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Abstract: The stereological problem of unfolding the spheres size distribution from

linear sections is analysed as a statistical inverse problem of estimation of a Poisson

process intensity function from indirectly observed and binned data. Using suitably

constructed singular value decomposition of the folding operator, a spectral estima-

tor is constructed that is, up to a logarithmic factor, asymptotically rate minimax

over a Sobolev-type class of functions. Finite sample behaviour of the estimator is

demonstrated in a small numerical experiment.
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1. Introduction

Consider a population of spheres embedded in an opaque medium. Assume

that the centers of the spheres form a homogeneous Poisson process on R
3 with

the expected number of c points per unit volume. The radii x of the spheres

are random with a distribution Q on [0, 1], independent of the centers and abso-

lutely continuous (with respect to dx) with a probability density function q(x).

An experimenter is interested in both c and q, but the spheres are not directly

observable. Instead, a linear section through the medium is taken and the ex-

perimenter observes the line segments that are intersections of the line with the

spheres. It can be shown (see, e.g., Szkutnik (2007)) that the observed radii y of

the line segments form a Poisson point process on [0, 1] with intensity function

(with respect to dy) of the form nh(y), where n is the ’size of the experiment’,

related to the total length of the observed portion of the linear section through

the medium, and

h(y) = 2y

∫ 1

y
u(x)dx, (1.1)

with u(x) = cq(x). Notice that nu(x) is the intensity function (with respect

to dx) of the unobservable Poisson point process of spheres radii. Given ob-

served sections radii, the goal is to unfold u. Asymptotics will be studied with n

increasing to infinity.
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Equations similar to (1.1) were first derived by Spektor (1950) and Lord
and Willis (1951) as models of some measurements in material sciences. For an
application in metallurgy see, e.g., Barthel, Klimanek and Stoyan (1985). In the
sequel, the problem of unfolding u from linear sections data will be called the
Spektor-Lord-Willis (SLW) problem. Equation (1.1) may also serve in isotropic
cases as a model of linear intercept measurements on polished metallographic
sections (cf., methodological remarks in Hilliard and Lawson (2003, p.117)), and
a discussion of practical importance of such measurements in modelling, e.g.,
sintering processes in Han and Kim (1998)). The SLW problem was also studied
in some detail by Stoyan, Kendall and Mecke (1987, pp.296-299), who reviewed
some heuristic algorithms traditionally used for unfolding u, and discussed rela-
tions to the better known Wicksell problem of unfolding u from planar sections,
and by Szkutnik (2007), who proposed a strongly consistent, sieved maximum
likelihood estimator based on B-splines and the EMDS algorithm, and studied
its convergence rates in L2([0, 1], dx).

Clearly, the operator defined by (1.1) is a compact Hilbert-Schmidt operator
in L2([0, 1], dx). Consequently, its inverse is not bounded and the unfolding
problem is ill-posed in the Hadamard sense. As noted by Szkutnik (2007), inverse
estimation of u in L2([0, 1], dx) roughly corresponds to direct estimation of the
intensity h in L2([0, 1], y−4dy) and of its derivative in L2([0, 1], y−2dy), which
illustrates the statistical difficulty of the problem.

In the sequel, it will be assumed that the observed data are given in a dis-
crete, binned form. Let [0, 1] = B1 ∪ · · · ∪ BN be a partition of the data space
into N disjoint bins. The observed data [n1, . . . , nN ] consist of the counts nj of
the line segments radii observed in the bins Bj. Discretization effects in linear in-
verse problems with compact operators were studied by Johnstone and Silverman
(1991), henceforth JS91, who proposed a spectral type estimator that is asymp-
totically rate minimax, at least among linear estimators, over classes of functions
defined in terms of singular functions of the folding operator. Their results do
not directly apply, however, to the SLW problem with u considered as an element
of L2([0, 1], dx). Therefore, in Section 2, the SLW problem is reconsidered with
suitably chosen dominating measures, and a singular value decomposition (SVD)
of the folding operator is derived. This is used in Section 3 for the derivation
of lower bounds for the convergence rates of any estimator, and in Section 4 for
the construction of the estimator and for proving its minimaxity with Johnstone
and Silverman techniques. Finite sample behaviour of the estimator with a data-
driven choice of parameters is studied in a simulation experiment described in
Section 5.

