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Abstract: We study the problem of constructing confidence intervals for the long-

memory parameter of stationary Gaussian processes with long-range dependence.

The focus is on confidence intervals for the wavelet estimator introduced by Abry

and Veitch(1998). We propose an approximation to the distribution of the estimator

based on subsampling and use it to construct confidence intervals for the long-

memory parameter. The performance of these confidence intervals, in terms of both

coverage probability and length, is studied by using a Monte Carlo simulation. The

proposed confidence intervals have more accurate coverage probability than the

method of Veitch and Abry (1999), and are easy to compute in practice.
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1. Introduction and Motivation

An estimator of the long-memory parameter of stationary processes with

long-range dependence (LRD processes, for short) based on a wavelet decomposi-

tion has been proposed and studied in Abry and Veitch (1998), Veitch and Abry

(1999) and Veitch, Abry and Taqqu (2003). To obtain the estimator, one per-

forms a discrete wavelet transform and a linear regression. The slope of the linear

regression is related to the long-memory parameter and the intercept is related

to the variance of the process. The resulting estimator will be called the (linear)

wavelet estimator.

Under the idealized assumption of independence of the wavelet coefficients,

the estimator of the long-memory parameter is unbiased and of minimum (or

close to minimum) variance, and the estimator of the intercept is asymptotically

unbiased and efficient (Veitch and Abry (1999)). Abry and Veitch suggest using

confidence intervals for the long-memory parameter of stationary LRD processes

based on these results.

In reality the wavelet coefficients are not independent. Bardet, Lang, Moulines

and Soulier (2000) have performed statistical analysis of these linear wavelet esti-

mators by taking into account the correlations among wavelet coefficients, at fixed
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scales as well as between different scales. Consistency and asymptotic normality

of these estimators have been obtained under appropriate regularity conditions

on the spectral density of the process. Unfortunately, constructing confidence

intervals based on these results is difficult in practice. This is so because the

resulting asymptotic variances depend on the unknown value of the long-memory

parameter and, even if their values were known, evaluation is rather cumbersome.

Thus, while the results of Abry and Veitch are easy to apply, they are only based

on idealized assumptions. While the results of Bardet et al. (2000) are more

precise, they cannot be well-implemented in practice.

We investigate here an approach, based on subsampling, that provides a

practical way of computing confidence intervals with asymptotically correct cov-

erage probabilities. The idea behind subsampling is as follows. Let θ be an

unknown parameter, estimated by θ̂n, and let Qn(x) = P (θ̂n ≤ x) denote the

distribution function of θ̂n. One would like to construct confidence intervals for θ

using Qn(x), but Qn(x) is unknown. One uses instead the empirical distribution

function Q̂n(x) obtained by splitting the sample size of size n into N overlapping

subsamples of length ln, and using the estimates θ̂ln,i, i = 1, . . . , N , based on

these subsamples.

Our goal is to study the resampling distribution of the linear wavelet es-

timator (namely the estimator of Abry and Veitch), based on the subsampling

(sampling window) method (Hall, Jing and Lahiri (1998) and Lahiri (2003)). We

show that such a resampling distribution is consistent. Consequently, confidence

intervals based on this empirical distribution have asymptotically correct cover-

age probability. We then compare the performance of the confidence intervals

based on the results of Abry and Veitch with the ones based on our resampling

distribution technique. We do so by using Monte Carlo simulations. The Abry

and Veitch type confidence intervals tend to have too small coverage probabili-

ties. On the other hand, the ones based on resampling have essentially accurate

coverage probabilities, that are typically slightly larger than the nominal values.

The paper is organized as follows. In Section 2, we briefly review the notion

of long-range dependence (LRD) for stationary processes. The linear wavelet-

based estimator of Abry and Veitch is described in Section 3. In Section 4,

we study an approximation of the probability distribution of the linear wavelet

estimator in terms of subsampling. Section 5 contains the proofs of our results.

Finally, in Section 6, we present and discuss Monte Carlo simulation results.

2. Self-similarity and Long-memory

An important class of long-memory stationary processes is derived from self-

similar processes. A continuous parameter stochastic process (Z(t); t ≥ 0) is

self-similar, with self-similarity parameter (Hurst parameter) 0 < H < 1, if



THE LONG MEMORY PARAMETER BASED ON WAVELETS AND RESAMPLING 561

for any positive real number c, the process (c−HZ(c t); t ≥ 0) has the same

finite-dimensional distributional distributions as the original process (Z(t); t ≥
0); see, e.g., Beran (1994), Samorodnitsky and Taqqu (1994), Taqqu (2003),

Embrechts and Maejima (2003). In other words, self-similar processes are in-

variant in distribution under judicious scaling of time and space.

A discrete parameter (second order) stationary process (Xj ; j ≥ 1), with

variance σ2 = E[X2
j ]−[EXj]

2, is a long-range dependent (LRD, or long-memory)

process if its correlation coefficients ρ(k) = σ−2 {E[Xj Xj+k] − [EXj ]
2} take the

form ρ(k) ∼ cr k
−(1−α), for some 0 < α < 1, as k goes to infinity, cr being an

absolute constant (Beran (1994) and Taqqu (2003)).

Suppose that the original process (Z(t); t ≥ 0) has stationary increments

and is self-similar with Hurst parameter H. If 1/2 < H < 1, then its increments

(Xj = Z(j) −Z(j − 1); j ≥ 1) form a LRD process, with correlation coefficients

ρ(k) ∼ cr k
−2(1−H) as k tends to infinity. On the other hand, if H = 1/2, the

ρ(k)’s are zero for every k ≥ 1, and thus the process is short-range dependent.

