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5. On-line supplement: More technical proofs

Proof of Theorem 3.4 and 3.5. We start presenting two auxiliary results

Lemma 5.1. Consider the spline polynomial

ψ(x) =

µ
∑

i=1

αifi(x, λ), (5.1)

where the functions f1(x, λ), . . . , fµ(x, λ) are defined by (2.2) and condition (3.1)

is satisfied. If
∑µ

i=1 α
2
i 6= 0, the number of isolated roots counted with their

multiplicity is at most µ− 1.

Proof. Assume that the spline polynomial in (5.1) has more than µ− 1 isolated

roots, then it follows that the function

ψ̃(x) =
( d

dx

)m−k1−1
ψ(x)

has at least µ−m+ k1 + 1 isolated roots. On the other hand this polynomial is

of the form

ψ̃(x) =

k−m+k1
∑

j=0

α̃jx
j +

r
∑

i=1

k1+1
∑

j=1

α̃ij(x− λi)
j .

Therefore ψ̃ is a polynomial of degree ≤ k −m+ k1 on the interval [a, λ1] and a

polynomial of degree k1 + 1 on the remaining r intervals (λ1, λ2], . . . , (λr, λr+1].

Consequently, ψ̃ has at most

µ̃ := k −m+ k1 + r(k1 + 1)

isolated roots counted with multiplicity, which yields

µ−m+ k1 + 1 ≤ µ̃ = k −m+ k1 + r(k1 + 1).
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Observing that µ = k + r(k1 + 1) this inequality reduces to 1 ≤ 0, which is a

contradiction.

Lemma 5.2. Any minimally supported local D-optimal design has the boundary

points a and b as its support points.

Proof. If ξ is a minimally supported local D-optimal design it must have equal

weights 1/µ at its support points x1 < · · · < xµ. From the discussion in the proof

of Theorem 2.1 it follows that

detM(ξ, λ) =
{

det(fi(xj, λ))µi,j=1

}2
µ−µ.

Now consider the function

ψ(x1) = det(fi(xj , λ))µi,j=1 =

µ
∑

i=1

αifi(x1, λ),

where the last identity follows from Laplace’s rule and the constants α1, . . . , αµ

depend on the points x2, . . . , xµ but not on the point x1. Obviously, ψ(xj) = 0

for j = 2, . . . , µ and consequently ψ′(x) vanishes at µ− 2 points x̃j ∈ (xj , xj+1);

(j = 2, . . . , µ− 1). If x1 > a we would also have ψ′(x1) = 0. On the other hand it

follows from Lemma 5.1 that ψ′ has at most µ−2 roots which is a contradiction.

Consequently, x1 = a and it can be proved by similar arguments that xµ = b.

It now follows that a minimally supported local D-optimal design is charac-

terized by its interior support points

τ = (τ1, . . . , τµ−2) = (x2, . . . , xµ−1)

and consequently we denote candidates for such designs by

ξτ =
( a τ1 . . . τµ−2 b

1
µ

1
µ
. . . 1

µ
1
µ

)

.

Therefore the problem of determining minimally supported local D-optimal

designs reduces to the maximization of the function

ψ(τ, λ) = [detM(ξτ,λ)]
1

µ (5.2)

over the set

T = {τ = (τ1, . . . , τµ−2)
T | a ≤ τ1 ≤ · · · ≤ τµ−2 ≤ b}, (5.3)

where

λ ∈ Ω := {(λ1, . . . , λk)
T | a < λ1 < · · · < λk < b} (5.4)
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is a fixed parameter. Note that under the assumptions of Theorem 3.4 this
optimization problem has a unique solution, say τ∗ = τ∗(λ), which satisfies the
necessary conditions for an extremum, i.e.

∂

∂τi
ψ(τ, λ)

∣

∣

∣

τ=τ∗
= 0; i = 1, . . . , µ− 2. (5.5)

Using the same arguments as in Melas (2006, pp.65-66), it now follows from
Lemma 5.1 that the Jacobi matrix of equation (5.5),

J(λ) :=
( ∂2

∂τi∂τj
ψ(τ, λ)

∣

∣

∣

τ=τ∗(λ)

)µ−2

i,j=1
,

is non-singular and

(J−1(λ))ij < 0; i, j = 1, . . . , µ− 2 (5.6)

∂2

∂τi∂λj
ψ(τ, λ)(−1)s(i) |τ=τ∗ < 0; i = 1, . . . , µ− 2; j = 1, . . . , r, (5.7)

where s(i) ∈ {1, 2}. Note that there could exist several solutions of (5.5) corre-
sponding to local extrema of the function ψ. However, from the assumptions of
the theorem it follows that for a fixed parameter λ0 ∈ Ω there exists a global

maximum of the function ψ and we denote by τ = τ∗(λ0) a solution of (5.5)
corresponding to this global maximum. From the implicit function theorem [see
Gunning and Rossi (1965)] it therefore follows that the function τ∗(λ) is a unique
continuous solution of (5.5) such that τ̄ = τ∗(λ0). By the same theorem we obtain
for j = 1, . . . , r; i = 1, . . . , µ− 2

