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5. On-line supplement: More technical proofs
Proof of Theorem 3.4 and 3.5. We start presenting two auxiliary results

Lemma 5.1. Consider the spline polynomial
1%
P(x) = aifilz,N), (5.1)
i=1

where the functions fi(xz,\),..., fu(x, X) are defined by (2.2) and condition (3.1)
is satisfied. If > 1, a? % 0, the number of isolated roots counted with their
multiplicity is at most p — 1.

Proof. Assume that the spline polynomial in (EI) has more than p — 1 isolated
roots, then it follows that the function

~ d \m—ki—1
ba@) = ()" v
has at least 4 —m + k1 + 1 isolated roots. On the other hand this polynomial is
of the form

~ k—m-+kq ' r ki1+1 '
@Z)(ZC) = Z d]’x] + Z Z dZJ(SC — )\Z)J
=0 i—1 j=1

Therefore 1 is a polynomial of degree < k —m + k; on the interval [a, \;] and a
polynomial of degree k1 + 1 on the remaining 7 intervals (A, 2],y (A, Apia]-
Consequently, ¢ has at most

pi=k—m+k +r(k+1)
isolated roots counted with multiplicity, which yields

p—m+ki+1<p=k—m+k +r(ks+1).
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Observing that u = k + r(k; + 1) this inequality reduces to 1 < 0, which is a
contradiction.

Lemma 5.2. Any minimally supported local D-optimal design has the boundary
points a and b as its support points.

Proof. If £ is a minimally supported local D-optimal design it must have equal
weights 1/p at its support points 21 < - -+ < x,. From the discussion in the proof
of Theorem 2.1 it follows that

2
det M (€, A) = {det(fila;, )y b o

Now consider the function

I
G(wr) = det(fiws, D)oy = Y aifilwr, A),
i=1

where the last identity follows from Laplace’s rule and the constants aq,...,a,
depend on the points 3, ..., z, but not on the point x;. Obviously, ¥ (z;) =0
for j =2,...,p and consequently ' (z) vanishes at p — 2 points Z; € (zj,xj11);

(j=2,...,u—1). If x1 > a we would also have 9)/(x1) = 0. On the other hand it
follows from Lemma 5.1 that ¢/’ has at most p — 2 roots which is a contradiction.
Consequently, 1 = a and it can be proved by similar arguments that =, = b.

It now follows that a minimally supported local D-optimal design is charac-
terized by its interior support points

T=(T1,...,Tu—2) = (2, ..., 2,-1)

and consequently we denote candidates for such designs by

aT]...Ty—2b
572(;;1 “121)-

peop oo

Therefore the problem of determining minimally supported local D-optimal
designs reduces to the maximization of the function

(7, A) = [det M(g,)] (5.2)
over the set
T={r=(r,....,mu2)" |[a<T < <75 < b}, (5.3)
where

AeQi={\,...., )" Ja< < <M\ < b} (5.4)
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is a fixed parameter. Note that under the assumptions of Theorem 3.4 this
optimization problem has a unique solution, say 7% = 7%()\), which satisfies the
necessary conditions for an extremum, i.e.

0
8_7_1‘ (Ta )‘)

Using the same arguments as in Melas (2006, pp.65-66), it now follows from
Lemma 5.1 that the Jacobi matrix of equation (BH),

JA) = (67?87']- ¥(r )

=0; i=1,...,u0—2. (5.5)

*

T=T

)i
r=r*(\)/ij=1

is non-singular and

(7' )i <0 =1, p—2 (5.6)
82
0T;0\;

where s(i) € {1,2}. Note that there could exist several solutions of (&Hl) corre-
sponding to local extrema of the function . However, from the assumptions of
the theorem it follows that for a fixed parameter Ay € €) there exists a global
maximum of the function ¢ and we denote by 7 = 7%()\g) a solution of (BX)
corresponding to this global maximum. From the implicit function theorem [see
Gunning and Rossi (1965)] it therefore follows that the function 7*(\) is a unique
continuous solution of (BH) such that 7 = 7(\g). By the same theorem we obtain
forj=1,....,mi=1,...,0—2

o .
—7r(\) = (J7INVG(-1)*D) >0,

O\ ( J )
where the vector G; is defined by

62
L A
G; (6Tg67j ¥(rA)

As a consequence the support points of the local D-optimal design for the spline
regression model are increasing functions of the knots. Finally, if A is an interior
point of one of the sets €; in the partition (3.12), the function (7, \) is real
analytic and by the implicit function theorem the solution 7(\) of (BH) is also
real analytic.

YN (=1 | e <0y i=1,...,0—2 j=1,....r, (5.7)

2

T:T*(A)>::12 '

Proof of Theorem 4.2. Note that a minimally supported standardized max-
imin D-optimal design (with respect to any set {2) must have equal weights.
Recall the definition of the function ¢ in ([&2), define

Y1, M)

SRRV VA

(5.8)
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where 7% = 7%()) is the vector of support points of the minimally supported local
D-optimal design. Obviously, we have

i p(1,A) = ot o(1, ,0) (5.9)
with
o(1,a,6) = (1 — a)o(T, (1 —d)c) + ap(r, (1 + d)c). (5.10)

Consequently, the problem of finding the minimally supported standardized max-
imin D-optimal design with respect to the set {2} can be reduced to finding a
solution (7, &) of

' ;@ 0), 5.11
DR Gy P ) >10

where the set T is defined by
T={r=(m,....,Tu—2) |la<7 <+ <Ty_g < b}

(if two components of the vector 7 would be equal the determinant would vanish).
The necessary conditions for an extremum yield