When 1/2 < H < 1, the Hurst parameter H and the long-memory parameter α

are linked by the relation:

H =
1 + α

2
. (1)

An equivalent definition of long-range dependence involves the spectral den-

sity f(ν) of the processX = (Xj ; j ≥ 1). Namely, X is LRD if f(ν) is unbounded

at the origin and f(ν) ∼ cf |ν|−α as ν tends to zero, where cf a positive constant

and where 0 < α < 1 (see, e.g., Beran (1994) and Samorodnitsky and Taqqu

(1994)).

3. Wavelet-based Estimator of the Long-memory Parameter

The discrete wavelet coefficients of a function x(t)∈ L2(R) are

djk =

∫ +∞

−∞
x(t)ψjk(t) dt, j, k ∈ Z, (2)

where the ψjk(t)∈ L2(R) are basis elements called wavelet functions. The set

of wavelets ψjk is derived from a single function ψ0(t), the mother wavelet, via

scaling and dilation:

ψjk(t) = 2−j/2 ψ0(2
−j t− k), j, k ∈ Z.

The coefficients djk, j, k ∈ Z are referred to as the Discrete Wavelet Transform

(DWT) of x(t).
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In applications, one typically uses Daubechies−M mother wavelets, which

have M ≥ 1 zero moments:

∫ +∞

−∞
ts ψ0(t) dt = 0, s = 0, 1, . . . , M − 1,

see Daubechies (1992). The corresponding wavelet functions ψjk, j, k ∈ Z, are

an orthogonal basis of L2(R). The Daubechies mother wavelets are continuous

except in the case M = 1, where they reduce to the Haar wavelet ψ0(t) =

I(0≤t<1/2) − I(1/2≤t<1). They also have bounded support, and the greater the

M , the wider the support. In contrast with the trigonometric functions used

in Fourier series, which are perfectly localized in frequency but non-localized

in time, the Daubechies wavelets are well-localized in time and approximately

localized in frequency. Thus, the wavelet coefficients capture both time- and

frequency-domain characteristics of the function x(t).

The wavelet coefficients of a second order long-memory process have received

considerable attention, because their special properties can be used to estimate

the long-memory parameter α.

The wavelet transform in (2) is defined only for continuous-time processes. In

the LRD setting, Veitch, Abry and Taqqu (2000) propose the following natural

procedure. Given a discrete parameter stationary long-memory process (Xj ; j ≥
1), construct a continuous-time process

X̃(t) =
∑

n

Xn sinc(t− n),

where sinc(t) = (πt)−1 sinπt. The spectral densities of the processes (Xj) and

(X̃(t)) coincide on the interval (−1/2, 1/2], and moreover Xn = X̃(n) for every

integer n. Thus, the long-range dependence behavior of the two processes is

identical. In the sequel, we define the wavelet transform of the discrete-time

process X as that of its continuous-time counterpart X̃ . This corresponds to

using the initialization option in the LDestimate software of Abry and Veitch

(see http://www.cubinlab.ee.mu.oz.au/∼darryl/LDestimate code.tar.gz).

The wavelet coefficients of a discrete parameter (second order) stationary

long-memory process (Xj ; j ≥ 1) have the following two properties (see Flandrin

(1992), Masry (1993), Tewfik and Kim (1992), Abry, Flandrin, Taqqu and Veitch

(2003)).

P1 If M ≥ (α − 1)/2, then the wavelet coefficients (djk; k = 0, ±1, . . . ) at a

fixed scale j form a stationary process with E[djk]= 0 and

E[d2
jk] ∼ 2jα cf C(α, ψ0) (3)
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as j tends to infinity. The quantity C(α, ψ0) is defined as

C(α, ψ0) =

∫ +∞

−∞
ν−α |Ψ0(ν)|2 dν,

where Ψ0(ν) is the Fourier transform of the mother wavelet ψ0(t) (Abry et al.

(2003)).

P2 If M ≥ α/2, then E[djk djk′] goes to 0 as |k − k′| tends to infinity and∑∞
k=0 |Edjkdj0| <∞, (Flandrin (1992), Masry (1993) and Tewfik and Kim

(1992)). This indicates that (djk; k = 0, ±1, . . . ) has short-range depen-

dence.

In view of P1, Veitch and Abry (1999) propose to estimate the pair (α, cf )

by a (weighted) linear regression of log2E[d2
jk] on log2 2j = j. Since

log2E[d2
jk] ∼ jα+ log2 cfC(α, ψ0), (4)

the slope of this regression provides an estimate of α, and its intercept is related

to cf C(α, ψ0)

The quantity log2E[d2
jk] is estimated by its moment estimator

log2

(
1

νj(n)

νj(n)∑

k=1

d2
jk

)
− gj ,

where νj(n) = n/2j is the number of available coefficients at scale j, and gj is

a correction term to reduce bias, since log2(E[ · ]) 6= E[log2(·)] (see Abry et al.

(2003, p.541)). The linear regression becomes

E[Yj ] = θ + α j, (5)

where

Yj = log2

(
1

νj(n)

νj(n)∑

k=1

d2
jk

)
− gj , θ = log2 (cf C(α, ψ0)) . (6)

The plot of Yj against the scale index j is called the log-scale diagram.

Relation (5) is only approximate since (4) is an asymptotic relation. It

can hold already, however, for small values of j, for example, when the time

series (Xj) is obtained as the increment of a self-similar process with stationary

increments, as indicated in Section 2.

