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Abstract: The deconvolution kernel density estimator is a popular technique for

solving the deconvolution problem, where the goal is to estimate a density from

a sample of contaminated observations. Although this estimator is optimal, it

suffers from two major drawbacks: it converges at very slow rates (inherent to the

deconvolution problem) and can only be calculated when the density of the errors

is completely known. These properties, however, follow from a classical asymptotic

view of the problem which lets the sample size n → ∞ but where the error variance

σ
2 is supposed to be fixed. We argue that, in many situations, a more appropriate

way to derive asymptotic properties for the deconvolution problem is to consider

that both σ
2
→ 0 and n → ∞. In this context, not only do the rates of convergence

of the deconvolution kernel density estimator improve considerably, but it is also

possible to consistently estimate the target density with only little knowledge of

the error density. In particular, the deconvolution kernel density estimator becomes

robust against error misspecification and a low-order approximation developed in

the literature becomes consistent. We propose a data-driven procedure for the low-

order method and investigate the numerical performance of the various estimators

on simulated and real data examples.

Key words and phrases: Asymptotic results, bandwidth selection, classical errors,

kernel method, measurement errors, smoothing.

1. Introduction

The conventional deconvolution problem for density estimation is one where

a sample of independent and identically distributed (i.i.d.) variables Y1, . . . , Yn

is observed with random measurement error. More precisely, the observations

are generated by the model

Yj = Xj + εj , Xj ∼ fX and εj ∼ fε, (1.1)

where the density fX of Xj is the unknown quantity to estimate, εj is the error

variable, independent of Xj, and fε is a known and fixed density. This problem

has received considerable attention in the literature and has numerous appli-

cations in different fields such as, for example, astronomy, public health, and

econometrics.
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In this context, the most popular and extensively studied nonparametric

estimator of fX is the deconvolution kernel density estimator developed by Car-

roll and Hall (1988) and Stefanski and Carroll (1990). Let K be a kernel func-

tion integrating to 1, h = hn be a positive smoothing parameter (the band-

width), and let φg denote the Fourier transform (resp. characteristic function)

of a function (resp. random variable) g. Then if φε(t) 6= 0 ∀t ∈ IR and

φ̂Y,n(t) = n−1
∑n

j=1 eitYj , the estimator is defined by

f̃X(x;h) =
1

2π

∫
e−itxφ̂Y,n(t)

φK(ht)

φε(t)
dt, (1.2)

if we assume that the integral exists. See van Es and Uh (2005), Meister (2004,

2006), or Hall and Qiu (2005) for recent contributions. See also Carroll et al.

(2006) and Delaigle, Hall and Qiu (2006).

The rates of convergence to zero of the Mean Integrated Squared Error

(MISE) of this estimator have been studied by Fan (1991a,b) in the class of func-

tions fX ∈ Fα,C = {densities f ∈ Cα s.t. ||f (α)||∞ < C and
∫
{f (α)}2 < C}, with

Cα the class of α times continuously differentiable functions. These rates depend

on the behaviour of φε in the tails: if ε is ordinary smooth of order β (see (2.1)),

the optimal rates are supfX∈Fα,C
MISE{f̂X (·;h)} ∼ n−2α/(2α+2β+1), whereas if ε

is supersmooth of order β (see (2.2)), the optimal rates are supfX∈Fα,C
MISE{f̂X

(·;h)} ∼ (ln n)−2α/β . See also Masry (1993). Although these rates are optimal

– no nonparametric estimator can improve them – they are particularly slow,

especially when the error density is ‘too regular’. In the common case of Gaus-

sian errors, for example, the logarithmic rates of convergence often make the

deconvolution problem appear unpractical. Carroll and Hall (2004) argue that

finding consistent estimators for the deconvolution problem is a goal that is of-

ten unattainable, and, in practice, one may obtain better practical results by

constructing a less ambitious low-order approximation of fX , and accurately es-

timate that approximation rather than the density fX itself.

In practice, however, reasonable results can be obtained with the deconvo-

lution kernel density estimator, even with moderate sample sizes. In such cases,

the rates predicted by the classical theory appear too pessimistic and not flexi-

ble enough to capture some of the subtleties of the contamination problem. In

standard asymptotic theory, the quality of an estimator is assessed through its

behaviour when the quality of the sample improves, which, in the classical ap-

proach, amounts to studying the ‘ideal situation’ where the sample size n tends

to infinity. However, when the observations contain measurement errors, the

quality of a sample does not only depend on its size but also crucially on the

magnitude of the error variance σ2. Clearly, here, the ‘ideal situation’ does not
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reduce to having a sample of very large size, but also a very small error variance.

Hence its seems natural, when studying asymptotic properties of estimators for

the deconvolution problem, to adopt the alternative approach where both n → ∞

and σ2 → 0.

Of course, in practice, σ2 is not necessarily small. However, in the classi-

cal approach, n is not especially large either and yet the interest of analyzing

theoretical properties for the unrealistic situation where n → ∞ is by now well

understood. In particular, it allows one to uncover some important properties

of an estimator when n is not too small. Hence, just like any given sample size

can be considered as a finite sample approximation of n → ∞, any given σ2 can

be considered as a finite sample version of σ2 → 0, and we can expect the dou-

ble asymptotics to be a helpful description of an estimator as long as σ2 is not

too large. This alternative approach can also be motivated by data applications

where the error variance is small compared with the variance of X, but we will

see later (numerical section) that it is not necessary to have a small error variance

for this theory to be appropriate.

From this discussion, it becomes natural to rewrite model (1.1) as

Yj = Xj + σZj , Xj ∼ fX , Z ∼ fZ , Var (Z) = 1 (1.3)

where, here and below, when we refer to this model, we imply that the asymptotic

properties we consider are for σ → 0 and n → ∞; when we refer to model (1.1),

we imply that the asymptotics are for n → ∞ only. Hall and Simar (2002) study

a related problem in the context of boundary estimation. Fan (1992) studies the

behaviour of the deconvolution kernel density estimator in a subclass of model

(1.3). One of the contributions of this paper is to fill the gaps between the

classical theory and model (1.3). In Section 2, we revisit the behaviour of the

deconvolution kernel density estimator under the alternative model and show that

its rates of convergence improve considerably compared to the classical theory.