2. SVD of the Operator, Discretization and Classes of Functions

Ill-posedness of the SLW problem implies that some sort of regularization

is necessary. Our approach is to diagonalize the folding operator by finding its
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SVD and to suitably dump the estimated Fourier coefficients of the unfolded

function with respect to the basis of singular functions–the idea studied in detail

by Johnstone and Silverman (1990, 1991). Let us recall that the SVD of a com-

pact (and, for simplicity, invertible and such that ImK = H2) operator K, acting

between two Hilbert spaces H1 and H2, is a triple consisting of a sequence {bν}
of positive numbers and of two orthonormal Schauder bases: {φν} in H1 and

{ψν} in H2, such that Kφν = bνψν . The bν ’s are called the singular values of K.

If H1 and H2 are function spaces, then {φν} and {ψν} are called, respectively,

right and left singular functions.

The SVD of the operator (1.1), acting in L2([0, 1], dx), was constructed

by Szkutnik (2007). With zν being the positive zeroes of the Bessel function

J−1/4(z), it was found that the bν decay asymptotically as ν−1, and that φν(x)

and ψν(y) are proportional, respectively, to x3/2J3/4(zνx
2) and y3/2J−1/4(zνy

2).

It is essential for the applicability of the Johnstone and Silverman technique

that the discretization operator that projects L2-functions onto the subspace of

step functions, constant in the bins Bj, satisfies the “matching SVD assump-

tion”: given any ν1 and ν2, the projections of ψν1 and ψν2 are either parallel or

orthogonal. The SVD obtained by Szkutnik (2007) does not seem tractable in this

respect. Therefore, in order to obtain a more tractable SVD, we change the dom-

inating measures, both in the data space and in the solution space, and consider

the folding operator K as an operator from L2([0, 1], dµ(x)) to L2([0, 1], dλ(y)).

Another crucial postulate is that the Poisson process intensity function in the

data space (with respect to λ) be bounded, which allows for setting an upper

bound for the ratio of the so-called surrogate risk and the true risk (cf., JS91,

p.9). For that, it is necessary that the left singular functions be bounded. In

order to satify both requirements, we take dµ(x) = xdx and dλ(y) = ydy. The

functions u and h are then replaced with f(x) = u(x)/x and g(y) = h(y)/y, and

the operator given in (1.1) becomes

g(y) = (Kf)(y) = 2

∫ 1

y
f(x)dµ(x). (2.1)

The SVD of this operator can be found by solving the eigenproblem K∗Kf = γf ,

which is equivalent to the differential eigenvalue problem

{

x2f ′′ − xf ′ + 4γ−1x4f = 0

f(0) = f ′(1) = 0
.

This leads to Bessel functions of order 1/2 which are expressible in terms of ele-

mentary functions. Standard calculations, similar to those presented in Szkutnik

(2007), lead to the following.
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Proposition 1. The singular values of the operator (2.1) acting from L2([0, 1], µ)

to L2([0, 1], λ) are bν = 2/[π(2ν + 1)], ν = 0, 1, . . ., with the right singular

functions φν(x) = 2 sin[(2ν + 1)πx2/2] and the left singular functions ψν(y) =

2 cos[(2ν + 1)πy2/2].

Let Bj = [((j−1)/N)1/2, (j/N)1/2], j = 1, . . . , N , be the binning in the data

space. Then λ(Bj) = 1/(2N) for all j. The discretization operator, say PN ,

maps g to a step function (PNg)(y) =
∑

j cj1Bj
(y), with cj =

∫

Bj
gdλ /λ(Bj).

For two step functions, we have
〈

∑

j

cj1Bj
,
∑

j

dj1Bj

〉

L2

=
1

2N

∑

j

cjdj . (2.2)

In the sequel, to simplify notation, we identify step functions
∑

j cj1Bj
with N -

dimensional vectors [c1, . . . , cN ], considered as elements of R
N with the rescaled

inner product given in (2.2). It is easy to verify that, with

(χℓ)j = 2cos
(2ℓ+ 1)(2j − 1)π

4N
ℓ = 0, . . . , N − 1, j = 1, . . . , N, (2.3)

the vectors χℓ form an orthonormal basis in that space. Moreover,

(PNψν)j = sinc
(2ν + 1)π

4N
· 2 cos

(2ν + 1)(2j − 1)π

4N
. (2.4)

This implies that if, for some integer k, either

ν2 − ν1 = 4Nk or ν2 + ν1 = 4Nk − 1, (2.5)

or

ν2 − ν1 = 2N(2k + 1) or ν2 + ν1 = 2N(2k + 1) − 1, (2.6)

then PNψν2 and PNψν1 are multiples of the same basis vector. (In case of (2.5),

the cosines in (2.4) are the same for ν1 and ν2 and for all j; in case of (2.6), they

only differ in sign.) Define [ν] = min{ν ′, 2N − 1 − ν ′}, where ν ′ is the residue of