9 (r,o,0)] =0; i=1,...,0—2,
5 =T (5.12)
%@(77 «, 6) ‘ a:d: 07
which will be further investigated using the following parameterization
1 *
D(u,0) = @lr* + pi?, 5 + 5,0 - w(;; ). (5.13)

Here v = (p, 8) = (p1,-- ., pu—2,3) and 7* denotes the vector of interior support
points of the minimally supported local D-optimal design for the vector ¢ =
(c1y...,¢); ie. 7" = 7%(c). Obviously, the equations (EIZ) are equivalent to

0
P = =1,....,0—1 .14
aui (’U,, 5) =i 07 2 ’ y ’ (5 )

A~

and the solutions @ = (p, §) and (7, &) are related by
1 .
%:T*+ﬁ52;d:5+55. (5.15)

Assume that 6* is sufficiently small and define the set

a—T* b—1* 1 1
Up = {u:(Paﬁ)‘T<P1<"'<Pu—2<5—2,—%§5§%}7

then we prove the following assertions.
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(I) There exists a unique continuous function

a: {(_5*’5*) —u (5.16)

5 =)

such that for each § € (—d*,6") the value 4(9) is a solution of the system
(BT

(IT) The function defined in (I) is real analytic and the coefficients in the corre-
sponding Taylor expansion

a(d) = ug)d
Jj=0

can be calculated recursively as

wo) = —J (0, 6)]2),

(5.17)
u(s+1) = _jil[h(’U’(S) (5)7 5)](s+3)7 s = 07 17 27 cee
where wu ) is defined in (3.15),
0 0 T
0? p—2
A= (87i87jw(7’ C) 7':7'*)@',]71
d 02 p—2
b= <j1 K 871-80]-1’[)(7’ o) T:T*)i:1
J= (;}g) € RH-Ixu=l, (5.19)
(IIT) The design
aTl...Ty—2 b
& = (1 L 1)
[T [T

is the unique minimally supported standardized maximin D-optimal design
with respect to the set Q.

(IV) The design &; is the unique minimally supported standardized maximin
D-optimal design with respect to the set 5.
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For a proof of (I) and (II) we note that h(u,d) is a real analytic vector valued

function in a neighbourhood of the point (u*,d*) = (0,0), with components
satisfying

7i(0,0) = -0 h(u, 8) =0, i=1 —1

1\M - auz ) (u,5)=(0,0)_ ’ =L..., ’

and

t,j=1

('9‘ pelo o 3
(aEMWﬁD = 62J +0(5°),

where the matrix .J is defined in (EI9). Obviously,
det .J = —(det A)bT A~ 1b,

where det A # 0 as demonstrated in the proof of Theorem 3.4 and 3.5. A similar
argument, shows that b # 0 and therefore the matrix J is non singular. The
implicit function theorem [see Gunning and Rossi (1965)] now shows the exis-
tence of a unique real analytic solution @ of (BI4)) in a sufficiently small interval
(=6*,6"). The recursive relation (1) for the coefficients in the corresponding
Taylor expansion is now a consequence of from Theorem 5.3 in Melad (2007).

In order to prove (III) we note that it follows from the uniqueness of the
minimally supported local D-optimal design for any ¢ € (0,1)

min (1 a) VOO0 (1 10))
0oz VU= 8)0), 1= U (L +8)e), (1 +)e)

For ¢ € [0,1] define as (7,&) a point where the optimum in (&IT) is attained,
that is

< 1. (5.20)

F &,0) = max mi L, 6).
o(7,a,9) rgegagl[lofll}w(fa )

If & = 0 we would obtain

o(T,a,0) = ¢(7,0,0) = max (7, (1 = 9)c) =1,

reT Y(T*((1 — 9)c), (1 = d)e)
which contradicts (20)). Similary, we can exclude the case & = 1. The matrix
A in (BIF)) is nonsingular and the Hesse matrix of the function (7, ¢) evaluated
at the extreme point 7 must be negative definite. Consequently, it follows
that for sufficiently small 0 the function ¢(7,«, ) defined in (1) is a concave
function of 7 in a neighbourhood of the point 7*. This means that (7, &) = (7, &)
and consequently the design &; is the unique minimally supported standardized
maximin D-optimal design with respect to the set 23.
Finally, we prove assertion (IV), which follows from the equation

in (7, \) = min (7, \). 21
/{25}590(77)\) gg%w(w\) (5.21)
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To prove (BZ1) we define the rescaled quantities 3, = (Ai—¢;)/(dc;) (i =1,...,7)
and note that |y;| < 1if X\ € Q4. A straightforward but tedious calculation yields

o(7,\) =1+ 624TBTABy + 0(6%), (5.22)
where v = (71,...,7)7, B = A7'D, the matrix D is defined by
Jj=1,..,r
T:T*)izl =2

)

0?h(t,c)
D= ( aTiacj

and the elements of the matrix A=! and D are negative and positive, respec-
tively (this follows by similar arguments as given in Melas (2006, pp.56-57)).
Consequently, the elements of the matrix DT A~1D, say zij (4,5 =1,...,r), are

negative and (B22) yields
,
P(F,0) = 1467 ) 2y + O(8%).
ij—1
Therefore, if § is sufficiently small, the minimum of ¢(7, ) is attained if all

components of v = (y1,...,7) have the same sign and are equal to +1 or —1.
Consequently, the minimum is attained either at A = (1 — J)c or A = (1 4 d)c.
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