We apply our results to the interesting case of replicated observations.

Despite these theoretical improvements, the deconvolution kernel density

estimator can only be calculated if the error density fε is known. In Section 3,

however, we show that, under model (1.3), consistent estimation of the density fX

can be achieved when only a few low-order moments of fε are known. We prove

that, in this setting, the low-order approximation of Carroll and Hall (2004) is

consistent; further, our results imply that the deconvolution kernel density es-

timator is robust against error misspecification. We derive simple data-driven

procedures of bandwidth selection for the low-order estimator and prove that

its convergence rates compare fairly with those of f̃X which, in some particular

cases, loses its optimality properties.
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We investigate the numerical performance of the estimators in Section 4 via

simulation and data examples. We show that, as expected by the theory, the low-

order estimator and the deconvolution kernel density estimator with misspecified

error density work very well for moderately large error variances, but also that

their quality (relative to the deconvolution kernel density estimator with known

error) does not deteriorate very rapidly when the error variance increases. We

conclude in Section 5 and defer the proofs to the appendix.

2. Properties of the Deconvolution Kernel Density Estimator

Suppose we have a sample Y1, . . . , Yn of i.i.d. observations generated by

model (1.3). In this context, the asymptotic behaviour of the deconvolution

kernel density estimator changes drastically and depends, in a crucial way, on

the magnitude of the error variance. Define a kernel of order α by a function K for

which µK,0 = 1, µK,j = 0 for 1 ≤ j < α and µK,α = c, where µK,i ≡
∫

xiK(x) dx,

α ≥ 1 is an integer, and c 6= 0 is some finite constant. Theorems 2.1 and 2.2

describe the rates of the deconvolution kernel density estimator when n → ∞

and σ → 0 for two classes of errors usually considered in the literature: ordinary

smooth errors ε of order β > 0, which are such that

d1|t|
−β ≤ |φε(t)| ≤ d2|t|

−β for all |t| > M , (2.1)

with M,d1, d2 some positive constants, and supersmooth errors ε of order β > 0,

which satisfy

d1|t|
γ1 exp(−d3|t|

β) ≤ |φε(t)| ≤ d2|t|
γ2 exp(−d3|t|

β) for all |t| > M , (2.2)

with M,d1, d2, d3, γ1 and γ2 some positive constants. For two sequences of

numbers an and bn, we use the notation an ≫ bn (resp. an ≪ bn) to represent

bn = o(an) (resp. an = o(bn)). The proofs of the theorems are given in the

appendix.

Theorem 2.1. For model (1.3), if Z is ordinary smooth of order β, K is of

order α, and
∫
|t|2β |φK(t)|2 dt < ∞,

(i) if σ = O(n−1/(2α+1)) and h ∼ n−1/(2α+1), we have

sup
fX∈Fα,C

MISE{f̃X(·;h)} = O(n− 2α
2α+1 );

(ii) if σ ≫ n−1/(2α+1) and h ∼ σ2β/(2α+2β+1)n−1/(2α+2β+1), we have

sup
fX∈Fα,C

MISE{f̃X(·;h)} = O(σ
4αβ

2α+2β+1 n
− 2α

2α+2β+1 ).
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Theorem 2.2. For model (1.3), if Z is supersmooth of order β, K is of order

α, φK is supported on [−1, 1] and
∫

[|t|−2γ1 + |t|−2γ2 ]|φK(t)|2 dt < ∞,

(i) if σ = O(n−1/(2α+1)) and h ∼ n−1/(2α+1), we have

sup
fX∈Fα,C

MISE{f̃X(·;h)} = O(n− 2α
2α+1 );

(ii) if σ = n−1/(2α+1)a(n), where 1 ≪ a(n) ≪ n1/(2α+1) and h = (2d3/D)1/β

σ{ln a(n)}−1/β , with D < 2α + 1, we have

sup
fX∈Fα,C

MISE{f̃X(·;h)} = O
(
σ2α{ln a(n)}

− 2α
β

)
.

Note that no bandwidth can improve the rates provided above. These results

generalize those of Fan (1992), who derives Theorem 2.2(i), and show that when

σ = O(n−1/(2α+1)), the rates of the deconvolution kernel density estimator are

the error-free rates n−2α/(2α+1). For larger error variances (σ ≫ n−1/(2α+1)), the

rate of the MISE of the estimator to zero ranges from n−2α/(2α+1) to the classical

deconvolution rates.

The sheer fact of knowing that the rates of the deconvolution kernel density

estimator improve considerably under model (1.3) is quite enlightening, but it

also helps in understanding the situation of growing interest where r ≥ 2 repli-

cated observations of the form Yij = Xi + εij , j = 1, . . . , r, are available for each

individual. See Carroll et al. (2006), among others. There, it is rather common

to use the averaged observations Ȳi. = Xi + ε̄i. because these data have an er-

ror variance r ≥ 2 times smaller than the original sample. However, (in the

ordinary smooth case) the averaged errors become smoother and hence, in the

classical theory, the rates of the deconvolution estimator worsen, suggesting that

we should rather use the original non-averaged observations. Nevertheless, in

finite sample, the variance reduction induced by the averaging process can lead

to significant improvement of performance of the estimator. In theory, this can

be justified by our results since, in model (1.3), averaging the data, and reducing

the error variance leads to an improvement, rather than a deterioration, of the

convergence rates of the estimator.