In practice, if the sample size is n, (5) is used for all j ≥ j1(n), where j1(n)

is the lowest scale where E Yj is approximately linear in j. Precise asymptotic

assumptions on j1(n) are given below.
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In order to apply the weighted least squares method to estimate θ and α, and

to study the statistical properties of the resulting estimators, Veitch and Abry

(1999) make the following supplementary simplifying assumptions.

C1 The process (Xj ; j ≥ 1) is a Gaussian stochastic process. As a consequence,

the process (djk; j ≥ 1; k = 0, ±1, ±2, . . .), obtained through the linear

transformation (2), is Gaussian.

C2 The random variables djks, for every fixed scale index j, are independent

and identically distributed.

C3 The processes (djk; k = 0, ±1, ±2, . . . ) and (dj′k; k = 0, ±1, ±2, . . . ) are

independent for every j 6= j′.

The variances, σ2
j , of the Yj have been computed explicitly by Veitch and Abry

(1999) under assumptions C1-C3. The weighted least squares estimator of (θ, α)

takes the form:
[
θ̂n
α̂n

]
=

(∑

j

1

σ2
j

[
1 j

j j2

])−1(∑

j

yj
σ2
j

[
1

j

])
.

From (6), one obtains an estimator of cf . The corresponding estimator of the

Hurst parameter H = (1 + α)/2 is Ĥn = (1 + α̂n)/2.

Veitch and Abry (1999) have shown that, under P1-P2 and C1-C3, the es-

timators α̂n and θ̂n are unbiased, asymptotically efficient, and asymptotically

normally distributed. Confidence intervals based on these results have been ob-

tained.

Bardet et al. (2000) have studied the asymptotic properties of the estimator

α̂n of α without assuming C2 and C3, which are approximations only. They

proved consistency and asymptotic normality under some regularity conditions

on the spectral density f(λ) = λ1−2H f∗(λ), as long as (i) the scale index j1(n)

goes sufficiently fast to infinity (see (7) below) with the sample size n, and (ii)

n−1 2j1(n) goes to zero. To describe the regularity conditions on the spectral

function f , denote by

∆r
hg(x) =

r∑

k=0

(
r

k

)
(−1)r−kg(x+ kh)

the rth order differences of a function g. The generalized Lipschitz space Lip∗(α, p)

is the space of functions in Lp(R) such that

‖∆r
hg(·)‖p =

(∫
|∆⌈α⌉

h g(x)|p dx
) 1

p

≤M hα,



THE LONG MEMORY PARAMETER BASED ON WAVELETS AND RESAMPLING 565

for some positive M , where r = ⌈α⌉ denotes the smallest integer bigger than α.

On the space Lip∗(α, p), take

|g|Lip∗(α,Lp) = sup
t>0

sup
0<h≤t

1

tα
‖∆r

hg(·)‖p.

The regularity conditions on the spectral density f are as follows.

S1. For some 1 < δ ≤ 2, f∗ ∈ Lip∗(1, 1) ∩ Lip∗(δ, 1) ∩ L∞(R);

S2. f∗(0) 6= 0;

S3. there are positive real constants η, β, β′, and a real constant f
(β)
∗ (0) 6= 0

such that 1 < β < β′ and sup0<λ≤η |f∗(λ) − f∗(0) − f
(β)
∗ (0)λβ |/λβ′

<∞;

S4. there exist ǫ > 0, 0 ≤ γ < 1, and C(f ′∗) such that f∗ is differentiable on

(0, ǫ) with |f ′∗(λ)| ≤ C(f ′∗)/λ
γ .

The main result of Bardet et al. (2000) (stated in terms of Ĥn and H instead

of α̂n and α) can be formulated as follows. If

lim
n→∞

2−j1(n)(1+2β)n = 0 and lim
n→∞

νj1(n)(n) = lim
n→∞

2−j1(n)n = ∞, (7)

then
√
νj1(n)(n) (Ĥn −H)

d→ N(0, σ2(H)) as n→ ∞, (8)

where the symbol N(µ, σ2) denotes a normal distribution with mean µ and vari-

ance σ2 and νj1(n)(n) denotes the number of wavelet coefficients available at scale

j1 = j1(n). To simplify notation we shall often write νj1(n) instead of νj1(n)(n).

The asymptotic variance σ2(H) that appears in (8) depends on H. More impor-

tantly, one cannot use σ2(Ĥn) to estimate Var (Ĥn), because Var (Ĥn) involves

unknown constants that depend on n. The asymptotic confidence intervals, more-

over, are based on a Gaussian distribution which may not be valid for small values

of νj1(n)(n). For these reasons, it is virtually impossible to obtain an accurate

confidence interval for H by using (8) with σ2(H) simply replaced by σ2(Ĥn).

This is why here we propose to use resampling techniques, in particular, the

sampling window method (Lahiri (2003)) to obtain confidence intervals for H.

4. Approximating the Distribution of Ĥn via Subsampling

Denote by

Tn =
√
νj1(n)(n) (Ĥn −H) (9)
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the “centered version” of the estimators Ĥn, based on n observations from a

long-memory Gaussian stationary process (Xj ; j ≥ 1), and denote by

Qn(x) = P (Tn ≤ x) (10)

its distribution function (d.f.). We assume that Tn
d→ N(0, σ2(H)) as n → ∞.

This is the case, for example, under the assumptions of Bardet et al. (2000). The

distribution Qn(x) of Tn, for finite n, is unknown. We are going to estimate it

by a distribution Q̂n(x) defined in the sequel.

