ and a remainder Eθ satisfying supθ∈Θn ‖Eθ‖ ≤

C‖θ − θ0‖
2Jn,1. Note that D̄θ0

p
−→ Dθ0

≡ E ∂Gθ0
(Yt)/∂θ because E D̄θ0

= Dθ0

and, as in (10),

Var (D̄θ0
) ≤ Cn−1

m,n

∑

h∈Zd

∥∥∥Cov
{∂Gθ0

(Y0)

∂θ
,
∂Gθ0

(Yh)

∂θ

}∥∥∥ ≤ Cn−1
m,n

by Lemma 1 and Assumptions 2−3. Hence, we have

sup
θ∈Θn

|M̄θ − [M̄θ0
+Dθ0

(θ − θ0)]| = op(Ωθ) (18)

and so it now follows that

sup
θ∈Θn

n−1
m,nΩ−2

θ

∣∣∣ℓn(θ)−nm,n

[
M̄θ0

+Dθ0
(θ − θ0)

]′
Σ−1

θ0

[
M̄θ0

+Dθ0
(θ − θ0)

]∣∣∣=op(1).

(19)

For θ = vθn
−5/12
m,n + θ0 ∈ ∂Θn, ‖vθ‖ = 1, we have Ωθ = n

−5/12
m,n so that from

(19) we find that ℓn(θ) ≥ σn
1/6
m,n/2 holds uniformly in θ ∈ ∂Θn when n is large,

where σ denotes the smallest eigenvalue of D′
θ0

Σ−1
θ0
Dθ0

. At the same time, by

Lemma 3, we have ℓn(θ0) = Op(1) (i.e., n−1
m,nΩ−2

θ0
= 1 in (19)). Hence, with

probability approaching 1, the minimum θ̂n of ℓn(θ) on Θn cannot be an element

of ∂Θn. Hence, θ̂n must satisfy θ̂n ∈ Θn \ ∂Θn and 0r = Q1n(θ̂n, tθ̂n) in addition

to

0p = (2nm,n)−1 ∂ℓn(θ)

∂θ

∣∣∣
θ=θ̂n

= Q2n(θ̂n, tθ̂n)

by the differentiability of ℓn(θ).

Step 3. From the argument in Step 2, we may solve Q1n(θ̂n, tθ̂n) = 0r for tθ̂n =

bdnΣ̂−1

θ̂n
M̄θ̂n

+ φθ̂n
or

b−d
n tθ̂n = Σ̂−1

θ̂n
M̄θ̂n

+ b−d
n φθ̂n

= Σ−1
θ0

[
M̄θ0

+Dθ0
(θ − θ0)

]
+ op(Ωθ̂n

) (20)

by Ω−1

θ̂n
b−d
n ‖φθ̂n

‖=op(1), (16) and (18). Recalling also D̄θ0
=N−1

I

∑
i∈In

∂Mθ0,i/∂θ
p

−→ Dθ0
from Step 2 along with ‖D̄θ0

−N−1
I

∑
i∈In

∂Mθ̂n,i/∂θ‖ = Op(‖θ̂n − θ0‖),

and maxi∈In |t
′
θ̂n
Mθ̂n,i| ≤ ‖t′

θ̂n
‖Zθ̂n

= op(1) (where again Zθ̂n
= maxi∈In ‖Mθ̂n,i‖),

we find from Q2n(θ̂n, tθ̂n) = 0p that

0p =
b−d
n

NI

∑

i∈In

(∂M
θ̂n,i

∂θ

)′
tθ̂n

1 + t′
θ̂n
Mθ̂n,i

= D′
θ0
b−d
n tθ̂n + op(‖b

−d
n tθ̂n‖). (21)
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Now letting δn = ‖b−d
n tθ̂n‖ + Ωθ̂n

, from (20) and (21) we may from write

[
Σθ0

−Dθ0

D′
θ0

0

](
b−d
n tθ̂n
θ̂n − θ0

)
=

[
M̄θ0

+ op(δn)

op(δn)

]
,

[
Σθ0

−Dθ0

D′
θ0

0

]−1

=

[
Uθ0

Σ−1
θ0
Dθ0

Vθ0

−Vθ0
D′

θ0
Σ−1

θ0
Vθ0

]
.