3. Consistency without Knowledge of the Error Density

Despite the fast rates derived in the previous section, the deconvolution

kernel density estimator suffers from a severe drawback: it can only be calculated

when the error density fε is known, which is not always realistic. In the context

of model (1.3) however, we show that it is not necessary to know more than just

a few low-order moments of fε in order to obtain consistent estimators of fX .
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3.1. Low-order approximation

We start by studying the theoretical properties of the low-order approxi-

mation developed by Carroll and Hall (2004). In their approach, based on the

‘classical’ theoretical point of view, it is seen as a non-consistent estimator of fX

whose properties remain relatively obscure. We show that, in our context, their

approximation is a consistent estimator of fX . Suppose we have i.i.d. observa-

tions Y1, . . . , Yn generated by model (1.3). Then fY (x) =
∫

fX(x − σz)fZ(z) dz

and, by recursive application of Taylor expansions of fX(x − σz) and its deriva-

tives, it is readily shown that if fZ has α finite absolute moments and fX has α

continuous bounded derivatives,

fX(x) =fY (x) +

α∑

m=1

(−1)mSmσmf
(m)
Y (x) + o(σα), (3.1)

if we define Sm =
∑m

r=1

∑
i1,...,ir≥1

i1+...+ir=m

(−1)r
∏

j∈{i1,...,ir}
µZ,j/(j!), with µZ,j =

∫
zjfZ(z) dz. Based on this equality, an estimator of fX can be defined by

f̂X(x;h) = f̂Y (x;h) +

α∑

m=1

(−1)mSmσmf̂
(m)
Y (x;h), (3.2)

where f̂
(m)
Y (·;h) is the error-free kernel density estimator of f

(m)
Y , defined by

f̂
(m)
Y (x;h) =

1

nhm+1

n∑

j=1

K(m)
(x − Yi

h

)
, (3.3)

with K and h as in the introduction. It is straightforward to check that this

estimator is the low-order approximation of Carroll and Hall (2004). Here and

below, we refer to an ‘error-free’ estimator of a density fT or its derivatives as

an estimator obtained from an error-free sample, i.e., from a sample T1, . . . Tn

where Ti ∼ fT , 1 ≤ i ≤ n. Similarly, we refer to the ‘error-free’ case as the case

where the observations are not contaminated by a measurement error. Note that

the condition on fX is commonly used in kernel density estimation, where it is

usually assumed that α = 2.

A feature of the estimator (3.2) is that, contrary to the deconvolution kernel

density estimator f̃X , it requires very little information about the error density,

since only σ and low-order moments µZ,j, j ≤ α, are needed; if these are un-

known, they can be easily estimated via the empirical variance of the difference

of replicated observations or, as proposed by Dunn (2004), by the method of

moments via instrumental variables; see our data example in Section 4. From a

practical point of view, it is also very easy to calculate; for example, under the
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usual assumption that α = 2 and the error density is symmetric, (3.2) simplifies

to f̂X(x;h) = f̂Y (x;h) − σ2f̂
(2)
Y (x;h)/2. Finally, unlike the estimator f̃X , it is

not restricted to the cases where the characteristic function of the error does not

vanish.

Our alternative derivation of the estimator allows a simple understanding

of its asymptotic behaviour, which depends on h and σ and on the relative

magnitude of both. In the case where σ is sufficiently small, the o(σα) error of

the approximation of fX by the main terms of (3.1) is negligible, and the main

source of error for the estimator comes from the kernel estimation of fY and

its derivatives. For σ larger, the error comes from both the approximation and

the kernel estimators. In this case, the exact behaviour of the approximation

error, of order o(σα), can only be established under an additional condition on

fX involving the smallest integer k ≥ α + 1 such that Sk 6= 0. We note that

this condition is not needed for constructing the estimator but for handling the

main term of the bias when σ is ‘large’. In most practical situations, the kernel

K is symmetric (α is even) and the error is symmetric. There, Sm = 0 for odd

values of m and, typically, k = α+2. Let L2 denote the class of square integrable

functions. The following conditions will be useful.

Condition A

(A1) fX has α continuous and uniformly bounded derivatives and f
(α)
X ∈ L2;

(A2) fZ has α finite absolute moments;

(A3) K is of order α and has α continuous, bounded and absolutely integrable

derivatives.

For a function g ∈ L2, we set R(g) =
∫

g2. We refer to the bandwidth that

minimizes the MISE of the estimator as the optimal bandwidth, and denote it

by hMISE. In the theorem, k is as defined above.

Theorem 3.1. Under Condition A, MISE{f̂X(·;h)} = AMISE{f̂X(·;h)} × (1 +

o(1)), where

(i) if σ = o(n−1/(2α+1)), we have for h = hMISE ∼ n−1/(2α+1),

AMISE{f̂X(·;h)} = R(f
(α)
Y )(α!)−2µ2

K,α h2α + (nh)−1R(K);

(ii) if n−1/(2α+1) ≪ σ ≪ n−α/(4αk+k−2α2), fY has 2α continuous and uniformly

bounded derivatives, fX has k continuous, uniformly bounded derivatives,

f
(k)
X ∈ L2 and |µZ,k| < ∞, we have for h = hMISE ∼ σ2α/(4α+1)n−1/(4α+1),

AMISE{f̂X(·;h)} = R(f
(α)
Y )(α!)−2µ2

K,α h2α + σ2α(nh2α+1)−1S2
αR(K(α));
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(iii) if σ ≫ n−α/(4αk+k−2α2), under the same conditions on fX , fY and fZ as in

(ii), we have for h = hMISE ∼ σ(2α−k)/(3α+1)n−1/(3α+1),

AMISE{f̂X(·;h)} = σ2kR(f
(k)
Y )S2

k + σ2α(nh2α+1)−1S2
αR(K(α)).

Note that since k ≥ α + 1, we always have n−1/(2α+1) ≫ n−α/(4αk+k−2α2).

It is clear that, as for the deconvolution kernel density estimator, the rates of

convergence depend on the magnitude of the error variance. A discussion on

these rates will be provided later but we already note that, for error variances of

order O(n−1/(2α+1)), they are the same error-free rates as for the deconvolution

kernel density estimator. In practice this means that, when the error variance

is small, we can expect both estimators to perform very well. In the simulation

section, we will see that, in fact, the error variance does not need to be extremely

small for the estimator f̂X to work well. In the theorem, for simplicity, we

disregarded the case σ ∼ n−1/(2α+1), for which the optimal bandwidth and the

corresponding MISE are both of the same order as those described in (i) and (ii),

but with a more complicated expression. A similar remark applies to the case

σ ∼ n−α/(4αk+k−2α2), which behaves like (ii) and (iii). These expressions, as well

as the proof of the theorem, are readily obtained from Theorems A.1 and A.2 of

the Appendix.