ν modulo 2N . Then [ν] ∈ {0, . . . , N − 1} and PNψν = γνχ[ν], with

γν = (−1)1[N,3N)(ν
′′) sinc

(2ν + 1)π

4N
,

where ν ′′ is the residue of ν modulo 4N . This means that the matching SVD

assumption is fulfilled and PNKφν = bνγνχ[ν], which illustrates the smoothing

action of PNK along the directions spanned by φν ’s. Define, for ℓ = 0, . . . , N−1,

Γℓ = {ν : PNψν and PNψℓ are parallel } and consider

|bνγν | =
8N

π2(2ν + 1)2

∣

∣

∣

∣

sin
(2ν + 1)π

4N

∣

∣

∣

∣

.
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It follows from (2.5) and (2.6) that

Γℓ = {2Ni+ ℓ : i = 0, 1, . . .} ∪ {2Ni− 1 − ℓ : i = 1, 2, . . .}, (2.7)

and it is easily seen that the moduli of the sine terms are constant within Γℓ.

Hence maxν∈Γℓ
|bνγν | = |bℓγℓ|, which means that, among all components of f

mapped by the operator PNK to the same one-dimensional subspace spanned by

χℓ, the least smoothed component is φℓ. This will be crucial for the construction

of the estimator in Section 4.

The function f is assumed to belong to the class

Fa,C =
{

∞
∑

ν=0

fνφν : f0 = 1,

∞
∑

ν=1

(2ν + 1)2af2
ν ≤ C2

}

, (2.8)

with some a > 1/2 and some C. Regularity of the functions belonging to Fa,C is

described by the following proposition, proved in the Appendix.

Proposition 2. Let k be a natural number.

a. If f ∈ Fa,C with a > k + 1/2, then f is k times continuously differentiable in

[0, 1].

b. If f ∈ Fk,C, then f has k weak derivatives that are square integrable in [0, 1]

with respect to dm(x) := x1/2dx.

Since a > 1/2, it follows that f ∈ Fa,C is necessarily continuous on [0, 1].

Moreover, it is clear that f(0) = 0 and, using inequality (A.1) in the Appendix,

it can be shown that f(x) = O(x2) as x → 0, if a > 3/2. We also have the

following.

Lemma 1. For every g = Kf , with f ∈ Fa,C ,

∣

∣

∣

∣

g(y)

b0ψ0
− 1

∣

∣

∣

∣

≤ C

b0

√

√

√

√

∞
∑

k=1

1

(2k + 1)2a
. (2.9)

Proof. Obvious modification of the proof of Proposition 1 in JS91, combined

with the bound |ψν(x)/ψ0(x)| ≤ 2ν + 1, gives the result.

Lemma 1 implies, in particular, that if the constant C is small enough for

the right-hand side of (2.9) to be smaller than one, then g is nonnegative, and

there exist constants c1 and c2 such that, for any g1, g2 ∈ KFa,C , one has 0 <

c1 ≤ g1/g2 ≤ c2.

3. Lower Bounds for the Convergence Rates

Define the risk of an estimator f̃n as the mean integrated square error

M(f̃n, f) = Ef‖f̃n − f‖2, (3.1)
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where ‖ · ‖ denotes the L2([0, 1], µ) norm. With f ∈ Fa,C one would expect

the minimax convergence rates n−2a/(2a+3) (cf., e.g., Johnstone and Silverman
(1990), or van Rooij and Ruymgaart (1996)). This is indeed the case, up to a

log-factor, but some technical difficulties have to be resolved. The methodol-

ogy based on the modulus of continuity and Fano’s Lemma, as developed by
Johnstone and Silverman (1990), does not work in our case because g(1) = 0

for all g ∈ KFa,C , which causes problems with upper bounding the Kullback-

Leibler divergence between densities by the corresponding L2-norm. With the
approach based on van Trees inequality and developed by van Rooij and Ruym-

gaart (1996), we were able to obtain n−2a/(2a+3)(log n)−1. This may be sharpened

to (n log n)−2a/(2a+3), using the Assouad cube technique. For any probability
measures P , Q, denote by ρ(P,Q) the Hellinger affinity between them; for two

finite, binary sequences ω, ω′ of the same length, denote by ∆(ω, ω′) their Ham-

ming distance. We use the following version of the Assouad Lemma (cf., Assouad

(1983), or Birgé (2006)).