Let Bi = (Xi, . . . , Xi+l−1), i = 1, . . . , N , be a collection of N = n − l + 1

overlapping blocks of length l, for some given integer l = ln (1 ≤ l ≤ n). Finally,

let Ĥl,i be the estimator of H based on the data in block Bi. Observe that the

blocks Bi overlap and that they have, in fact, adjacent starting points.

A “sub-sample copy” of Tn, based on Bi, is given by

T̂l,i =
√
νj1(l)(l) (Ĥl,i − Ĥn). (11)

The subsampling estimator of the distribution function Qn(x) = P (Tn ≤ x) of

Tn, based on the sub-samples Bi’s, is simply the empirical distribution function

(EDF) of the T̂l,i’s in (11), that is,

Q̂n(x) =
1

N

N∑

i=1

I
( bTl,i≤x)

, x ∈ IR. (12)

While Qn(x) is unknown, the subsampling distribution Q̂n(x) can be computed

from the data.

The following result shows that Q̂n is a consistent estimator of Qn. Hall et al.

(1998) proved the consistency of the sample mean, and (8) implies that this con-

sistency extends to the estimator Ĥn. The intuitive reason behind the consistency

of Q̂n is that the Ĥl,i’s are functions of eventually non–overlapping blocks of Xj’s.

Thus, as in the case of the sample mean, the complete regularity of the Gaussian

process (Xj ; j ≥ 1) implies the consistency of the empirical distribution Q̂n.

Details are provided in the proof of Proposition 1. Let l̃ogf be the harmonic

conjugate of log f , the logarithm of the spectral density function of the process

(Xj ; j ≥ 1). The key assumption is the same as in Hall et al. (1998), namely

that l̃ogf , say, possesses a continuous branch on [−π, π]. This implies that the

(Gaussian) process (Xj ; j ≥ 1) is completely regular (Ibragimov and Rozanov

(1978, pp.178-179)).

Proposition 1. Assume that:

(a) the process (Xj ; j ≥ 1) possesses a spectral function f such that l̃ogf is

continuous on [−π, π];
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(b) conditions S1-S4 hold;

(c) ψ0 has m ≥ 2 vanishing moments with

(1 + |t|)r {|ψ̂0(t)| + |ψ̂′
0(t)| + |ψ̂′′

0 (t)|} ≤ Cψ ∀x ∈ R,

where r≥2, Cψ is an appropriate positive constant, and ψ̂0(x)=
∫

exp{−2iπtx}
ψ0(t)dt is the Fourier transform of ψ0;

(d) l−1 + n−1 l tends to zero, j1(n) goes to infinity, and νj1(n)(n)/νj1(l)(l) tends

to zero as n goes to infinity.

Then

sup
x∈R

∣∣∣Q̂n(x) −Qn(x)
∣∣∣ p→ 0 as n→ ∞. (13)

Proof. The proof is given in Section 5.

It follows from Proposition 1 that the quantiles of Q̂n behave asymptotically

as the quantiles of Qn. More precisely, the following result holds.

Proposition 2. Assume the same regularity conditions as in Proposition 1, and

set Q̂−1
n (u) = inf{x : Q̂n(x) ≥ u} and Q−1

n (u) = inf{x : Qn(x) ≥ u}. Then

Q̂−1
n (u) −Q−1

n (u)
p→ 0 as n→ ∞, ∀u ∈ (0, 1). (14)

Proof. The proof is given in Section 5.

Propositions 1 and 2 suggest that the distribution function Qn may be ap-

proximated by the EDF Q̂n obtained through subsampling, and that the quan-

tile Q−1
n may be approximated by the sample quantile Q̂−1

n . Hence, for every

0 < γ < 1 the interval
(
Ĥn +

1√
νj1(n)(n)

Q̂−1
n (

γ

2
), Ĥn +

1√
νj1(n)(n)

Q̂−1
n (1 − γ

2
)

)
(15)

is a confidence interval for H with asymptotic coverage probability 1 − γ.

5. Proof of the Propositions

Proof of Proposition 1. The proof is based on ideas similar to those in

Hall et al. (1998). Define first the quantities

T l,i =
√
νj1(l)(l) (Ĥl,i −H), i = 1, . . . , N ;

Qn(x) =
1

N

N∑

i=1

I(T l,i≤x)
, x ∈ IR.
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Our first goal is to show that

∣∣Qn(x) −Qn(x)
∣∣ p→ 0 as n→ ∞, ∀x ∈ IR. (16)

Since T l,i has the same distribution as Tl (see (9)), we have E[Qn(x)] = Ql(x),

and hence

E[(Qn(x) −Qn(x))
2] = Var (Qn(x)) + (Ql(x) −Qn(x))

2. (17)

Since Qn(x) is a non-random function which, by (8), converges to a limit,

we have for l = l(n) → ∞,

|Ql(x) −Qn(x)| → 0 as n→ ∞. (18)

Moreover, we may express the variance in (17) as

Var (Qn(x))

=
1

N2

N∑

i=1

Var
(
I(T l,i≤x)

)
+

2

N2

N∑

i=1

∑

j>i

Cov
(
I(T l,i≤x)

, I(T l,j≤x)

)

=
1

N
Var

(
I(T l,1≤x)

)
+

2

N2

N−1∑

k=1

(N − k) Cov
(
I(T l,1≤x)

, I(T l,k+1≤x)

)

≤ 1

N
Var

(
I(T l,1≤x)

)
+ Var

(
I(T l,1≤x)

) 2

N2

l∑

k=1

(N − k)

+
2

N2

N−1∑

k=l+1

(N − k)
∣∣∣Cov

(
I(T l,1≤x)

, I(T l,k+1≤x)

