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Abstract: Design and analysis of factorial experiments with randomization restric-

tions has received considerable attention in recent years; motivated by studies of

multi-stage processes or systems. This has given rise to seemingly unrelated meth-

ods of design construction, specific to the layout (e.g., split-plot, split-lot, strip-plot

designs). We develop a general approach to this problem that includes most ap-

proaches in the literature as special cases, and is easily adaptable to designs which

are combinations of different layouts.
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1. Introduction

Factorial and fractional factorial designs are commonly used as experiment

plans to study the impact of several factors on a process. Complete randomization

of the experiment trials is frequently impractical when it is difficult or costly to

change the level settings of some of the factors. Being cognizant of the nature of

the system, one may instead choose a layout which imposes restrictions on the

randomization of the runs.

Recently, there has been considerable attention given to fractional facto-

rial designs with such randomization restrictions. Experimenters have adapted

familiar plans such as split-plot (Addelman (1964), Huang, Chen and Voelkel

(1998), Bingham and Sitter (1999, 2001) and Bisgaard (2000)), strip-plot (Miller

(1997)), split-lot (Mee and Bates (1998)) and blocked designs (Bisgaard (1994),

Sitter, Chen and Feder (1997), Sun, Wu and Chen (1997) and Cheng, Li and Ye

(2004)) to the fractional factorial treatment structure. However, there is no uni-

fied approach to the construction of such designs with randomization restrictions.

For instance, Miller (1997) requires the use of a Latin square fraction to construct

a fractional factorial strip-plot design, whereas for split-plot designs, simple rules

for the number of sub-plot factors in a fractional generator are given (e.g., see

Bisgaard (2000) and Bingham and Sitter (1999, 2001)).
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In this article, we develop a general method for the construction of fractional

factorial designs with randomization restrictions that considers the randomiza-

tion structure and treatment structure separately. By examining the randomiza-

tion structure first, we can determine which factorial effects are impacted by the

error term at each stage of randomization. In addition, we can easily determine

the allowable fractional generators for the desired randomization structure. The

approach is simple and adaptable to combinations of several design structures.

This research was motivated by a study at Los Alamos National Laboratory

(LANL) to produce a plutonium alloy with high decay rate (Freibert, Olivas and

Coonley (2002)). The nature of the process and cost/time restrictions made it

advantageous to consider what one might term a split-plot/split-lot experiment

with four stages. The plutonium application is described in Section 2. Section 3

proposes a framework for the construction of full factorial designs with random-

ization restrictions, and Section 4 shows how to adapt the approach to fractional

factorial designs. We conclude with some remarks and discussion in Section 5.

2. Motivating Application

Researchers at LANL are interested in studying a process that creates a

plutonium alloy with a high decay rate for eventual use in accelerated testing

(see Freibert, Olivas and Coonley (2002)). The current interest is in performing a

designed experiment to determine which factors most impact the alloy properties

and should be subsequently studied to optimize the process.

The process consists of four stages, each with one or more factors, described

below. Though the process seems simple, keep in mind that the experimenters

are working with a highly toxic material and even a simple task such as cutting

the material must be done while keeping the material in isolation.

Stage 1. Molten material is poured into a cast that yields ten “cookies” with

roughly the dimensions of a hockey puck. A casting of ten cookies will be done

at each of the high and low levels of factor 1 (Composition), however, only two

cookies from each casting will be available for the study.

Stage 2. The material undergoes a type of heat treatment which can be run at

two possible settings of factor 2 (Heat Treat 1), high and low. To do so, each of

the four cookies are cut in half to form eight half-cookies. The heat treatment

is applied to a half-cookie (four at the high level of factor 1 and four at the low

level). The two halves of a cookie are randomly assigned one of the two levels

of factor 2 and run through the first heat treatment process. Following the heat

treatment, each half-cookie is cut into five coupons, one of which is held back

in case of run failures at subsequent stages, leaving four coupons available for

experimentation.
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Stage 3. Another heat treatment is applied to coupons at either the high or

low level of factor 3 (Heat Treat 2). For practical reasons, it is necessary for four

coupons to undergo the heat treatment simultaneously.