By Lemma 2(ii), n
1/2
m,nM̄θ0

d
−→ N (0,Σθ0

) holds so it follows that n
1/2
m,nδn = Op(1)

and the limiting distribution of θ̂n is given by

n
1

2
m,n

(
b−d
n tθ̂n
θ̂n − θ0

)
=

[
Uθ0

−Vθ0
D′

θ0
Σ−1

θ0

]
n

1

2
m,nM̄θ0

+ op(1)
d

−→ N

((
0r
0p

)
,

[
Uθ0

0
0 Vθ0

])

(22)

The proof of Theorem 2 is complete.

Proof of Theorem 3. Let PX = X(X ′X)−1X ′ denote the projection matrix

for a given matrix X of full column rank and let Ir×r denote the r × r identity

matrix. Using (19) along with ‖θ̂n − θ0‖ = Op(n
−1/2
m,n ) by (22) and n−1

m,nΩ−2
θ0

= 1

in (19), we write

ℓn(θ̂n) = nm,n(Σ
− 1

2

θ0
M̄θ0

)′(Ir×r − P
Σ
− 1

2
θ0

Dθ0

)(Σ
− 1

2

θ0
M̄θ0

) + op(1),

ℓn(θ0) = nm,n(Σ
− 1

2

θ0
M̄θ0

)′(Σ
− 1

2

θ0
M̄θ0

) + op(1).

The chi-square limit distributions in Theorem 3(i) now follow by Lemma 2(ii) as

P
Σ
−1/2
θ0

Dθ0

, Ir×r−P
Σ
−1/2
θ0

Dθ0

are orthogonal idempotent matrices with ranks p, r−p,

respectively. With Theorem 3(i) in place, Theorem 3(ii) follows from modifying

arguments in Qin and Lawless (1994, Corollary 5) in the proof of Theorem 2.

A.4. Spatial empirical likelihood under parameter constraints

As a continuation of Section 3.3, here we briefly consider constrained max-

imum EL estimation of spatial parameters. Qin and Lawless (1995) introduced

constrained EL inference for independent samples and Kitamura (1997) devel-

oped a blockwise version of constrained EL for weakly dependent time series. For

spatial data, we may also consider blockwise EL estimation subject to a system

of parameter constraints on a spatial parameter θ ∈ Θ ⊂ R
p: ψ(θ) = 0q ∈ R

q

where q < p and Ψ(θ) = ∂ψ(θ)/∂θ is of full row rank q. By maximizing the EL

function in (5) under the above restrictions on θ, we find a constrained MELE

θ̂ψn.
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Corollary 1. Suppose Theorem 2 conditions hold and, in a neighborhood of

θ0, ψ(θ) is continuously differentiable, ‖∂2ψ(θ)/∂θ∂θ′‖ is bounded, and Ψ(θ0) is

rank q. If H0: ψ(θ0) = 0q holds, then rn(θ̂ψn) = ℓn(θ̂ψn) − ℓn(θ̂n)
d

−→ χ2
q and

ℓn(θ0) − ℓn(θ̂ψn)
d

−→ χ2
p−q as n→ ∞.

We can then sequentially test H0: ψ(θ0) = 0q with a log-likelihood ratio

statistic ℓn(θ̂ψn)−ℓn(θ̂n) and, if failing to reject H0, make an approximate 100(1−

α)% confidence region for constrained θ values {θ : ψ(θ) = 0q, ℓn(θ) − ℓn(θ̂ψn) ≤

χ2
p−q,1−α}.