)∣∣∣

≤
(

1

N
+

2 l

N

)
Var I(T l,1≤x)

+
2

N

N−1∑

k=l+1

∣∣∣E
[
I(T l,1≤x)

I(T l,k+1≤x)

]
−Ql(x)

2
∣∣∣ . (19)

Using results in Ibragimov and Rozanov (1978, pp.178-179), the Gaussianity of

the process (Xj ; j ≥ 1) and the continuity of l̃ogf imply that (Xj ; j ≥ 1) is

completely regular. Hence, denoting by F(i j) the set of functions Y measurable

w.r.t. the σ-field A(i j) generated by Xi, . . . , Xj (possibly with j = ∞), with

EY = 0, EY 2 = 1, from Theorem V.5.7 and relationships (IV.1.9), (IV.1.16) in

Ibragimov and Rozanov (1978), we have

sup
A1∈A(1 l), A2∈A(l+h ∞)

|P (A1 ∩A2) − P (A1)P (A2)|

≤ sup
Y1∈F(1 l), Y2∈F(l+h ∞)

|EY1 Y2| → 0
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as h→ ∞. From this result, it follows that the second term in (19) tends to zero

as N goes to infinity. Indeed,

Sh := sup
k≥h

∣∣∣E
[
I(T l,1≤x)

I(T l,k+1≤x)

]
−Ql(x)

2
∣∣∣→ 0

as h→ ∞. Therefore, the second term in (19) is bounded above by 4h/N + 2Sh,

which vanishes as N → ∞, for any h = h(N) such that h(N)/N → 0 and

h(N) → ∞ as N → ∞.

Furthermore, all other terms in (19) go to zero as n increases, as a conse-

quence of the assumption l−1 + n−1 l → 0. Thus, Var(Qn(x)) → 0, as n → ∞,

and hence (18) and (17) imply (16).

We now show that
∣∣∣Q̂n(x) −Qn(x)

∣∣∣ p→ 0, as n→ ∞, ∀x ∈ IR. (20)

Observe first that

∣∣∣Q̂n(x) −Qn(x)
∣∣∣ ≤ 1

N

N∑

i=1

∣∣∣I(νj1(l)(l)1/2( bHl,i− bHn)≤x) − I(νj1(l)(l)1/2( bHl,i−H)≤x)

∣∣∣ . (21)

and that
∣∣∣I(νj1(l)(l)1/2( bHl,i− bHn)≤x) − I(νj1(l)(l)1/2( bHl,i−H)≤x)

∣∣∣

=
∣∣∣I(νj1(l)(l)

1/2( bHl,i−H)≤x+νj1(l)(l)
1/2( bHn−H)) − I(νj1(l)(l)

1/2( bHl,i−H)≤x)

∣∣∣
≤ Ai +Bi, (22)

where

Ai = I(x<νj1(l)(l)
1/2( bHl,i−H)≤x+νj1(l)(l)

1/2( bHn−H)),

Bi = I(x+νj1(l)(l)
1/2( bHn−H)<νj1(l)(l)

1/2( bHl,i−H)≤x).

Now, for every ǫ > 0 and for all i = 1, . . . , N , we have

EAi = P (Ai > 0)

≤ P (
√
νj1(l)(l)|Ĥn −H| > ǫ) + P (x <

√
νj1(l)(l)(Ĥl,i −H) ≤ x+ ǫ)

= P (
√
νj1(l)(l)|Ĥn −H| > ǫ) + P (x <

√
νj1(l)(l)(Ĥl,1 −H) ≤ x+ ǫ), (23)

where the equality in (23) follows from Ĥl,i
d
= Ĥl,1, i = 1, . . . , N , since the

process (Xj ; j ≥ 0) is stationary.
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From (8) and assumption (d), one gets

√
νj1(l)(l)(Ĥn −H) =

√
νj1(l)(l)

νj1(n)(n)

√
νj1(n)(n)(Ĥn −H)

p→ 0 as n→ ∞,

and hence the first term in (23) converges to zero as n increases, for every positive

ǫ. As far as the second term in (23) is concerned, (8) implies that

lim
n→∞

P
(
x <

√
νj1(l)(l)(Ĥl,1 −H) ≤ x+ ǫ

)
= P (x < N(0, σ2(H)) ≤ x+ ǫ).

Thus, as n→ ∞ and letting ǫ go to zero, we obtain that EAi = P (Ai > 0) tends

to zero as n increases, uniformly in i = 1, . . . , N . Similarly, E[Bi] = P (Bi >

0) → 0 as n → ∞, uniformly in i = 1, . . . , N . The conclusion (20) follows from

(22) and (21).

In view of (16) and (20), the difference |Q̂n(x) − Qn(x)| tends to zero in

probability as n tends to infinity, for every fixed x. By (9) and (10), Qn(x) tends

to the normal distribution function Φ0, σ2(H)(x) with mean zero and variance

σ2(H) as n increases, for every real x. Hence Q̂n(x) tends in probability to the

same limit, for every real x. Finally, using the uniform continuity of Φ0, σ2(H),

and taking into account that

sup
x∈R

|Q̂n(x) −Qn(x)| ≤ sup
x∈R

{
|Qn(x) − Φ0, σ2(H)(x)| + |Q̂n(x) − Φ0, σ2(H)(x)|

}
,

and that Q̂n(x) tends in probability to Φ0, σ2(H)(x), (13) is obtained.