Stage 4. The coupons undergo a final heat treatment at the four possible high

and low settings of factors 4 (HT-Hot) and 5 (HT-Cold). Similar to the previous

stage, it is necessary to process several coupons at the same time. The measured

density of the fully processed coupons is the characteristic of interest.

In this experiment, subsequent stages of processing begin only after all ma-

terials have been processed at a given stage. For example, Stage 3 can begin

only after all half-cookies have undergone Stage 2 heat treatments. While this

appears to complicate matters, it can be an advantage as it allows us to combine

coupons from different half-cookies in the same application of a heat treatment.

We wish to explore the impact of 5 factors, each at 2 levels, in 32 runs. Thus,

a 25 full factorial plan can be used. There are, however, randomization restric-

tions at each of the four stages of the process. There are also costs associated

with the number of applications of each heat treatment, forcing one to group

coupons together at various stages of the experiment.

So, how should the experiment be run? Facing this question and more spe-

cific issues such as how to form groups of experimental units to impact effect

estimates as little as possible, and how to maintain a reasonably simple analysis

strategy, led us to consider the general problem of designing experiments with

multiple stages, various randomization restrictions, and batch-size restrictions;

eg., blocked designs, split-plot designs, split-split-plot designs, blocked split-plot

designs, split-lot designs, strip-plot designs, and combinations and generaliza-

tions of all of the above. We attempt to develop a general methodology for doing

so, and return to the plutonium experiment to demonstrate the approach.

3. Full Factorial Designs

3.1. A Framework for Randomization Restrictions

We consider the design of full factorial experiments with randomization re-

strictions and delay discussion of fractional factorial designs to Section 4. Ours

is an attempt to develop a unified approach for using columns of the full factorial

design matrix to define the randomization structure of an experiment in a similar

way to determining the treatment structure of a fractional factorial design.

A 2k full factorial design has k factors, each with 2 levels, and n = 2k runs

consisting of all level combinations of the k factors. More formally, let P be the

k × (2k − 1) matrix whose columns consist of the vector space spanned by the

columns of Ik over the finite field GF (2), excluding the identity column of 0’s. All

vectors of the k-dimensional vector space generated by the rows of P correspond
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to an n×(n−1) matrix, X. The full factorial design is an assignment of k factors

to basis columns of X. Without loss of generality, we can write the columns of X

as X = {c1, . . . , ck, ck+1, . . . , cn−1}, with the basis columns labelled c1, . . . , ck.

From a linear model standpoint, columns c1, . . . , ck represent the main effect

columns and the remaining columns are for interactions obtained via additions

of subsets of c1, . . . , ck modulo 2.

The first k columns of X define the treatment structure of the design (i.e.,

which treatments are applied to experimental units), but not the randomization

structure. The randomization structure of the experiment defines the grouping

of the experiment runs at each stage of randomization. For example, in Section

2 the grouping of trials refers to coupons which are processed together at each

stage of the plutonium application.

Let there be S stages of randomization. This implies that there are S − 1

stages with randomization restrictions, with the final stage of randomization

being the final unit to unit variability. For the s-th stage of restricted random-

ization, we use rs linearly independent columns of X to group the trials of a 2k

design into Gs = 2rs sets of size 2k−rs = 2k/Gs (the linear independence refers

only to the current stage of randomization and not necessarily to that between

stages). Define δ
(s)
i to be the ith randomization restriction factor for i = 1, . . . , rs

at the s-th stage of randomization (s = 1, . . . , S−1), and let δ
(s)
i be assigned to a

column of X and no other δ
(s)
j be assigned to this column. Together, δ

(s)
1 , . . . , δ

(s)
rs

define the randomization restrictions at the s-th stage. That is, the 2rs unique

combinations of the randomization restrictions in the rows of X are used to form

the Gs sets of trials for this stage of randomization. Note that we are using

the term “randomization restriction factor” to parallel terminology used in the

literature for special cases, even though the δ’s are not really factors but merely

constructs to formalize the randomization structure. Examples include block-

ing factors (Sitter, Chen and Feder (1997) and Sun, Wu and Chen (1997)) and

splitting factors (Bingham, Schoen and Sitter (2003)).