Proof of Corollary 1. We sketch the proof which requires modifications to the

proof of Theorem 2 as well as arguments from Qin and Lawless (1995) (for the

i.i.d. data case); we shall employ notation used in the proof of Theorem 2. Write

the functions ψ(θ), Ψ(θ) as ψθ, Ψθ in the following. To establish the existence of

θ̂ψn, let Q∗
1n(θ, t, ν) = Q1n(θ, t), Q∗

2n(θ, t, ν) = Q2n(θ, t) + Ψ′
θν, and Q∗

3n(θ, t, ν) =

ψθ and define Un = {(θ, t, ν) ∈ R
p × R

r × R
q : θ ∈ Θn, ‖t/b

d
n‖ + ‖ν‖ ≤ n

−5/12
m,n }.

Step 1. It can first be shown that the system of equations:

Q∗
1n(θ, t, ν) = 0r, Q∗

2n(θ, t, ν) = 0p, Q∗
3n(θ, t, ν) = 0q (23)

has a solution (θ∗n, t
∗
n, ν

∗
n) ∈ Un. Uniformly in θ ∈ Θn, it holds that b−d

n ∂tθ/∂θ =

Σ−1
θ0
Dθ0

+ op(1) (by differentiating Q∗
1n(θ, tθ) = 0r with respect to θ) and that

(2nm,n)−1∂ℓn(θ)/∂θ = V −1
θ0

(θ− θ0)+Tθ where Tθ is continuous in θ and supθ∈Θn

‖Tθ‖ = op(n
−5/12
m,n ) (by expanding (2nm,n)−1∂ℓn(θ)/∂θ = Q2n(θ, tθ) around θ0).

For θ ∈ Θn, define ψθ − Ψθ0
(θ − θ0) = ‖θ − θ0‖

2k(θ), where k(θ) is continuous

and bounded, and write a function η(θ) as

η(θ) =
1

2nm,n

∂ℓn(θ)

∂θ
+ Ψ′

θ(Ψθ0
Vθ0

Ψ′
θ)

−1

(
‖θ − θ0‖

2k(θ)

−Ψθ0
Vθ0

[
1

2nm,n

∂ℓn(θ)

∂θ
− V −1

θ0
(θ − θ0)

])
. (24)

It can be shown that η(θ) = V −1
θ0

(θ − θ0) + T̃θ, where T̃θ is continuous in θ

and supθ∈Θn ‖T̃θ‖ = op(n
−5/12
m,n ) , which implies that there exists θ̂∗n ∈ Θn \ ∂Θn

such that −η(θ̂∗n) = 0p. This root θ̂∗n of η(θ) inside Θn \ ∂Θn is deduced from

Lemma 2 of Aitchison and Silvey (1958); this result entails that because, for

large n, −σ−1
1 η(θ) maps Θn into {(θ − θ0) : θ ∈ Θn} and (θ − θ0)

′{−σ−1
1 η(θ)} <

−σ0/(2σ1) holds for θ ∈ ∂Θn (i.e., (θ − θ0)
′{−σ−1

1 η(θ)} is negative for ‖θ −

θ0‖ = n
−5/12
m,n ), where σ1 and σ0 > 0 respectively denote the largest and smallest

eigenvalues of V −1
θ0

, it must follow that −σ−1
1 η(θ̂∗n) = 0 for some ‖θ̂∗n − θ0‖ <
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n
−5/12
m,n by Brouwer’s fixed point theorem. From this root, we have that 0q =

Ψθ0
Vθ0

η(θ̂∗n) = ‖θ̂∗n − θ0‖
2k(θ̂∗n) + Ψθ̂∗n

(θ̂∗n − θ0) = ψθ̂∗n
from (24) as well as

1

2nm,n

∂ℓn(θ̂∗n)

∂θ
= Ψ′

θ̂∗n
(Ψθ0

Vθ0
Ψ′

θ̂∗n
)−1Ψθ0

Vθ0

1

2nm,n

∂ℓn(θ̂∗n)

∂θ
. (25)

This yields that θ̂∗n, the EL Lagrange multiplier tθ̂∗n
for θ̂∗n defined by Q1n(θ̂∗n, tθ̂∗n

)

= 0r, and ν∗n = −(Ψθ0
Vθ0

Ψ′
θ̂∗n

)−1Ψθ0
Vθ0

(2nm,n)−1∂ℓn(θ̂∗n)/∂θ satisfy (23) jointly.