∂

∂λj
τ∗i (λ) =

(

J−1(λ)Gj(−1)s(i)
)

i
> 0,

where the vector Gj is defined by

Gj =
( ∂2

∂τℓ∂τj
ψ(τ, λ)

∣

∣

∣

τ=τ∗(λ)

)µ−2

ℓ=1
.

As a consequence the support points of the local D-optimal design for the spline
regression model are increasing functions of the knots. Finally, if λ is an interior
point of one of the sets Ωj in the partition (3.12), the function ψ(τ, λ) is real
analytic and by the implicit function theorem the solution τ(λ) of (5.5) is also
real analytic.

Proof of Theorem 4.2. Note that a minimally supported standardized max-
imin D-optimal design (with respect to any set Ω) must have equal weights.
Recall the definition of the function ψ in (5.2), define

ϕ(τ, λ) =
ψ(τ, λ)

ψ(τ∗(λ), λ)
, (5.8)
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where τ∗ = τ∗(λ) is the vector of support points of the minimally supported local

D-optimal design. Obviously, we have

min
λ∈Ω∗

δ

ϕ(τ, λ) = min
α∈[0,1]

ϕ(τ, α, δ) (5.9)

with

ϕ(τ, α, δ) = (1 − α)ϕ(τ, (1 − δ)c) + αϕ(τ, (1 + δ)c). (5.10)

Consequently, the problem of finding the minimally supported standardized max-

imin D-optimal design with respect to the set Ω∗
δ can be reduced to finding a

solution (τ̂ , α̂) of

max
τ∈T

min
α∈[0,1]

ϕ(τ, α, δ), (5.11)

where the set T is defined by

T = {τ = (τ1, . . . , τµ−2) | a < τ1 < · · · < τµ−2 < b}

(if two components of the vector τ would be equal the determinant would vanish).

The necessary conditions for an extremum yield

∂

∂τi
ϕ(τ, α, δ)

∣

∣

∣

τ=τ̂
= 0; i = 1, . . . , µ− 2,

(5.12)∂

∂α
ϕ(τ, α, δ)

∣

∣

∣

α=α̂
= 0,

which will be further investigated using the following parameterization

Φ(u, δ) = ϕ(τ∗ + ρδ2,
1

2
+ βδ, δ) ·

ψ(τ∗, c)

δ2
. (5.13)

Here u = (ρ, β) = (ρ1, . . . , ρµ−2, β) and τ∗ denotes the vector of interior support

points of the minimally supported local D-optimal design for the vector c =

(c1, . . . , cr); i.e. τ∗ = τ∗(c). Obviously, the equations (5.12) are equivalent to

∂

∂ui
Φ(u, δ)

∣

∣

∣

u=û
= 0, i = 1, . . . , µ− 1, (5.14)

and the solutions û = (ρ̂, β̂) and (τ̂ , α̂) are related by

τ̂ = τ∗ + ρ̂δ2; α̂ =
1

2
+ β̂δ. (5.15)

Assume that δ∗ is sufficiently small and define the set

Uρ :=
{

u = (ρ, β)
∣

∣

∣

a− τ∗

δ2
< ρ1 < · · · < ρµ−2 <

b− τ∗

δ2
;−

1

2δ
≤ β ≤

1

2δ

}

,

then we prove the following assertions.
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(I) There exists a unique continuous function

û :

{

(−δ∗, δ∗) →U

δ → û(δ)
(5.16)

such that for each δ ∈ (−δ∗, δ∗) the value û(δ) is a solution of the system

(5.14).

(II) The function defined in (I) is real analytic and the coefficients in the corre-

sponding Taylor expansion

û(δ) =

∞
∑

j=0

u(j)δ
j

can be calculated recursively as

u(0) = −Ĵ−1[h(0, δ)](2) ,

(5.17)

u(s+1) = −Ĵ−1[h(u〈s〉(δ), δ)](s+3) , s = 0, 1, 2, . . . ,

where u〈s〉 is defined in (3.15),

h(u, δ) =
( ∂

∂u1
Φ(u, δ), . . . ,

∂

∂uµ−1
Φ(u, δ)

)T

(5.18)

A =
( ∂2

∂τi∂τj
ψ(τ, c)

∣

∣

∣

τ=τ∗

)µ−2

i,j=1

b =
(

r
∑

j=1

cj
∂2

∂τi∂cj
ψ(τ, c)

∣

∣

∣

τ=τ∗

)µ−2

i=1

Ĵ =

(

A b

bT 0

)

∈ R
µ−1×µ−1. (5.19)

(III) The design

ξτ̂ =

(

a τ̂1 . . . τ̂u−2 b
1
µ

1
µ
. . . 1

µ
1
µ

)

is the unique minimally supported standardized maximin D-optimal design

with respect to the set Ω∗
δ .