Proof of Proposition 2. The proof uses standard techniques. In view of (8) and

Proposition 1 it follows that Qn and Q̂n both converge (Q̂n in probability) to a

normal distribution function with mean zero and variance σ2(H). Using Lemma

1.5.6 in Serfling (1980), and taking into account that Φ0, σ2(H) is continuous and

strictly increasing, it is immediate to see that

Q−1
n (u) → Φ−1

0, σ2(H)
(u) ∀ 0 < u < 1, as n→ ∞.

In the same way, it is not difficult to show that

Q̂−1
n (u)

p→ Φ−1
0, σ2(H)

(u) ∀ 0 < u < 1, as n→ ∞,

from which conclusion (14) follows.

6. Simulation results

We performed a simulation study in order to evaluate the actual coverage

probability of the confidence intervals (15). In particular, we focus on simulat-

ing traces from a Fractional Brownian motion. Although our remarks depend
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on this particular choice, some useful indications on the validity of the proposed

confidence intervals are obtained. Of course, in order to reach wider and stronger

conclusions, simulations from different LRD processes, and from other combina-

tions of H, n, and l would be necessary.

To synthesize fractional Gaussian noise (i.e., the increments of a Fractional

Brownian motion), approximate synthesis methods with reasonable computa-

tional loads are known (see Park and Willinger (2000) and Bardet, Lang, Op-

penheim, Philippe and Taqqu (2003)), but their approximation errors cannot be

easily controlled. For this reason we have used the circulant matrix method that

possesses a good computational efficiency. In order to generate a trace of length

n, this method essentially performs an embedding of the correlation matrix of the

original process into a non-negative definite matrix R of size m ≥ 2(n−1), which

is a circulant. The main advantage is that circulants are easy to diagonalize by

using the discrete Fourier transform. Therefore, when m is an integer power of 2,

the complexity of the circulant matrix embedding method coincides with the com-

plexity of the Fast Fourier Transform, that is O(m log2m). A detailed descrip-

tion of the method is given in Davies and Harte (1987), Bardet et al. (2003));

properties are studied in Craigmile (2003).

Two values of H were considered, H = 0.6 and H = 0.8, and two sample

sizes: n = 211 and n = 215. For the above values of H and n, 1,000 independent

traces of length n were generated.

The coverage probability of the (linear) wavelet estimator has been computed

over the full sample of n observations for three different choices of the mother

wavelet: Haar function, Daubechies–2, and Daubechies–4 wavelets, respectively

(Daubechies (1992)). In order to test which scales should be used, the goodness-

of-fit test proposed in Veitch et al. (2003) has been applied. Daubechies–2,

and Daubechies–4 mother wavelets satisfy condition (c) of Proposition 1 (see

Bardet et al. (2000)). The Haar wavelet possesses only one vanishing moment.

It has been included in our simulation study because it is widely used in practice.

Table 1 displays the mean, the standard deviation, the skewness and kur-

tosis coefficients of the estimator Ĥn, computed on the basis of our simulated

data. Furthermore, in order to evaluate how well the confidence intervals for H

proposed in Veitch and Abry (1999) work in practice, the coverage probabilities

have been computed on the basis of the simulated data, for two nominal confi-

dence levels 0.95 and 0.99. The corresponding results are reported in Table 2,

where the interval length is computed as 2 zα/2σ(H), with Φ0,1(zα/2) = 1− α/2.

The standard errors σ̂, denoted Std in Table 2 and shown in parentheses, are

based on the binomial approximation. Namely, σ̂ =
√
p̂(1 − p̂)/N, where p̂ is

the estimated coverage probability, and where N is the number of independent

replications considered.
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Table 1. Mean, standard deviation, skewness, and kurtosis of Ĥn.

Mother H = 0.6 H = 0.8

wavelet Mean Std Skew Kurt Mean Std Skew Kurt

n = 211 = 2, 048

Haar 0.581 0.123 −0.130 −0.156 0.780 0.126 −0.153 −0.144

Daubechies 2 0.625 0.141 0.120 −0.089 0.827 0.145 0.107 −0.050
Daubechies 4 0.610 0.155 0.110 −0.130 0.814 0.164 0.099 −0.174

n = 215 = 32768

Haar 0.595 0.075 −0.140 −0.143 0.794 0.079 −0.155 −0.154

Daubechies 2 0.602 0.070 0.150 −0.101 0.806 0.071 0.153 −0.098

Daubechies 4 0.602 0.073 0.190 −0.113 0.808 0.074 0.163 −0.164

Table 2. Coverage probabilities and lengths for the confidence intervals by

Veitch and Abry (1999); in parentheses, standard errors are reported.

Mother H = 0.6 H = 0.8

wavelet nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

n = 211

Haar 0.941 0.982 0.919 0.978

(0.0075) (0.0042) (0.0086) (0.0046)
Daubechies 2 0.943 0.984 0.923 0.980

(0.0073) (0.0040) (0.0084) (0.0044)

Daubechies 4 0.942 0.983 0.931 0.973

(0.0074) (0.0041) (0.0080) (0.0051)

Interval length 0.049 0.065 0.049 0.065
(0.0) (0.0) (0.0) (0.0)

n = 215

Haar 0.942 0.981 0.917 0.972

(0.0074) (0.0043) (0.0087) (0.0052)

Daubechies 2 0.943 0.985 0.921 0.979

(0.0073) (0.0038) (0.0085) (0.0045)
Daubechies 4 0.941 0.982 0.933 0.976

(0.0075) (0.0042) (0.0079) (0.0048)

Interval length 0.022 0.029 0.022 0.029

(0.0) (0.0) (0.0) (0.0)

Some comments are in order.