Bandwidth selectors. We obtain analytic expressions for the asymptotic op-

timal bandwidth, hAMISE, by minimizing the AMISE given in the three cases of

the theorem. In each case, in order to come up with a practical bandwidth, we

estimate the unknown quantity R(f
(ℓ)
Y ) by a plug-in estimator. See for exam-

ple Silverman (1986). We examine the performance of these bandwidths in the

simulation section and see that they work well in practice.

(i) If σ = o(n−1/(2α+1)), then for C1 = (α!)2R(K)/{2αµ2
K,αR(f

(α)
Y )},

hAMISE = C
1

2α+1

1 n− 1

2α+1 , (3.4)

which is the same bandwidth as for the usual (error-free) kernel density

estimator of fY .

(ii) If n−1/(2α+1) ≪ σ ≪ n−α/(4αk+k−2α2), then for C2 = C1(2α + 1)S2
αR(K(α))

/R(K),

hAMISE = C
1

4α+1

2 σ
2α

4α+1 n− 1

4α+1 . (3.5)

(iii) If σ ≫ n−α/(4αk+k−2α2), hAMISE can only be found by reintroducing second

order terms in the AMISE expression (see Appendix). For C3 = (−1)α+k
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R(K(α))α!S2
α/

(
2SkµK,α

∫
f

(α)
Y f

(k)
Y

)
and C4 = −C3(2α + 1)/α, this gives

hAMISE = max(C3, C4)
1

3α+1 σ
2α−k
3α+1 n− 1

3α+1 . (3.6)

In particular, when α = 2 and the error density is symmetric, we have k = 4,

S2 = −1/2, S4 = 1/4 − µZ,4/(4!), and
∫

f
(α)
Y f

(k)
Y = −R(f

(3)
Y ).

Exact expression. In some cases (3.1) is an exact expression for fX rather

than just an approximation. This is for example the case for errors whose Fourier

transform can be written as φZ(t) = (1 +
∑β

j=1 ajt
j)−1 for all t, as shown in the

Appendix. For example, the Laplace error satisfies this condition for β = 2. Then

if α ≥ β, the formula (3.1) is exact (and the terms of order higher than β vanish).

Moreover, in this case, the estimator (3.2) is equal to the deconvolution kernel

density estimator f̃X(x;h). Here the deconvolution kernel density estimator can

only be calculated if the error density fZ is known, whereas the estimator (3.2)

only requires the first few moments of fZ . In case α < β, our simulation results

indicate that the estimator (3.2) remains a good alternative to the deconvolution

kernel density estimator. Further, on some occasions the estimator (3.2) has

better rates of convergence. In such cases, σ is small and the approximation

error (of order o(σα)) in (3.1) is negligible compared with the variance increase

produced by the additional β−α kernel estimates f̂
(j)
Y , j = α+1, . . . , β, used by

the deconvolution kernel density estimator.

Estimation of a cumulative distribution function. The same idea can

be used to develop an estimator of the cumulative distribution function of X.

For FX(x) = FY (x) +
∑α

m=1(−1)mSmσmf
(m−1)
Y (x) + o(σα), we take F̂X(x) =

F̂Y (x;h) +
∑α

m=1(−1)mSmσmf̂
(m−1)
Y (x;h), where F̂Y (x;h) = n−1

∑n
j=1 κ{(x −

Yj)/h} is the kernel estimator of FY , with κ(x) =
∫ x
−∞ K(u) du. The MISE of this

estimator is obtained by calculations similar to the density case. In particular,

the MISE is of order n−1 whenever σ = O(n−1/(2α)).

Comparison with the deconvolution kernel density estimator. Before

we compare the estimators f̂X and f̃X , it is important to realize that cases

(ii) and (iii) of Theorem 3.1 were obtained under the additional condition that

fX ∈ Fk,C , with k ≥ α + 1. Without such an assumption, it is impossible to

determine the order of the bias of the estimator f̂X , which depends on a o(σα)

term (see Theorem A.1), and hence to compare the two estimators. If we use a

kernel of order k instead of a kernel of order α, then the rates of the deconvolution

kernel density estimator can be improved by replacing α by k in Theorems 2.1

and 2.2. Nevertheless, it is well known that, in practice, increasing the order

of the kernel introduces extra variability of estimators and generally does not
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improve their quality (see, for example, Marron and Wand (1992)). Similarly,

there exist infinite order kernels that have the property that the bias of associated

estimators depends only on the smoothness of the target density fX (and these

estimators have optimal rates of convergence) but have drawbacks in practice

that make them unpopular choices. For example, the resulting estimators are

often too oscillatory, and the good standard bandwidth selectors usually do not

apply (the cross-validation method can be used, but this procedure is usually not

very satisfactory, see for example Delaigle and Gijbels (2004)).

Since the exact smoothness properties of the density fX are usually unknown,

the most commonly used kernels are of order 2 or 4. In view of these facts, it

is legitimate to compare the rates of the deconvolution kernel density estimator

with those of the alternative estimator in the case where the kernel is of order

α < k, and fX ∈ Fk,C . Here the alternative estimator sometimes enjoys better

theoretical properties than the deconvolution kernel density estimator, because

its rates of convergence improve with the smoothness of fX whether or not we

increase the order of the kernel.