Step 2. We now show that any solution of (23) in Un, say (θ̃, t̃, ν̃), must minimize

ℓn(θ) on Θn subject to the condition ψθ = 0q. To see this, note if θ ∈ Θn with

ψθ = 0q, then we make a Taylor expansion around θ̃:

1

2nm,n

[
ℓn(θ) − ℓn(θ̃)

]
=

1

2nm,n

∂ℓn(θ̃)

∂θ′
(θ − θ̃) +

1

4nm,n
(θ − θ̃)′

∂2ℓn(θ∗)

∂θ∂θ′
(θ − θ̃),

θ∗ between θ, θ̃.

Since θ̃ satisfies (23), it follows from some algebra that θ̃ also satisfies (25) after

substituting θ̃ for θ̂∗n. Using 0q = ψθ − ψθ̃ = Ψθ̃(θ − θ̃) + o(‖θ − θ̃‖2), we find

(2nm,n)−1∂ℓn(θ̃)/∂θ′(θ − θ̃) = op(‖θ − θ̃‖2) for θ̃ fulfilling (25); it may also be

shown that (2nm,n)−1∂2ℓn(θ∗)/∂θ∂θ′ = V −1
θ0

+ op(1) (by expanding (2nm,n)−1

∂ℓn(θ)/∂θ = Q2n(θ, tθ) around θ0). Hence, ℓn(θ)−ℓn(θ̃) ≥ {σ0/2+op(1)}nm,n‖θ−
θ̃‖2, where the op(1) term is uniform for θ ∈ Θn, ψθ = 0.

Step 3. By the first two steps, we have therefore established that there exists

a consistent MELE θ̂ψn of θ0, given by θ̂ψn = θ̂∗n ∈ Θn \ ∂Θn, that satisfies the

condition ψ(θ̂ψn) = 0; we may denote t
θ̂ψn

= tθ̂∗n
and νψn = ν∗n. We now show

n
1

2
m,n

(
θ̂ψn−θ0
νψn

)
d

−→ N

(
0r+p+q,

[
Pθ0

0

0 Rθ0

])
,

Pθ0
= Vθ0

(
Ip×p−Ψ′

θ0
Rθ0

Ψθ0
Vθ0

)
,

Rθ0
=
(
Ψθ0

Vθ0
Ψ′

θ0

)−1
.

(26)

Expanding Q∗
in(θ, t, ν) at (θ0, 0, 0) and using that (θ̂ψn, tθ̂ψn

, νψn) satisfies (23), we

have:




−Q1n(θ0, 0r) + op(δ

∗
n)

op(δ
∗
n)

op(δ
∗
n)



=Σ∗
n





t
θ̂
ψ
n

bdn

θ̂ψn − θ0
νψn



, Σ∗
n =





∂Q1n(θ0,0r)
∂t

∂Q1n(θ0,0r)
∂θ 0

∂Q2n(θ0,0r)
∂t 0 Ψ′

θ0

0 Ψθ0
0



 ,

where Q1n(θ0, 0r) = M̄θ0
, bdn∂Q1n(θ0, 0r)/∂t = −Σ̂θ0

, ∂Q1n(θ0, 0r)/∂θ = D̄θ0
=

[bdn∂Q2n(θ0, 0r)/∂t]
′ and δ∗n = ‖θ̂ψn − θ0‖ + ‖t

θ̂ψn
/bdn‖ + ‖νψn‖. Using Lemma 2(iii)



SPATIAL EMPIRICAL LIKELIHOOD S89

and D̄θ0

p
−→ Dθ0

from the proof of Theorem 2, we have

Σ∗
n

p
−→




−Σθ0

Dθ0
0

D′
θ0

0 Ψ′
θ0

0 Ψθ0
0



 ≡

[
C11 C12

C21 C22

]
≡ C̃,

C12 =
[
Dθ0

0
]
, C21 = C ′

12

C11 = −Σθ0
, C22 =

[
0 Ψ′

θ0

Ψθ0
0

]
.