Similar to blocking factorial designs (Sun, Wu and Chen (1997), this can

be viewed as a special case of fractionation. The assignment of randomization

restriction factors to columns of X implies other restrictions. Thus, if δ
(s)
i and

δ
(s)
j are two randomization restriction columns in the full factorial design matrix

at the s-th stage of randomization, then not only will the levels of these columns

be constant for the set of trials, but so will their sum (over GF (2)).

Let Ls = {lsi}
rs

i=1 be the index set of columns used for assignment of ran-

domization restriction factors at stage s, so that δ
(s)
i = clsi

or, equivalently,

∆(s) = clsi
δ

(s)
i for i = 1, . . . , rs, where ∆(s) is a column of 0’s. Call the rs words

of this type, randomization defining words. Then, similar to fractional factorial
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designs, taking all possible sets of sums (over GF (2)) of these defining words cre-

ates the randomization defining contrast sub-group (RDCSG) for the s-th stage

of randomization. This amounts to associating the sub-space spanned by the rs

randomization restriction columns with randomization restrictions at this stage.

One way to view the RDCSG is that it contains the list of columns of X

whose elements are not allowed to vary within each of the unique settings in the

columns corresponding to the randomization defining words. Consequently, when

the current stage of randomization, s, is nested within another stage, each of the

randomization restrictions from the previous stage which describe the nesting

must be included as randomization restrictions in the current stage.

The randomization restrictions impact the analysis of the experiment. The

multiple linear regression model is assumed to be the model of interest. Each

stage of randomization induces a new random error term, with runs in the same

group receiving the same error term and thus being correlated. The model is

y = Xβ +
S−1∑

s=1

E(s) + ǫ, (1)

where y = (y1, . . . , yn)′, β = (β0, . . . , βk)′, ǫ = (ǫ1, . . . , ǫn)′ ∼ N(0, Iσ2
ǫ ) and

E(s) = (E
(s)
1 , . . . , E

(s)
n )′. We define E

(s)
j = e

(s)
k(j), where k(j) = 1 +

∑rs

i=1 clsij2
i−1,

clsij is the j-th element of clsi
and e

(s)
1 , . . . , e

(s)
Gs

are iid N(0, σ2
s ) and independent

of ǫ. Note that, for the s-th stage, there are only Gs different e
(s)
k(j)’s, and thus

only Gs unique E
(s)
j ’s corresponding to the Gs groups.

Under this model, the factorial effects resulting from performing the exper-

iment design X will have an error variance which is a linear combination of the

σ2
s ’s and σ2

ǫ . Specifically, the effects which are confounded with randomization

restrictions at the s-th stage of randomization have an error variance which con-

tains a multiple of σ2
s in the sum of variance components. The effects which

are orthogonal to the randomization restrictions at the s-th stage have error

variances which do not depend on σ2
s . We illustrate via two examples.

Example 1. Consider the 24 design (factors labeled 1-4) in 22 blocks. Let

δ
(1)
1 = 14 and δ

(1)
2 = 123, where 14 represents the sum of columns 1 and 4 and

123 of columns 1, 2 and 3, of X modulo 2, respectively. The RDCSG, which

Sun, Wu and Chen (1997) call the block defining contrast sub-group, is

∆(1) = 14δ
(1)
1 = 123δ

(1)
2 = 234δ

(1)
1 δ

(1)
2 .

Rather than beginning the RDCSG with the mean I, which is traditional

for the defining contrast sub-group of a fractional factorial design, we use ∆(1).
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Table 1. Design for Example 1.