Suppose fX ∈ Fk,C and K is of order α, with k ≥ α+1. From Theorems 2.1

and 2.2, we have supfX∈Fk,C
MISE{f̃X(·;h)}=O(σ4αβ/(2α+2β+1)n−2α/(2α+2β+1))

in the ordinary smooth case, and supfX∈Fk,C
MISE{f̃X(·;h)} = O(σ2α{ln a(n)

}−2α/β) in the supersmooth case. In case (ii) of Theorem 3.1, we have supfX∈Fk,C

MISE{f̂X(·;h)} ∼ σ4α2/(4α+1)n−2α/(4α+1). It follows that when the error is ordi-

nary smooth, the MISE of the estimator (3.2) is of lower order than the MISE

of the deconvolution kernel density estimator if and only if α < β; they have

the same rate when α = β. In the supersmooth error case, the estimator (3.2)

improves on the deconvolution kernel density estimator whatever the value of

α and β. In case (iii) of Theorem 3.1, we have supfX∈Fk,C
MISE{f̂X(·;h)} ∼

σ2k. It follows that, when the error is ordinary smooth, the estimator (3.2)

does better than the deconvolution kernel density estimator if and only if σ =

o(n−α/(2αk+2βk−2αβ+k)). This is only possible when α > β. They have the

same rate when α = β. In the supersmooth error case, the estimator (3.2)

has better rates of convergence than the deconvolution estimator if and only if

σβ(α−k)/α ≫ ln
(
σn1/(2α+1)

)
. This is satisfied unless the error variance tends very

slowly to zero.

3.2. Deconvolution kernel density estimator

It follows from earlier discussion that, under model (1.3), the deconvolution

kernel density estimator f̃X is robust against certain error misspecifications. This

holds since, as long as the first α moments of fε are correctly specified, the
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estimator f̂X is consistent and equal to the deconvolution kernel density estimator

which pretends that the error density fε is such that φε(t) = (1+
∑α

j=1 ajσ
jtj)−1.

More generally, the misspecified error density, say fη, need not be of the form

above, but can be taken from any parametric family large enough to contain

densities that match the first α moments of ε. It is now not hard to prove that,

as long as the first α moments of fη equal those of fε, the deconvolution kernel

density estimator is consistent: its bias is of order O(hα) + o(σα), matching that

of f̂X , and its variance is of the same order as the variance of the deconvolution

kernel density estimator f̃X for the situation where the errors genuinely come

from fη. Since this variance is larger with supersmooth errors, this indicates

that we should select fη in the ordinary smooth class.

In our simulations we found that, when the error variance was not too large,

the finite sample performance of the deconvolution kernel density estimator with

misspecified error was often similar to that of the known error case, even when

the wrong error η was normal. In their data example, Delaigle and Gijbels (2004)

already noted that the deconvolution estimators that assume Laplace or normal

error densities with the same variance do not differ much unless the error variance

is very large. For large error variance, their estimator becomes more erratic

when they assume normal errors, which supports our preference for ordinary

smooth errors. See also Delaigle (2007) for simulated examples on robustness in

problems of measurement errors. Note that, in the classical theory, the estimator

is generally not robust against error misspecification (see Meister (2004)) and,

once again, the alternative asymptotic approach we adopted in this paper allows

one to account for the behaviour of the estimator often encountered in practice,

and yet invalidated by the classical theory.

4. Numerical Properties

We examine and compare the numerical properties of the two methods of

estimation of fX and of the kernel density estimator of fY , i.e., the estimator

(3.3) with m = 0 that ignores the error present in the data, for kernels of order

α = 2. For the deconvolution kernel density estimator (DKDE), we use the plug-

in bandwidth of Delaigle and Gijbels (2002, 2004), and for the kernel density

estimator (KDE), we use the plug-in bandwidth described in Silverman (1986).

For the estimator (3.2), which we denote by LOE, we use bandwidths h1 = (3.4),

h2 = (3.5), and h3 = (3.6), where R(f ′′
Y ) and R(f

(3)
Y ) are estimated by the plug-in

method described in Silverman (1986). We then write LOEi when we refer to

(3.2) with bandwidth hi. We do not report the results for bandwidth (3.6), as

it was systematically outperformed by the others. We used the standard normal

kernel in the case of Laplace errors and their convolutions, and we used the kernel
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with characteristic function φK(t) = (1 − t2)3 · 1[−1,1](t) for Gaussian errors (to

ensure existence of the DKDE).

4.1. Simulated Examples

We considered four target densities fX corresponding to (i) X ∼ 0.5N(−2; 1)

+0.5N(2; 1.52), (ii) X ∼ 0.5N(−3; 1) + 0.5N(2; 1), (iii) X ∼ 1/3N(0; 1.22) +

1/3N(1; 4) + 1/3N(2; 4), and (iv) X ∼
∑5

ℓ=0(2
5−ℓ/63)N(65 − 96(1/2)ℓ/21;

(32/63)2/22ℓ) – the smooth comb density from Marron and Wand (1992). Note

that, even in the error-free case, these densities are hard to estimate.

In each case, we generated 500 samples of sizes n = 50, 100, and 250 from

fX and added some random noise ε ∼ fε, where fε was either a normal, a

Laplace, a 2- or 8-fold Laplace, where a p-fold Laplace is a Laplace convolved

p − 1 times with itself; the noise-to-signal ratio, defined by NSR = σ2/Var (X),

ranged from 5% to 30%. To evaluate performance, we calculated the 500 values

of the Integrated Squared Error (ISE), defined by ISEbf
=

∫
(f̂ − fX)2, where f̂

was a calculated estimator. We show boxplots of these calculated ISE’s or of

the quantity log(ISEm/ISEDKDE), where m is the method we compared with the

DKDE. We also show, for one sample, the estimators found by each method. We

used the same sample for each method; it was the sample giving the 249th or

250th smallest calculated ISE for the method LOE2. We denote these samples

by S249 and S250, respectively. We only present a portion of the results; the

conclusions are also supported by simulations not presented here.

Figure 1 shows the results for the estimation of density (ii) when NSR = 5%.

Since the error variance is small, we want to see if we can ignore the error in

the analysis, i.e., use the KDE of fY to estimate fX . For ε ∼ N(0, σ2), we

present boxplots of log(ISEm/ISEDKDE), where m denotes the LOE1, LOE2 or

the KDE of fY . In this case, the LOE (with any of the bandwidths (3.4) or (3.5))

outperforms the DKDE. These three estimators strongly outperform the KDE,

which oversmoothes the data; this illustrates the non negligible improvement

one can get by taking the error into account, even if this error is small. We

also compare boxplots of the 500 calculated values of the ISE of the DKDE

when the error is Laplace or Gaussian. Here, from the classical deconvolution

theory, we expect the estimator to perform considerably better for Laplace than

for Gaussian error, but we see that the both estimators are comparable (here

the Gaussian error even works better). For such small error variances, the less

conventional theory for model (1.3) seems more appropriate. On the right panel,

we show, for one sample, the estimated curve for each method when ε ∼ N and

n = 100.