Note that det(C̃) = det(C11) det(Qc) = det(−Σθ0
) det(V −1

θ0
) det(−R−1

θ0
) 6= 0, for

Qc = C22 − C21C
−1
11 C12, and

C̃−1=

[
−Σ−1

θ0
+ Σ−1

θ0
C12Q

−1
c C21Σ

−1
θ0

Σ−1
θ0
C12Q

−1
c

Q−1
c C21Σ

−1
θ0

Q−1
c

]
, Q−1

c =

[
Pθ0

Vθ0
Ψ′

θ0
Rθ0

Rθ0
Ψθ0

Vθ0
−Rθ0

]
.

Since, by Lemma 2(ii), n
1/2
m,nQ1n(θ0, 0r) = n

1/2
m,nM̄θ0

d
−→ N (0r,Σθ0

), it follows

that δ∗n = Op(n
−1/2
m,n ). Then,

n
1

2
m,n

(
θ̂ψn − θ0
νψn

)
= −n

1

2
m,nQ

−1
c C21Σ

−1
θ0
Q1n(θ0, 0r) + op(1)

d
−→N

(
0p+q,

[
Pθ0

0

0 Rθ0

])
.

Step 4. As in the proof of Theorem 2, we can then expand by (19)

ℓn(θ̂ψn) = nm,n

(
M̄θ0

+Dθ0
(θ̂ψn − θ0)

)′
Σ−1

θ0

(
M̄θ0

+Dθ0
(θ̂ψn − θ0)

)
+ op(1)

= nm,nQ
′
1n(θ0, 0r)

(
Ir×r−Dθ0

Pθ0
D′

θ0
Σ−1

θ0

)′
Σ−1

θ0

(
Ir×r−Dθ0

Pθ0
D′

θ0
Σ−1

θ0

)
M̄θ0

+op(1)

=
[
n

1

2
m,nΣ

− 1

2

θ0
M̄θ0

]′[
Ir×r − (P

Σ
− 1

2
θ0

Dθ0

− PHθ0
)
][
n

1

2
m,nΣ

− 1

2

θ0
M̄θ0

]
+ op(1),

where Hθ0
= Σ

− 1

2

θ0
Dθ0

(D′
θ0

Σ−1
θ0
Dθ0

)−1Ψ′
θ0

. Then,

ℓn(θ̂ψn) − ℓn(θ̂n) =
[
n

1

2
m,nΣ

− 1

2

θ0
M̄θ0

]′
PHθ0

[
n

1

2
m,nΣ

− 1

2

θ0
M̄θ0

]
+ op(1),

ℓn(θ0) − ℓn(θ̂ψn) =
[
n

1

2
m,nΣ

− 1

2

θ0
M̄θ0

]′
(P

Σ
− 1

2
θ0

Dθ0

− PHθ0
)
[
n

1

2
m,nΣ

− 1

2

θ0
M̄θ0

]
+ op(1).

Note now that n
1/2
m,nΣ

−1/2
θ0

Q1n(θ0, 0r)M̄θ0

d
−→ N (0, Ir×r) by Lemma 2(ii), PHθ0

and P
Σ
−1/2
θ0

Dθ0

− PHθ0
are idempotent matrices with

rank
(
PHθ0

)
= rank

(
Hθ0

)
= rank(Ψθ0

) = q;
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rank
(
P

Σ
−1/2
θ0

Dθ0

− PHθ0

)
= p− trace

[
PHθ0

]
= p− rank

[
PHθ0

]
= p− q.