Lemma 2. Let {Pω , ω ∈ D} be a family of distributions indexed by D = {0, 1}m,

and X1, . . . ,Xn an i.i.d. sample from a distribution in the family. Assume that

ρ(Pω, Pω′) ≥ ρ̄ for each pair (ω, ω′) ∈ D2 such that ∆(ω, ω′) = 1. Then, for

any estimator ω̂(X1, . . . ,Xn) with values in D, supω∈D Eω [∆ (ω̂, ω)] ≥ mρ̄2n/4,
where Eω denotes the expectation when the Xi have the distribution Pω.

Proposition 3. For the class of estimators

T = {f̃n : Ef‖f̃n‖2 <∞, f ∈ Fa,C}, (3.2)

there exists a constant c such that

inf
f̃n∈T

sup
f∈Fa,C

M(f̃n, f) ≥ c (n log n)−
2a

2a+3 .

Proof. In order to obtain a good lower bound, one should construct a possibly
large number of well separated fi’s in Fa,C for which the corresponding data

distributions are close to each other. It is convenient to define fj’s in terms of

the singular functions, in order to describe the action of K on fj’s in a tractable
way. Let bk, φk and ψk be as in Proposition 1. For an integer m = m(n), let

ω = (ω1, . . . , ωm) with ωi ∈ {0, 1}, and set

fω = φ0 + δm

2m−1
∑

i=m

ωi−m+1φi

for some positive δm. Notice that fω ∈ Fa,C for all ω, if δ2m
∑2m−1

i=m (2i+1)2a ≤ C2.

It is thus sufficient that (4m− 1)2a+1 ≤ C2δ−2
m , and we take

δ2m ≍ m−(2a+1). (3.3)
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With gω = Kfω, one observes a Poisson process Nngω with intensity function ngω

or, equivalently, n i.i.d. copies of a Poisson process Ngω . Take f0 = φ0, g0 = Kf0,

and denote by L(Ng) the distribution of Ng. Then the Hellinger affinity between

the distributions takes the form

ρ
(

L(Ngω),L(Ngω′
)
)

=

∫

√

dL(Ngω)

dL(Ng0)

dL(Ngω′
)

dL(Ng0)
dL(Ng0) = exp

[

−H2(gω, gω′)
]

,

where H2(gω, gω′) =
∫ 1
0

(√
gω −√

gω′

)2
dλ/2 (cf., e.g., Reiss (1993, Chap.3.2)).

With ∆(ω, ω′) = 1, one has gω′ = gω +δmbkψk, for some k between m and 2m−1,

and with gω = b0ψ0 + δm
∑2m−1

i=m ωi−m+1biψi.. Standard calculation gives

H2(gω, gω′) =
δ2mb

2
k

2b0

∫ 1

0

ψ2
k

ψ0

(
√

gω′

b0ψ0
+

√

gω

b0ψ0

)−2

dλ.

The second factor under the integral is bounded and cut away from zero (see the

remark after Lemma 1; C may be assumed small without loss of generality). The

integral
∫

ψ2
k/ψ0dλ evaluates to [γ + ψ(3/2 + 2k) + log 4]/2, where γ is Euler’s

constant and ψ(·) is the digamma function. Since (cf., Gradshteyn and Ryzhik

(1980)) ψ(3/2 + 2k) = −0.58 . . .+ 2[
∑2k+1

i=1 1/(2i− 1)− log 2], one easily obtains
∫

ψ2
k/ψ0dλ ≍ log(2k + 1) and, using (3.3),

H2(gω, gω′) ≍ δ2mb
2
k log(2k + 1) ≍ δ2mm

−2 logm ≍ m−(2a+3) logm. (3.4)

Now, for any estimator f̃n of f , take ω̃ ∈ D = {0, 1}m such that ‖fω̃ − f̃n‖ =

minω∈D ‖fω − f̃n‖. Then ‖fω̃ − fω‖ ≤ ‖fω̃ − f̃n‖ + ‖fω − f̃n‖ and

sup
f∈Fa,C

Ef‖f̃n − f‖2 ≥ max
ω∈D

Efω
‖f̃n − fω‖2 ≥ 1

4
max
ω∈D

Efω
‖fω̃ − fω‖2

=
δ2m
4

max
ω∈D

Efω
[∆(ω̃, ω)] ≥ δ2mmρ̄

2n

16
≍ m−2aρ̄2n, (3.5)

because of the Assouad Lemma and (3.3). Take m ≍ (n log n)1/(2a+3). Then

logm ≍ log n, nm−(2a+3) logm ≍ 1, and it follows from (3.4) that ρ̄2n ≍ 1, which

gives supf∈Fa,C
Ef‖f̃n − f‖2 ≥ c(n log n)−2a/(2a+3) and completes the proof.

It does not seem possible to get rid of the log-factor in the present derivation.