DECONVOLUTION PROBLEM 1037

0
.0

0
.5

1
.0

-
1
.0

n=50 n=100 n=250

0
.0

0
.0

2
0
.0

4

n=50 n=100 n=250

ooooo
oo
oo
o
o
o
o
o
o
o
o
o
o
o
o
o
o
oo
oooooo

o
o
o
o
o
o
o
o
o
o
oooooooooo

oo
oo
o
o
o
o
o
o
o
o
oo
oooooo

o
o
o
o
o
o
o
o
o
o
o
ooooooooooooooooooo

0
.0

0
.0

5
0
.1

0
0
.1

5
0
.2

0

ta
rg

et

x

0 2 4 6-2-4-6

DKDE

LOE1

LOE2

oooo KDE

Figure 1. Estimation of density (ii) when NSR=5%. Left panel: boxplots of
log(ISEm/ISEDKDE) for ε ∼ N and n = 50, 100, and 250; in each group of
boxplots, m is, from left to right, LOE1, LOE2 or the KDE of fY . Center
panel: boxplots of ISEDKDE for n = 50, 100, and 250; in each group of
boxplots, the 1st is for ε ∼ Laplace and the 2nd for ε ∼ N . Right panel:
estimated curves by the four methods when ε ∼ N , n = 100, using the
sample S250.
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Figure 2. Estimation of density (iv): boxplots of log(ISEm/ISEDKDE) for
n = 250, when ε ∼ Laplace and NSR = 10%, ε ∼ N and NSR = 10% or 25%,
or ε ∼ 2-fold Laplace (DLap) and NSR = 25%; in each group of boxplots, m
is, from left to right, LOE1, LOE2 or the KDE of fY (left panel). Estimated
curves by the four methods when ε is DLap with NSR = 25%, and using the
sample S249 (center panel) or S250 (right panel).

In Figure 2, we check further the appropriateness of the LOE. The target

was density (iv), the sample size was n = 250, and we considered Laplace, 2-fold

Laplace, and normal errors with NSR = 10% and 25%. We present boxplots

of log(ISEm/ISEDKDE) for m as in Figure 1 and we compare, for two samples,

the curves found by each method. Without any surprise, all methods strongly

outperform the KDE of fY which oversmoothes the data. The LOE still compares

very fairly with the DKDE: here, although the error variance is not very small,
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Figure 3. Estimation of density (i) when ε is 8-fold Laplace with variance

NSR = 30%: boxplots of log(ISEm/ISEDKDE) for n = 50, 100 or 250; in

each group of boxplots, m is, from left to right, LOE1, LOE2 or the KDE of

fY (left panel). Estimated curves by the four methods when n = 250 and
using the sample S249 (center panel) or S250 (right panel).

LOE1 even beats the DKDE but LOE2 is not as good when NSR = 25%. We

note that the target density is particularly hard to estimate and, as in the error-

free case, only the first mode is well-estimated. In the case where ε ∼Laplace

and NSR = 10%, f̂X and f̃X were equal except for the value of the bandwidth,

and we see the amount of improvement one can get by using bandwidth (3.4)

when σ2 is not too large.

In Figure 3, we compare the procedures for estimating density (i) with an

8-fold Laplace error. The bimodal and asymmetric shape of this density is similar

to that of the target density of our data example, and we choose the same error

variance as in that example, i.e. NSR = 30%. As for the previous figures, we

show boxplots of log(ISEm/ISEDKDE) and compare the estimated curves by each

method for two samples. Here, the error variance was moderately large and the

DKDE and LOE2 gave similar results. Once again, the KDE of fY systematically

undersmoothes the data much more than the other methods. We obtained similar

results when estimating the simpler unimodal asymmetric density (iii).

Finally, in Figure 4, we illustrate further the robustness of the DKDE by

comparing, for samples of size n = 50, 100, and 250, boxplots for the estimation

of densities (iv), (ii), and (i), for the DKDE with known fε, DKDE assuming

normal error, LOE1, LOE2, and the KDE of fY . We see that the DKDE is robust

against error misspecification and, even assuming normal error, gives reasonable

results, although in the first panel, for n = 50, it just slightly outperforms the

KDE that ignores the error. Overall, the DKDE with correct or wrong error

density and the LOE gave quite similar results and strongly outperformed the

KDE. We obtained similar results for other simulations we carried out, but for
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Figure 4. Boxplots of ISEm for n = 50, 100 or 250. In each group of boxplots,

m is, from left to right, DKDE with known fε, DKDE assuming ε ∼ N ,

LOE1, LOE2 and the KDE of fY . Left panel: target is density (iv), ε ∼
2-fold Laplace and NSR = 10%; centre panel: target is density (ii), ε ∼

Laplace and NSR = 25%; right panel: target is density (i), ε ∼ Laplace and

NSR = 30%. The horizontal lines show the median ISE of the 1st boxplot

of each group.

very large error variances, assuming normal error sometimes resulted in a bigger

loss of performance.

In most of our simulation results, the best bandwidth for the LOE was (3.4),

whereas bandwidths (3.5) and (3.6) tended to be slightly too large. We also tried

larger sample sizes (n ≥ 1000) and NSR (> 30%) and there, (3.4) tended to be

too small whereas the smallest of (3.5) and (3.6) gave better results, usually close

but sometimes slightly less good than the DKDE. A ‘conservative’ approach, for

large error variances, thus seems to be to select the smallest of the bandwidths

(3.5) and (3.6). Our results for the Laplace case, where the DKDE and the LOE

are equal except for the value of the bandwidth, raise the question of whether

(and when) it would suffice or be preferable to use fY -related bandwidths, such

as (3.4) to (3.6), which are much easier to calculate than the usual bandwidths.