For rank(PHθ0
)=q above, we used rank(Hθ0

)≤ rank(Ψθ0
), rank(Ψθ0

)=rank(D′
θ0

Σ
−1/2
θ0

Hθ0
) ≤ rank(Hθ0

). Corollary 1 now follows.

A.5. Spatial block bootstrap algorithm

Here we outline a spatial block bootstrap method for generating bootstrap
version Y∗

n of the original vectorized spatial data Yn = {Ys : s ∈ Rm,n ∩ Z
d} on

Rm,n ⊂ R
d. Bootstrap replicates Y∗

n of spatial data, on a bootstrap sampling
region R∗

m,n, are used to formulate the empirical Bartlett correction for the spatial
EL method as described in Section 4.

Let YnA = {Ys : s ∈ A ∩ Z
d} denote the observed spatial data at Z

d points
lying inside a set A ⊂ Rm,n. The block bootstrap requires a block scaling fac-
tor, denoted by bn,bt, satisfying b−1

n,bt + bdn,bt/nm,n = o(1). Suppose this bootstrap

block scaling is used to make the blocks of size bn,bt(−1/2, 1/2]d in Rm,n appear-
ing in Figure 2(b)−(c). As a first step, we divide the sampling region Rm,n into
NOL blocks of size bn,bt(−1/2, 1/2]d that fall entirely inside Rm,n, as depicted in
Figure 2(b). In the notation of Section 2.2, {Bbn,bt(i) : i ∈ INOLbn,bt

} represents a
collection of bn,bt-scaled NOL “complete blocks” partitioning Rm,n. These com-
plete NOL blocks inside Rm,n, when taken together, form a bootstrap sampling
region R∗

m,n as R∗
m,n ≡ {Bbn,bt(i) : i ∈ INOLbn,bt

}, as shown in Figure 2(d) based

on complete NOL blocks in Figure 2(b). In place of the original data Yn ob-
served on Rm,n, we aim to create a bootstrap sample Y∗

n on R∗
m,n. Each block

Bbn,bt(i) = i+bn,bt(−1/2, 1/2]d , i ∈ INOLbn,bt
, that constitutes a part of R∗

m,n also cor-

responds to a piece of Rm,n, where we originally observed the data YnBbn,bt(i),
Bbn,bt(i) ⊂ Rm,n. For a fixed i ∈ INOLbn,bt

, we then create a bootstrap rendition

Y∗
nBbn,bt(i) of YnBbn,bt(i) by independently resampling some size bn,bt(−1/2, 1/2]d

block of Ys-observations from the region Rm,n (as in Figure 2(c)) and pasting
this observational block into the position of Bbn,bt(i) within R∗

m,n. To make the
resampling scheme precise, for each i ∈ INOLbn,bt

, we define the bootstrap version

as Y∗
nBbn,bt(i) ≡ YnBbn,bt(i

∗) where i∗ ∈ Z
d is random vector selected uniformly

from the collection of OL block indices given by IOLbn,bt
in the notation of Sec-

tion 2.2; that is, we resample from all OL bn,bt-scaled blocks within Rm,n (as
depicted in Figure 2(c)) to produce a spatial block of observations Y∗

nBbn,bt(i).
We then concatenate the resampled block observations for each i ∈ INOLbn,bt

into

a single spatial bootstrap sample Y∗
n = {Y∗

nBbn,bt(i) : i ∈ INOLbn,bt
} on R∗

m,n with

n∗m,n = |INOLbn,bt
| · bdn,bt sampling sites at R∗

m,n ∩Z
d. In Section 4, the bootstrap EL

version ℓ∗n may be computed as in (6) after replacing Yn, Rm,n, nm,n with Y∗
n,

R∗
m,n, n∗m,n. See Chapter 12.3 of Lahiri (2003a) for more details on the spatial

block bootstrap.
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