δ
(1)
1 δ

(1)
2 δ

(1)
1 δ

(1)
2

1 2 3 4 14 123 234
E1 = e1 ǫ1 1 0 1 1 0 0 0
E2 = e1 ǫ2 1 1 0 1 0 0 0
E3 = e1 ǫ3 0 1 1 0 0 0 0
E4 = e1 ǫ4 0 0 0 0 0 0 0
E5 = e2 ǫ5 0 0 0 1 1 0 1
E6 = e2 ǫ6 1 0 1 0 1 0 1
E7 = e2 ǫ7 1 1 0 0 1 0 1
E8 = e2 ǫ8 0 1 1 1 1 0 1
E9 = e3 ǫ9 1 1 1 1 0 1 1
E10 = e3 ǫ10 1 0 0 1 0 1 1
E11 = e3 ǫ11 0 1 0 0 0 1 1
E12 = e3 ǫ12 0 0 1 0 0 1 1
E13 = e4 ǫ13 1 0 0 0 1 1 0
E14 = e4 ǫ14 0 0 1 1 1 1 0
E15 = e4 ǫ15 0 1 0 1 1 1 0
E16 = e4 ǫ16 1 1 1 0 1 1 0

This is done for two reasons. First, it avoids confusion with fractional factorial

designs where effects appearing in the defining contrast sub-group are aliased

with the mean. Second, it allows us to easily see which effects are confounded

with a randomization restriction, or sum thereof. The importance of this latter

fact is emphasized shortly.

To see how the experiment would be run, and the impact on the variance of

the effect estimates, consider Table 1 (we suppress the superscript (1) on E
(1)
j

and e
(1)
k(j) for simplicity). The first two columns contain the block and replication

errors, respectively. Columns labeled 1-4 represent the settings of the four factors

in the full factorial design. Observe that the experiment is run in four blocks

of four units according to the values of δ
(1)
1 and δ

(1)
2 . Furthermore see that the

error terms (e1, . . . , e4) are associated with the values of δ
(1)
1 and δ

(1)
2 , 00, 01,

10, 11, respectively, yielding k(j) values 1, . . . , 4 (i.e., the four blocks). Since

all columns not associated with ∆(1) are orthogonal to the four level column of

e’s, they cancel out of the effect estimates and the error variance of these effects

depends only on σ2
ǫ . Whereas, for the three columns 14, 123 and 234 this is not

so, and their variance will be a linear combination of σ2
ǫ and σ2

1 .

While this representation of the randomization structure for blocked designs

is well known, our abstraction describes a much wider class of randomization

restricted designs. For designs with multiple stages of randomization (S > 1),

where trials are performed in groups of size 2rs , a separate RDCSG is required
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for each s = 1, . . . , S − 1. For nested designs, randomization restrictions from

previous stages are included in subsequent stages to identify the final grouping of

trials. When this is not done, it implies that no nesting is occurring and that the

design is crossed in some sense. We illustrate these features in the next example.

Example 2. Consider the 25 split-split-plot design, with factors {1, 2},

{3, 4}, and {5} labeling whole-plot, sub-plot and sub-sub-plot factors, respec-

tively. To begin, factors 1 and 2 group trials within whole-plot settings, via the

restrictions δ
(1)
1 = 1 and δ

(1)
2 = 2. Within each whole-plot setting, one randomly

selects a level setting of factors 3 and 4 and performs two trials, varying only

factor 5. To group the experimental trials into 16 sets of size 2 where only factor

5 can change levels, set δ
(2)
1 = 1, δ

(2)
2 = 2, δ

(2)
3 = 3 and δ

(2)
4 = 4. Thus,

∆(1) = 1δ
(1)
1 = 2δ

(1)
2 = 12δ

(1)
1 δ

(1)
2 ,

∆(2) = 1δ
(2)
1 = 2δ

(2)
2 = 3δ

(2)
3 = 4δ

(2)
4 = 12δ

(2)
1 δ

(2)
2 = 13δ

(2)
1 δ

(2)
3 = 14δ

(2)
1 δ

(2)
4

= 23δ
(2)
2 δ

(2)
3 = 24δ

(2)
2 δ

(2)
4 = 34δ

(2)
3 δ

(2)
4 = 123δ

(2)
1 δ

(2)
2 δ

(2)
3 = 124δ

(2)
1 δ

(2)
2 δ

(2)
4

= 134δ
(2)
1 δ

(2)
3 δ

(2)
4 = 234δ

(2)
2 δ

(2)
3 δ

(2)
4 = 1234δ

(2)
1 δ

(2)
2 δ

(2)
3 δ

(2)
4 .