The logarithm enters because H2(gω, gω′) is of the order of m−(2a+3) logm, since
∫

ψ2
k/ψ0dλ is of the order of log(2k + 1). A similar statement is true for the

method of van Rooij and Ruymgaart. It will be seen in the next Section that

n−2a/(2a+3) is the minimax rate for linear estimators. We tend to believe that

the log-factor may not be superfluous, and may be related to the restrictions

f(0) = 0 and g(1) = 0, which make the estimation problem slightly easier,
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statistically speaking. If it is so, then a suitably constructed nonlinear estimator

might give a logarithmic speed-up of the convergence.

4. The Estimator and its Rates of Convergence

Let Zj = nj/(nλ(Bj)) = 2Nnj/n, j = 1, . . . , N , be normalized bin counts

and (cf., (2.2)) Z̃ℓ =
∑N

j=1 Zj(χℓ)j/(2N) = n−1
∑N

j=1 nj(χℓ)j , ℓ = 0, . . . , N − 1,

be the coordinates of the vector [Z1, . . . , ZN ] with respect to the basis {χℓ}.
Following JS91, we define an estimator f̂n of f as

f̂n(x) = φ0(x) +

N−1
∑

ν=1

Z̃ν
(1 − α

1
2 (2ν + 1)a)+
bνγν

φν(x), (4.1)

with α chosen to ensure that

n−1
N−1
∑

ν=1

b−2
ν γ−2

ν (2ν + 1)2a(α− 1
2 (2ν + 1)−a − 1)+ = C2. (4.2)

The estimator f̂n is a linear combination of the first N right singular functions of

the operator K; it is a Fourier-type estimator, in which higher order components

are neglected. f̂n is also a member of the class TN of linear estimators that

contains estimators of the form f̃n(x) = φ0(x)+
∑N−1

ν=1 cνφν(x), with cν depending

linearly on the data [n1, . . . , nN ].

Because the risk (3.1) is difficult to handle, Johnstone and Silverman pro-

posed, for f̃n ∈ TN , to work with a surrogate risk M∗(f̃n, f) obtained from

(3.1) through simplifying its variance term (for details, see JS91, p.8). To have

M(f̃n, f) and M∗(f̃n, f) asymptotically equivalent, we need to show that the

ratio M(f̃n, f)/M∗(f̃n, f) is bounded above, and below away from zero. This

can be done similarly to JS91, p.21, using our Lemma 1. Since g is nonnegative,

provided C is small enough, an upper bound for M(f̃n, f)/M∗(f̃n, f) follows im-

mediately, as in JS91. A positive lower bound for that ratio can again be obtained

as in JS91, using the inequality

∫ 1

0
ψ2

νψ0dλ =
2

π

ν2 + ν + 5
16

ν2 + ν + 3
16

≥ 2

π
.

The following theorem is the main result of this article and shows that, if

the discretization rate is not too slow, then f̂n is, essentially, asymptotically rate

minimax.

Theorem 1. Let n = O(N2a+3). Then for any C such that the right-hand side

of (2.9) is smaller than one, f̂n is, up to a logarithmic factor, asymptotically

rate minimax over Fa,C in the class of essentially all estimators, as defined in
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(3.2), with M(f̂n, f) ≍ n−2a/(2a+3), uniformly for f ∈ Fa,C . In the class of linear

estimators, f̂n is exactly asymptotically rate minimax.

Proof. The lower bound (n log n)−2a/(2a+3) is given in Proposition 3, and Lemma

1 in JS91 asserts that n−2a/(2a+3) is the minimax rate in the class of linear

estimators. It is thus sufficient to show that f̂n achieves the rate n−2a/(2a+3) and,

moreover, in view of the results discussed above, it is sufficient to work with the

surrogate risk M∗(f̂n, f). The reasoning will closely follow that on pages 13-17

of JS91. We sketch the main idea, omit most of the details, and report only some

intermediate results that are different from those in JS91.

Denote the minimax risk over a class of estimators T and a function class F
by

M(T ,F) = inf
f̃n∈T

sup
f∈F

M∗(f̃n, f),

and define by FL
a,C = {f ∈ Fa,C : fN = fN+1 = · · · = 0} the class of “low-fre-

quency” members of Fa,C . With Γν given by (2.7) write

SN (ν) =
∑

ρ∈Γν\{ν}

1

(2ρ+ 1)2a
,

ε(N) = C2

[

max
ν∈{1,2,...,N−1}

SN (ν) +
1

(2N + 1)2a

]

.