We have seen that, for moderate sample size and error variances, the DKDE

with misspecified error (preferably ordinary smooth) and the LOE (which can

be seen as a DKDE which uses a different bandwidth) can be confidently used

as substitutes to the DKDE with known error. It is clear however that, for huge

error variances, these estimators are less appropriate since the approximation

error in (3.1) can sometimes get quite large. One might argue that, in that case,

no estimator will give good results but, if the error density is known, we should

use the DKDE.

4.2. Data example: the sucrase data

The data concern the measurement of the enzyme sucrase in intestinal tissues
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Figure 5. Estimation of the density of sucrase, using the LOE, the KDE

which ignores the error, or the DKDE when assuming a normal error
(DKDN) or a Laplace error (DKDL).

of 24 patients. In this example, the sucrase (X) was measured by two different

methods, which we refer to as the pellet (Y ) and the homogenate (T ) methods,

see Carter (1981) for a complete description. Our goal is to estimate the density

of the actual content of sucrase X in the intestinal tissues from one of the two

measurements (in this case we use Y ). The error density is unknown but a

third (instrumental) variable U , the alkaline phosphate, was also measured for

each patient. In this example, the variables can be modelled as Y = X + ε,

T = α + βX + δ and U = γ + λX + ν, where α, β, γ and λ are unknown

constants, and ε, δ, and ν are uncorrelated error variables of zero mean, see Dunn

(2004). From this relation, the variance of ε can then be estimated by the method

of moments through the 24 observations on the three variables, which yields,

approximately, σ2 = (1/3)Var (X). See Dunn (2004) for detailed calculations.

Here the error density is unknown and we calculate the DKDE assuming

Gaussian or Laplace error with a variance σ2 = (1/3)Var (X). From Section 3.2,

the estimators should be quite similar. We compare the results with the KDE

of fY (i.e., the estimator obtained when ignoring the error in the data) and the

LOE for α = 2, µZ,1 = 0 and σ2 = (1/3)Var (X). The results are depicted

in Figure 5, where we present the estimated densities of the centered sucrase.

Here, LOE1 and LOE2 gave the same curve, which we denoted by LOE. The

LOE and the DKDE with normal or Laplace error are very close and, as was the

case in our simulations, the KDE seems to strongly oversmooth the data. The

estimated density is bimodal, suggesting two groups of patients for which the

sucrase concentration differs significantly.
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5. Conclusion

We have studied the deconvolution problem in the asymptotic context where

σ2 → 0 and n → ∞. This alternative approach of describing the asymptotics

has allowed us to theoretically account for several results that are encountered in

practice but which are yet invalidated by the classical theory. In particular, we

have seen why the deconvolution kernel density estimator does not work as badly

as expected, we have proved and illustrated its robustness to error misspecifica-

tion, we have justified the procedure of averaging replicated observations, and we

have proved, both in theory and in practice, that even when the error is small,

the improvement one can get by taking it into account is usually non-negligible.

We have been able to clarify the properties of a low-order approximation,

proposed in Carroll and Hall (2004), as a substitute to the (seemingly too hard)

deconvolution problem. We have shown that it is a consistent estimator and

is indeed a good alternative to the deconvolution kernel density estimator, es-

pecially when little information is available about the error density. While our

results show that, if the error variance is not too large, the low-order method can

occasionally outperform the deconvolution kernel density estimator when the de-

convolution problem is very hard, they also imply that, when the error variance

is large, this alternative estimator cannot be expected to work better than the

deconvolution kernel density estimator, even in cases where the latter has very

slow convergence rates.

A. Proofs of the Main Results

Rates for the deconvolution kernel density estimator. As with model

(1.1), it is easy to prove that the integrated squared bias satisfies

∫
[Bias{f̃X(x;h)}]2 dx =

h2αµ2
K,α

(α!)2

∫
(f

(α)
X )2 + o(h2α), (A.1)

whereas the integrated variance can be written as
∫

Var {f̃X(x;h)} dx =
1

2πnh

∫
|φK(t)|2|φZ(σt/h)|−2 dt + O(n−1). (A.2)

The next two proofs follow from this result.

Proof of Theorem 2.1. From (A.1) and (A.2), we can write AMISE = c1h
2α +

I, where I = (2πnh)−1
∫
|φK(t)|2|φZ(σt/h)|−2 dt, and c1 is a positive constant.

From (2.1), we find that

I ≤
c

2πnh

∫

|t|≤Mh/σ
|φK(t)|2 dt +

d−2
1 σ2β

2πnh2β+1

∫

|t|>Mh/σ
|φK(t)|2|t|2β dt, (A.3)
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where c = (inf |u|≤M |φZ(u)|2)−1 < ∞. The behaviour of (A.3) and a lower bound
for I depend on the behaviour of σ/h.

(a) If σ = O(h), (A.3) ≤ c2/(nh), with c2 a positive constant, and, for n large
enough, I ≥ c/(2πnh)

∫
|t|≤1/2 |φK(t)|2 dt = c3/(nh), with c3 a positive con-

stant. It follows that the optimal bandwidth satisfies h ∼ n−1/(2α+1) and
σ = O(n−1/(2α+1)).

(b) If σ ≫ h, we have (A.3) ≤ c2σ
2β/(nh2β+1), with c2 a positive constant,

and, for n large enough, I ≥ d−2
2 σ2β/(2πnh2β+1)

∫
|t|>1/2 |φK(t)|2|t|2β dt =

c3σ
2β/(nh2β+1), with c3 a positive constant. It follows that the optimal

bandwidth satisfies h ∼ σ2β/(2α+2β+1)n−1/(2α+2β+1) and σ ≫ n−1/(2α+1).

Proof of Theorem 2.2. Similar to the proof of Theorem 2.1, we need to study
the behaviour of I, which depends on the behaviour of σ/h. The case σ = O(h) is
similar to that of Theorem 2.1. For σ ≫ h, from (2.2) and the fact that φK is sup-
ported on [−1, 1], we have for n large enough, c1(σ/h)−2γ2 exp(2d3|σ/(2h)|β)/(nh)
≤ I ≤ c2(σ/h)−2γ1 exp(2d3|σ/h|β)/(nh), with c1 and c2 two positive and finite
constants.