(IV) The design ξτ̂ is the unique minimally supported standardized maximin

D-optimal design with respect to the set Ωδ.
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For a proof of (I) and (II) we note that h(u, δ) is a real analytic vector valued

function in a neighbourhood of the point (u∗, δ∗) = (0, 0), with components

satisfying

hi(0, 0) =
∂

∂ui
h(u, δ)

∣

∣

∣

(u,δ)=(0,0)
= 0; i = 1, . . . , µ− 1,

and
( ∂

∂uj
hi(u, δ)

)µ−1

i,j=1
= δ2Ĵ +O(δ3),

where the matrix Ĵ is defined in (5.19). Obviously,

det Ĵ = −(detA)bTA−1b,

where detA 6= 0 as demonstrated in the proof of Theorem 3.4 and 3.5. A similar

argument shows that b 6= 0 and therefore the matrix Ĵ is non singular. The

implicit function theorem [see Gunning and Rossi (1965)] now shows the exis-

tence of a unique real analytic solution û of (5.14) in a sufficiently small interval

(−δ∗, δ∗). The recursive relation (5.17) for the coefficients in the corresponding

Taylor expansion is now a consequence of from Theorem 5.3 in Melas (2005).

In order to prove (III) we note that it follows from the uniqueness of the

minimally supported local D-optimal design for any δ ∈ (0, 1)

min
0≤α≤1

(1 − α)
ψ(τ, (1 − δ)c)

ψ(τ∗((1 − δ)c), (1 − δ)c)
+ α

ψ(τ, (1 + δ)c)

ψ(τ∗((1 + δ)c), (1 + δ)c)
< 1. (5.20)

For δ ∈ [0, 1] define as (τ̃ , α̃) a point where the optimum in (5.11) is attained,

that is

ϕ(τ̃ , α̃, δ) = max
τ∈T

min
α∈[0,1]

ϕ(τ, α, δ).

If α̃ = 0 we would obtain

ϕ(τ̃ , α̃, δ) = ϕ(τ̃ , 0, δ) = max
τ∈T

ψ(τ, (1 − δ)c)

ψ(τ∗((1 − δ)c), (1 − δ)c)
= 1,

which contradicts (5.20). Similary, we can exclude the case α̃ = 1. The matrix

A in (5.18) is nonsingular and the Hesse matrix of the function ψ(τ, c) evaluated

at the extreme point τ∗ must be negative definite. Consequently, it follows

that for sufficiently small δ the function ϕ(τ, α, δ) defined in (5.10) is a concave

function of τ in a neighbourhood of the point τ∗. This means that (τ̂ , α̂) = (τ̃ , α̃)

and consequently the design ξτ̂ is the unique minimally supported standardized

maximin D-optimal design with respect to the set Ω∗
δ .

Finally, we prove assertion (IV), which follows from the equation

min
λ∈Ωδ

ϕ(τ̂ , λ) = min
λ∈Ω∗

δ

ϕ(τ̂ , λ). (5.21)
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To prove (5.21) we define the rescaled quantities γi = (λi−ci)/(δci) (i = 1, . . . , r)

and note that |γi| ≤ 1 if λ ∈ Ωδ. A straightforward but tedious calculation yields

ϕ(τ̂ , λ) = 1 + δ2γTBTABγ +O(δ3), (5.22)

where γ = (γ1, . . . , γr)
T , B = A−1D, the matrix D is defined by

D =
(∂2h(τ, c)

∂τi∂cj

∣

∣

∣

τ=τ∗

)j=1,...,r

i=1,...,µ−2
,

and the elements of the matrix A−1 and D are negative and positive, respec-

tively (this follows by similar arguments as given in Melas (2006, pp.56-57)).

Consequently, the elements of the matrix DTA−1D, say zij (i, j = 1, . . . , r), are

negative and (5.22) yields

ϕ(τ̂ , λ) = 1 + δ2
r

∑

i,j=1

zijγiγj +O(δ3).

Therefore, if δ is sufficiently small, the minimum of ϕ(τ̂ , λ) is attained if all

components of γ = (γ1, . . . , γr) have the same sign and are equal to +1 or −1.

Consequently, the minimum is attained either at λ = (1 − δ)c or λ = (1 + δ)c.
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