It then follows from Theorem 1 in JS91 that if

ε(N) = O(M(TN ,FL
a,C)), (4.3)

then M(TN ,Fa,C) and M(TN ,FL
a,C) are asymptotically equivalent, so that ε(N)

may be called a “high-frequency effect”. Moreover, Lemma 1 in JS91 gives an

explicit form of M(TN ,FL
a,C) and asserts, under (4.3), the rate minimaxity of f̂n

in the class of linear estimators. It is thus sufficient to show that (4.3) is fulfilled

with the assumed discretization rate, and that M(TN ,FL
a,C) approaches zero at

the rate n−2a/(2a+3).

It can easily be shown than

SN (ν) =
∞
∑

j=1

[

(2ν + 1 + 4Nj)−2a + (4Nj − 2ν − 1)−2a
]

≤ N−2a
∞

∑

k=1

k−2a.

Therefore, ε(N) = O(N−2a), because a > 1/2.

Define να = ⌊(α−1/(2a) − 1)/2⌋. The choice of α satisfying (4.2) is asymptot-

ically equivalent to the choice of να that satisfy

1

n

να−1
∑

ν=1

(2ν + 1)2a+2

sinc2[π(2ν+1)
4N ]

[(

2να

2ν + 1

)a

− 1

]

=
4

π2
C2 (4.4)
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if να ≤ N − 1, or to the choice of α that satisfy

1

n

N−1
∑

ν=1

(2ν + 1)2a+2

sinc2[π(2ν+1)
4N ]

[

α− 1
2

(2ν + 1)a
− 1

]

=
4

π2
C2 (4.5)

if να > N − 1. To make the choice of να or α, two cases are considered.

1. The discretization index N tends to infinity faster than n1/(2a+3), i.e., n =

o(N2a+3). Because

1

n

M−1
∑

ν=1

(2ν + 1)2a+2

sinc2[π(2ν+1)
4N ]

[(

2M

2ν + 1

)a

− 1

]

∼ 4

π2
C2,

with (2M)2a+3 = 8n(a+3)(2a+3)C2/(aπ2), να ∼M can be taken in (4.4).

(an ∼ bn means that an/bn → 1, as n → ∞.) The low-frequency minimax

error

M(TN ,FL
a,C) =

π2

4n

M−1
∑

ν=1

(2ν + 1)2

sinc2[π(2ν+1)
4N ]

[

1 −
(

2ν + 1

2M

)a]

is then proportional to n−2a/(2a+3), which implies that ǫ(N) = o(M(TN ,

FL
a,C)).

2. The discretization index tends to infinity at the rate n1/(2a+3). Let n =

c(4N)2a+3, for a positive constant c. Two sub-cases are considered.

(a) c < Ja,a+2(1/2)π
2/(8C2), where Jp,q(x) =

∫ x
0 (xp − up)uq/sinc2(πu)du

is an increasing function of x ∈ [0, 1/2), with p, q > 0. One then

takes να = ⌊2NU⌋ in (4.4), where U is the solution of the equation

Ja,a+2(U) = 8cC2/π2.

(b) c > Ja,a+2(1/2)π
2/(8C2). In this case, α = (2r)−2aI2

a+2(8cC
2/π2 +

I2a+2)
−2 is suitable for (4.5), where Ip =

∫ 1/2
0 up/sinc2(πu)du.

In both sub-cases one gets ǫ(N) and M(TN ,FL
a,C) proportional to n−2a/(2a+3).

5. Empirical Risk Minimization and Numerical Experiment

In practical applications, it is more natural to estimate the intensity function

with respect to the Lebesgue measure (denoted by u(x) in Section 1) rather than

with respect to µ. Therefore, in the numerical experiment, a modified estimator

was used. Since u(x) = xf(x), the estimator given by (4.1) was multiplied by x

to get an estimator of u. Also, the restriction f0 = 1 is rather artificial and it

may be replaced for greater flexibility with, say, f0 = D. The constant D should
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be
∫

fφ0dµ and may be estimated from the data, if it is not known a priori. It

follows from (2.1) that f(x) = (K−1g)(x) = −(2x)−1g′(x). Substituting that into

the integral defining D, using the explicit form of φ0 and integrating by parts,

one easily obtains D = π
∫ 1
0 h(y) cos(πy2/2)dy. A natural estimator for D can

thus be constructed as

D̂ = π
N

∑

j=1

nj

n
cos

πy2
j

2
,

where yj is the midpoint of the jth data bin.