Take h = (2d3/D)1/βσ{ln a(n)}−1/β , with 0 < D < 2α + 1 a constant. We
get

(σ
h )−2γ1

nh
exp(2d3

∣∣∣
σ

h

∣∣∣
β
) ∼

{ln a(n)}
−2γ1+1

β

n
2α

2α+1

a(n)D−1,

and h2α, the squared bias term, behaves like n−2α/(2α+1)a(n)2α{ln a(n)}−2α/β and
dominates the upper bound of the variance term. Hence, for that bandwidth, we
have MISE ∼ n−2α/(2α+1)a(n)2α{ln a(n)}−2α/β . Clearly, a bandwidth of larger
order would increase the squared bias term, and hence would increase this rate.
It is not difficult to see that, for a bandwidth of smaller order, the lower bound
of the variance is of an order larger than this rate.

Proof of Theorem 3.1. The proof follows from the next two theorems describ-
ing the behaviour of the bias and variance of the estimator.

Theorem A.1. Under Condition A, we have

(i) if σ = O(h), Bias{f̂X(x;h)} = (−1)αf
(α)
Y (x)hα(α!)−1µK,α + o(hα), where the

remainder terms are uniform in x;

(ii) if σ ≫ h, then if fY has 2α continuous and uniformly bounded derivatives,

fX has k continuous and uniformly bounded derivatives and |µZ,k| < ∞, we

have

Bias{f̂X(x;h)}=(−1)αf
(α)
Y (x)

hα

α!
µK,α+(−1)k+1σkf

(k)
Y (x)Sk+o(hα)+o(σk),

(A.4)

where the remainder terms are uniform in x.
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Proof of Theorem A.1. We prove the two cases separately.

(i) Under (A3), we have, if we set νm = α − m, m ≤ α − 1,

E {f̂
(m)
Y (x;h)} =f

(m)
Y (x)+

νm∑

j=1

(−1)jf
(m+j)
Y (x)

hj

j!
µK,j+o(hνm)=f

(m)
Y (x)+o(hνm),

(A.5)

since µK,νm = 0 for νm = 1, . . . , α − 1, and where the last term is uniform in x.

From (3.1), (3.2), and (A.5), we deduce that

E {f̂X(x;h)}

=fY (x)+(−1)αf
(α)
Y (x)

hα

α!
µK,α+

α∑

m=1

(−1)mSmσm{f
(m)
Y (x)+o(hνm)}+o(hα)

=fX(x) + (−1)αf
(α)
Y (x)

hα

α!
µK,α + o(hα) + o(σα),

where we used the fact that σmhνm = O(hα). The conclusion follows from

σ = O(h).

(ii) Under the additional conditions, the term o(σα) equals minus the first non-

zero higher order term in the Taylor expansion of (3.1), giving (−1)k+1Skσ
kf

(k)
Y (x)

+o(σk), while the o(hνm) term of (A.5) is replaced by a O(hα) term.

Theorem A.2. Under Condition A, we have

Var {f̂X(x;h)} =
fY (x)

nh

(∫
K2+Tα,1+2Tα,2

)
+ o

{
(nh)−1

}
+ o

{
(
σ

h
)2α(nh)−1

}
,

(A.6)

where Tα,1 =
∑α

m,l=1(−1)m+lSmSl(σ/h)m+l
∫

K(m)(u) K(l)(u) du and Tα,2 =
∑α

m=1(−1)mSm(σ/h)m
∫

K(u)K(m)(u) du, and where the remainder terms are

uniform in x.

Proof of Theorem A.2. We have

Var {f̂X(x;h)}

=Var {f̂Y (x;h)} +

α∑

m,l=1

(−1)m+lSmSlσ
m+l Cov {f̂

(m)
Y (x;h), f̂

(l)
Y (x;h)}

+ 2

α∑

m=1

(−1)mSmσm Cov {f̂Y (x;h), f̂
(m)
Y (x;h)},

where, for any two positive integers r, s ≤ α, it is easy to check that

Cov {f̂
(r)
Y (x;h), f̂

(s)
Y (x;h)} =

fY (x)

nhs+r+1

∫
K(r)(u)K(s)(u) du + o

( 1

nhs+r+1

)
,
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where the lower order terms are negligible uniformly in x.

Derivation of bandwidth (3.6). Here the bandwidth can not be found via the

AMISE expression of case (iii) of Theorem 3.1, but can be found by reintroducing

second order (bias) terms in this AMISE expression. Proceeding that way, we

find

AMISE = R(f
(k)
Y )σ2kS2

k + 2(−1)α+k+1σkSk
hα

α!
µK,α

∫
f

(α)
Y f

(k)
Y +σ2αS2

α

R(K(α))

nh2α+1
.

(A.7)

If (−1)α+k+1SkµK,α

∫
f

(α)
Y f

(k)
Y > 0, the optimal bandwidth is found by differenti-

ating the AMISE, which gives h = C
1/(3α+1)
4 σ(2α−k)/(3α+1)n−1/(3α+1). Otherwise,

the optimal bandwidth cancels the sum of the last two terms of (A.7), which gives

h = C
1/(3α+1)
3 σ(2α−k)/(3α+1)n−1/(3α+1).

Exact expression at page 11. Consider ordinary smooth errors whose Fourier

transform can be written as φZ(t) = (1 +
∑β

j=1 ajt
j)−1 for all t. We note that,

for j = 0, . . . , β, we have φ
(j)
Z (0) = ijµZ,j and aj = ijSj. By the Fourier Inversion

Theorem, we have fX(x) = (2π)−1
∫

e−itxφY (t)φ−1
Z (σt) dt, and we deduce

fX(x) =
1

2π

∫
e−itxφY (t) dt +

β∑

j=1

ajσ
j 1

2π

∫
e−itxtjφY (t) dt

= fY (x) +

β∑

j=1

(−1)jSjσ
jf

(j)
Y (x).

It follows that if α ≥ β, the formula (3.1) is exact (the terms of order higher than

β vanish).
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