• The confidence intervals of Veitch and Abry (1999) seem to be too narrow

since their coverage probability tends to be smaller than the nominal one.
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This may be explained as follows. First, the asymptotic variance of Ĥn used

by those authors is not correct, and this is the main source of inaccuracy.

Second, the (simulated) distribution of Ĥn over the 1,000 traces, for each

value of H, exhibits skewness (skew) and negative kurtosis (kurt), so that

the confidence intervals computed under the hypothesis of normality tend to

be narrower than they should. Furthermore, the variance is taken to be the

asymptotic variance under assumptions C2 and C3, which are not true in

reality.

• The coverage probability decreases as H increases. The reason is that the

correlation in k of the djk’s, which is ignored in Veitch and Abry (1999), in-

creases asH increases (see Flandrin (1992), Masry (1993) and Tewfik and Kim

(1992)).

• As the sample size n increases, the (expected) length of the confidence inter-

vals considered decreases. On the other hand, the coverage probabilities are

essentially the same.

To test how the confidence intervals (15) based on subsampling perform, the

simulated data described above have been used to evaluate their actual coverage

probability.

Experience with the case of short-range dependent data suggests that the

block size l should be considerably smaller than n. Following Hall et al. (1998),

the choice of l = c n1/2, with c = 3, 6 and 9 (with l possibly corrected to the

closest power of 2) has been considered, leading to l = 3
√

2048 ≈ 128 = 27,

l = 6
√

2048 ≈ 256 = 28, and l = 9
√

2048 ≈ 512 = 29 when n = 211, and to

l = 3
√

32768 ≈ 512 = 29, l = 6
√

32768 ≈ 1, 024 = 210, and l = 9
√

32768 ≈
2, 048 = 211 when n = 215. The number of blocks N is therefore 1921, 1793, and

1537 in the case n = 211, and 32257, 31745 and 30721 in the case n = 215.

The results we have obtained are summarized in Tables 3 and 4. Statistics of

the distribution of the lengths of the confidence intervals based on the subsam-

pling method have been computed for each block size and are presented in Tables

5 and 6. For a given sample of confidence intervals of lengths Lj, j = 1, . . . , N ,

we compute the sample mean L =
∑N

j=1Lj/N and the range max1≤j≤NLj −
min1≤j≤NLj. In parentheses, standard deviations s = {∑N

i=1(Li−L)2/(N−1)}1/2

of the lengths are also reported.

Here are some remarks.

• For each value ofH and for each mother wavelet considered, the coverage prob-

ability of the confidence intervals based on the subsampling method behaves

better (i.e., is closer to the fixed nominal level) than the coverage probability
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of the linear wavelet estimator based on the assumptions of Abry and Veitch

and displayed in Table 2. This is because Q̂n(x) converges to the same lim-

iting distribution function as Qn(x), which is the correct limit distribution of

the error Tn =
√
νj1(n)(n)(Ĥn − H). This limit distribution is normal with

zero mean and variance σ2(H), which is different from the variance involved

in the confidence intervals based on assumptions C2 and C3. Therefore, the

confidence intervals based on subsampling are asymptotically correct, whereas

this is not the case for the ones proposed by Abry and Veitch.

Table 3. Coverage probabilities for confidence intervals (15); n = 211; in

parentheses, standard errors are reported.

Block size: l = 128 = 27

Mother H = 0.6 H = 0.8

wavelet nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.950 0.993 0.954 0.998
(0.0069) (0.0025) (0.0066) (0.0014)

Daubechies 2 0.952 0.992 0.957 0.996

(0.0067) (0.0028) (0.0064) (0.0020)

Daubechies 4 0.956 0.991 0.960 0.996

(0.0065) (0.0030) (0.0062) (0.0020)

Block size: l = 256 = 28

Mother H = 0.6 H = 0.8

wavelet nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.954 0.994 0.956 0.999

(0.0066) (0.0024) (0.0065) (0.0031)

Daubechies 2 0.955 0.992 0.955 0.997

(0.0065) (0.0028) (0.0065) (0.0017)
Daubechies 4 0.956 0.993 0.961 0.996

(0.0065) (0.0026) (0.0061) (0.0020)

Block size: l = 512 = 29

Mother H = 0.6 H = 0.8

wavelet nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.955 0.994 0.957 0.993

(0.0065) (0.0024) (0.0064) (0.0026)
Daubechies 2 0.957 0.993 0.956 0.992

(0.0064) (0.0026) (0.0065) (0.0028)

Daubechies 4 0.957 0.994 0.959 0.997

(0.0064) (0.0024) (0.0064) (0.0017)
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Table 4. Coverage probabilities for confidence intervals (15); n = 215; in

parentheses, standard errors are reported.

Block size: l = 512 = 29

Mother H = 0.6 H = 0.8
wavelet nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.953 0.993 0.955 0.996

(0.0066) (0.0025) (0.0065) (0.0020)

Daubechies 2 0.952 0.991 0.952 0.995

(0.0067) (0.0030) (0.0067) (0.0022)

Daubechies 4 0.954 0.993 0.956 0.996
(0.0066) (0.0025) (0.0065) (0.0020)

Block size: l = 1, 024 = 210

Mother H = 0.6 H = 0.8

wavelet nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.954 0.994 0.956 0.998

(0.0066) (0.0024) (0.0065) (0.0014)

Daubechies 2 0.952 0.991 0.953 0.996
(0.0067) (0.0030) (0.0066) (0.0020)

Daubechies 4 0.954 0.993 0.960 0.998

(0.0066) (0.0026) (0.0062) (0.0014)

Block size: l = 2, 048 = 211

Mother H = 0.6 H = 0.8
wavelet nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.955 0.995 0.957 0.998
(0.0065) (0.0022) (0.0064) (0.0014)

Daubechies 2 0.953 0.992 0.953 0.997

(0.0066) (0.0028) (0.0066) (0.0017)

Daubechies 4 0.956 0.993 0.960 0.999
(0.0065) (0.0026) (0.0062) (0.0010)

• The length of the confidence intervals based on the subsampling method (see

Tables 5 and 6) is generally larger than that for the linear wavelet estimator

based on the normal approximation (see Table 2). This may be due, in part,

to the fact that the skewness and kurtosis of the actual distribution of Ĥn is

now taken into account.