The estimator used in simulations and recommended for practical usage had

the form

ûn(x) = xD̂φ0(x) +

N−1
∑

ν=1

Z̃ν
(1 − α

1
2 (2ν + 1)a)+
bνγν

xφν(x). (5.1)

A nontrivial problem is how to adaptively select the parameters. N is usu-

ally fixed by an experimental setup. Given N , the choice of a and α may be

based on minimization of an empirical analogue of the risk function - a com-

mon idea behind, e.g., cross-validation and Mallows Cp (cf., e.g., Efromovich

(1999, Chap. 7.4)). The surrogate risk M∗(f̂n, f), asymptotically equivalent to

M(f̂n, f), may be written in the form (cf., JS91,p.8)

M∗(f̂n, f) =

N−1
∑

ν=1

(

TνGν − gν

bν

)2

+
1

n

N−1
∑

ν=1

T 2
ν + c,

where Tν = (1 − α1/2(2ν + 1)a)+/(γνbν), gν = bνfν , Gν =
∑

k∈Γν
γkgk with Γν

defined in (2.7), and c does not depend on a or on α. If the gk’s decrease quickly,

then Gν ≈ γνgν and

M∗(f̂n, f) ≈
N−1
∑

ν=1

(

Tν − 1

bνγν

)2

G2
ν +

1

n

N−1
∑

ν=1

T 2
ν + c.

It is known (JS91,p.7) that Ef (Z̃ν) = Gν and Varf (Z̃ν) = n−2
∑N

j=1 Ef (nj)(χν)2j ,

so that Ĝ2
ν = Z̃2

ν − n−2
∑N

j=1 nj(χν)2j is an unbiased estimator of G2
ν . Conse-

quently, neglecting constant terms, a and α are chosen to minimize

N−1
∑

ν=1

(

T 2
ν − 2Tν

γνbν

)

Ĝ2
ν +

1

n

N−1
∑

ν=1

T 2
ν

= −
N−1
∑

ν=1

(1 − α(2ν + 1)2a)+
b2νγ

2
ν

Ĝ2
ν +

1

n

N−1
∑

ν=1

(1 − α
1
2 (2ν + 1)a)2+
b2νγ

2
ν

, (5.2)
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and the ûn that corresponds to the minimum is taken as the final solution and

referred to as the ERM estimator.

The first term in (5.2) is, up to an additive constant, the “squared bias term”

and the second one is the “variance term”. If, for instance, a is kept fixed and α

decreases, then the bias term decreases and the variance term tends to increase.

Minimization of (5.2) provides a bias-variance tradeoff.

In the simulations, two values of the experiment size n were used: 2,000

and 10,000. The value of N was always 40. The minimization was performed

through a grid search with (a, α) ∈ [0.5, 1.5] × [0.01, 0.1], and with steps 0.1 and

0.01, respectively. The points that led to more than 10 components in (5.1), as

well as those leading to negative solutions, were excluded from the search, as a

safety measure against occasional “pathological” data that may lead to heavily

oscillating solutions.

Data samples were generated from the following intensity functions:

• Swapped Minerbo-Levy A (SML-A):

u(x) = 2[1 − 2(1 − x)2]1(0,0.5] + 4[1 − (1 − x)2]1(0.5,1);

• Swapped Minerbo-Levy B (SML-B):

u(x) = 1.241(2x − x2)−3/2 exp[1.21(1 − (2x− x2)−1)];

• Normal mixture (NM): 0.7 ·N(0.7, 0.08) + 0.3 ·N(0.35, 0.08);

• Beta(4, 2): u(x) = 20x3(1 − x);

• Step function (SF): u(x) = 0.6 1[0,1/3] + 0.9 1(1/3,0.75] + 1.7 1(0.75,1].

The first two functions are taken from Minerbo and Levy (1969) and swapped

to satisfy u(0) = 0. The step function neither satisfies that condition, nor is it

continuous. It was included in the simulation experiment to check the behaviour

of the estimator when the assumptions of the theory are violated.

For each function and for each experiment size, 10 artificial data samples

were generated and the estimators ûn were constructed with a and α selected to

minimize the empirical risk. Additionally, for each of the data samples, the best

possible values of a and α were found, i.e., those that minimize the (numerically

computed) L2 distance between ûn and the true u. The best and worst cases

(out of 10 data samples) are presented in Figures 5.1−5.5.

As expected, clear improvement is seen when n increases from 2,000 to

10,000. The promising behaviour of the proposed ERM procedure calls for a

more thorough, theoretical study of its adaptivity properties. This is, however,

outside the scope of the present paper.
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Figure 5.1. Worst (dashed) and best (thick dashed) reconstruction (out
of 10 data samples) of a Beta(4, 2) intensity function (solid line) for the
experiment size n = 2, 000 (left) and n = 10, 000 (right). From top: the
best possible solutions, the solutions obtained through minimization of the
empirical risk (ERM) and scatterplots of L2 errors of ERM solutions versus
those of the best possible solutions. (The closer the points to the bisecting
line, the more efficient the ERM procedure for selection of a and α.)
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Appendix

Proof of Proposition 2. Let F be defined by f(x) = F (x2). Clearly, f −→ F

is an isometric bijection between L2(xdx) and L2(dz/2). The right singular

functions {φν} form an orthonormal basis in L2(xdx), as a set of eigenfunctions
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Figure 5.2. Similar to Fig. 5.1, but for the SML-A intensity function.

of K∗K, which is defined on L2(xdx). Consequently, uν(z) := 2 sin[(2ν+1)πz/2],

ν = 0, 1, . . ., form an orthonormal basis in L2(dz/2). Similarly, the left singular

functions {ψν} form an orthonormal basis in L2(xdx), as a set of eigenfunctions

of KK∗, which is defined on L2(xdx) and, consequently, vν(z) := 2 cos[(2ν +

1)πz/2], ν = 0, 1, . . ., form another orthonormal basis in L2(dz/2). Obviously,

f =
∑

ν fνφν , if and only if F =
∑

ν fνuν .

For the proof of a, notice that, by the Schwarz inequality,

∞
∑

ν=0

(2ν + 1)k|fν | ≤
[

∞
∑

ν=0

(2ν + 1)2a|fν |2
]

1
2
[

∞
∑

ν=0

1

(2ν + 1)2(a−k)

]
1
2

. (A.1)

If f ∈ Fa,C with a > k+1/2, then
∑

ν(2ν+1)k|fν | <∞, which allows for termwise

differentiation, so that F (k) =
∑

νfνu
(k)
ν , and F (k) is continuous because the series
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Figure 5.3. Similar to Fig. 5.1, but for the SML-B intensity function.

converges uniformly in [0, 1]. Consequently, f itself is then k times continuously
differentiable in [0, 1].

For the proof of b, we first show that F has k weak derivatives that are square
integrable in [0, 1] with respect to dx. Write F =

∑

ν fνuν and take DkF :=
∑

ν fνu
(k)
ν . Then, for odd k, DkF = ǫk

∑

ν fν [(2ν+1)π/2]kvν with ǫk = (−1)⌊k/2⌋,
and DkF ∈ L2(dz/2) if f ∈ Fk,C . For even k, DkF = ǫk

∑

ν fν [(2ν + 1)π/2]kuν

and, again, DkF ∈ L2(dz/2) if f ∈ Fk,C . Since F ∈ L2(dx), it suffices to show
that, for any s ∈ C∞

0 (0, 1), the space of infinitely differentiable functions with
compact support contained in (0, 1),

∫ 1

0
F (x)s(k)(x)dx = (−1)k

∫ 1

0
(DkF )(x)s(x)dx. (A.2)

For m ∈ N, write F =
∑m

ν=0 fνuν + Rm with ‖Rm‖L2(dx) → 0 when m → ∞,
because of the Parseval equality. Then, integrating by parts k times and using
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Figure 5.4. Similar to Fig. 5.1, but for the NM intensity function.

the Schwarz inequality,

∫ 1

0
Fs(k)dx = (−1)k

∫ 1

0

m
∑

ν=0

fνu
(k)
ν sdx+O

(

‖Rm‖L2(dx)

)

.

For odd k, write DkF = ǫk
∑m

ν=0 fν [(2ν + 1)π/2]kvν + R̃m with ‖R̃m‖L2(dx) → 0

whenm→ ∞, because of the Parseval equality, and further, again by the Schwarz

inequality,

∫ 1

0
Fs(k)dx = (−1)k

∫ 1

0
(DkF − R̃m)sdx+O

(

‖Rm‖L2(dx)

)

= (−1)k
∫ 1

0
(DkF )sdx+O

(

‖R̃m‖L2(dx)

)

+O
(

‖Rm‖L2(dx)

)

.
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Figure 5.5. Similar to Fig. 5.1, but for the SF intensity function.

Equality (A.2) is then obtained when m→ ∞. For even k the reasoning is almost

identical, with vν replaced by uν in the representation of DkF .

The conclusion about f now follows in a fairly standard way, similar to the

proof of Theorem 3.41 in Adams and Fournier (2003, p.78). One first proves the

chain rule for the weak differentiation of F (x2) by approximating the W k,1(0, 1)

function F with C∞(0, 1) functions (in the Sobolev norm). An upper bound for
∫

(Dkf)2dm then follows easily, and the integration with respect to dm(x) rather

than dx helps to handle the singularity of (
√
x)′ at zero.
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