• The actual coverage probability is always close (and typically slightly larger

than) the nominal one (0.95 or 0.99).

• As l increases, the number of scales available in the computation of the wavelet

estimator increases, too (from seven to nine), and consequently the variance

of the estimator (and the length of the confidence interval, as well) decreases.
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Table 5. Mean and range of the length of confidence intervals (15); n = 211.

In parentheses, standard deviations of lengths are reported.

Block size: l = 128 = 27

Mother H = 0.6 H = 0.8
wavelet Mean Range Mean Range Mean Range Mean Range

nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.257 0.165 0.346 0.205 0.271 0.175 0.354 0.222

(0.029) (0.031) (0.029) (0.033)

Daubechies 2 0.255 0.192 0.320 0.249 0.272 0.197 0.352 0.220

(0.030) (0.032) (0.031) (0.032)
Daubechies 4 0.254 0.201 0.337 0.239 0.258 0.199 0.346 0.245

(0.031) (0.034) (0.031) (0.034)

Block size: l = 256 = 28

Mother H = 0.6 H = 0.8

wavelet Mean Range Mean Range Mean Range Mean Range

nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.145 0.147 0.197 0.230 0.148 0.168 0.197 0.240
(0.026) (0.033) (0.028) (0.034)

Daubechies 2 0.143 0.178 0.192 0.206 0.146 0.179 0.195 0.209

(0.029) (0.031) (0.029) (0.031)

Daubechies 4 0.140 0.194 0.188 0.216 0.141 0.187 0.111 0.233

(0.030) (0.032) (0.030) (0.031)

Block size: l = 512 = 29

Mother H = 0.6 H = 0.8

wavelet Mean Range Mean Range Mean Range Mean Range

nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.124 0.143 0.132 0.142 0.132 0.128 0.141 0.142

(0.026) (0.026) (0.00061) (0.00069)

Daubechies 2 0.104 0.133 0.120 0.128 0.104 0.122 0.115 0.136
(0.00064) (0.00067) (0.025) (0.026)

Daubechies 4 0.105 0.135 0.121 0.130 0.106 0.119 0.122 0.125

(0.025) (0.025) (0.024) (0.024)

As an overall comment, the confidence intervals by Abry and Veitch are ad-

vantageous from a computational point of view. However, since they are based on

an underestimated variance, they do not meet the nominal confidence level. On

the other hand, although slightly more computationally expensive, the confidence

intervals based on subsampling seem to be accurate. Their coverage probability

essentially coincides with the nominal value. As far as the value of l is concerned

we notice that, within the range of l values considered in our study, as l grows
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Table 6. Mean and range of the length of confidence intervals (15); n = 215.

In parentheses, standard deviations of lengths are reported.

Block size: l = 512 = 29

Mother H = 0.6 H = 0.8
wavelet Mean Range Mean Range Mean Range Mean Range

nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.127 0.026 0.168 0.039 0.156 0.025 0.172 0.048

(0.011) (0.014) (0.011) (0.015)

Daubechies 2 0.151 0.027 0.201 0.041 0.153 0.026 0.205 0.037

(0.011) (0.014) (0.011) (0.013)
Daubechies 4 0.207 0.020 0.213 0.032 0.209 0.018 0.224 0.032

(0.010) (0.013) (0.009) (0.013)

Block size: l = 1, 024 = 210

Mother H = 0.6 H = 0.8

wavelet Mean Range Mean Range Mean Range Mean Range

nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.095 0.013 0.122 0.032 0.098 0.017 0.126 0.042
(0.008) (0.012) (0.009) (0.014)

Daubechies 2 0.104 0.021 0.135 0.031 0.106 0.022 0.138 0.036

(0.010) (0.012) (0.010) (0.013)

Daubechies 4 0.130 0.018 0.170 0.016 0.131 0.019 0.172 0.025

(0.009) (0.009) (0.009) (0.011)

Block size: l = 2, 048 = 211

Mother H = 0.6 H = 0.8

wavelet Mean Range Mean Range Mean Range Mean Range

nom. lev. 0.95 nom. lev. 0.99 nom. lev. 0.95 nom. lev. 0.99

Haar 0.063 0.018 0.082 0.022 0.066 0.021 0.082 0.027

(0.010) (0.011) (0.009) (0.010)

Daubechies 2 0.070 0.023 0.089 0.029 0.072 0.024 0.090 0.032
(0.010) (0.012) (0.012) (0.012)

Daubechies 4 0.083 0.019 0.108 0.030 0.084 0.019 0.109 0.031

(0.009) (0.012) (0.009) (0.012)

the coverage probabilities are virtually stable, while the corresponding confidence

intervals lengths decrease. Hence, it seems reasonable to adopt the heuristic ad-

hoc rule l = 9
√
n. Finally, the choice of the mother wavelet does not seem to

affect significantly the coverage probability. However, the Daubechies-2 wavelets

turns out to work best in our simulation setting.
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