Suppose instead that the first two randomization restrictions at the second

stage were not included. The corresponding RDCSG would then be ∆(2) =

3δ
(2)
1 = 4δ

(2)
2 = 34δ

(2)
1 δ

(2)
2 . This would imply that factors 3 and 4 are not nested

within level settings of factors 1 and 2. Instead, the levels of factors 1 and 2

would be allowed to vary within level settings of factors 3 and 4. In this case,

one randomly chooses one of the four setting combinations of factors 1 and 2,

and then processes eight units in random order. Then one randomly chooses a

second setting combination of factors 1 and 2, and so on. After this first stage is

completed one randomly chooses one of the four setting combinations of factors

3 and 4, and runs each of the eight possible settings of factors 1, 2 and 5. This

is an example of a split-lot design, and we revisit it in Example 3.

3.2. Implications of analysis on design

One can use the columns of X to design experiments with randomization

restrictions, and the RDCSG’s show which effects are impacted by each stage of

randomization. This is important as this approach shows how to both construct

randomization restricted designs and evaluate the impact of confounding at each

stage of randomization.

From a design perspective, the randomization restrictions pose an important

challenge. The experiment design should be chosen so that the estimated factorial

effects are impacted as little as possible by the additional error terms. So, by

using the columns of the design matrix to determine the grouping of runs for
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Table 2. Effect Variances for the Split-Lot Example.

Effect Variance Degrees of Freedom

1, 2, 12 σ2
1 + 1

8σ2
ǫ

3

3, 4, 34 σ2
2 + 1

8σ2
ǫ

3

5,13,14,15,23,24,25,35,45 1
8σ2

ǫ
25

and 16 others

each stage of randomization, we should make as many of the factorial effects

orthogonal to the randomization error terms as possible, thereby eliminating

these random effects from the variance of these factorial effects. In addition, the

analysis method is impacted by the grouping of factorial effects into those with

common variance. For example, in unreplicated factorial experiments, separate

half-normal plots of effects with the same variance is a common analysis strategy.

Viewing Examples 1 and 2, there does not appear to be a design issue. How-

ever, this is not the case once we consider how we might analyze the experiment.

We illustrate by re-visiting the split-lot design given at the end of Example 2.

Example 3. Split-lot Reconsidered. Suppose the split-lot design introduced

at the end of Example 2 is unreplicated. In light of model (1), the two RDCSG’s

group effect estimates into three sets with different variances as depicted in Table

2. The traditional way to analyze such an unreplicated factorial experiment is

to construct a separate half-normal plot for each group of effects that have the

same error variance (Daniels (1959)). One is left with almost no way to analyze

effects 1, 2, and 12, or 3, 4, and 34, because there are very few degrees of freedom

within each of the first two groups.

To avoid this difficulty, one can introduce two additional randomization re-

striction factors δ
(1)
3 and δ

(2)
3 , one at each stage of randomization. This has the

effect of grouping the trials into 8 sets of 4 runs instead of 4 sets of 8 runs. Care

must be taken in how δ
(1)
3 and δ

(2)
3 are assigned to interaction columns. For

example, if we assign δ
(1)
3 = 13, then 3 = δ

(1)
1 δ

(1)
3 . As a consequence factor 3 will

also be the same as a first stage factor, thereby destroying the desired random-

ization structure. We call this assignment ineligible (we shall be clearer on this

shortly). An example of eligible assignments are δ
(1)
3 = 1345 and δ

(2)
3 = 1245,

and the two RDCSG’s become

∆(1) = 1δ
(1)
1 = 2δ

(1)
2 = 12δ

(1)
1 δ

(1)
2 = 345δ

(1)
3 = 1345δ

(1)
1 δ

(1)
3 = 2345δ

(1)
2 δ

(1)
3

= 12345δ
(1)
1 δ

(1)
2 δ

(1)
3

∆(2) = 3δ
(2)
1 = 4δ

(2)
2 = 34δ

(2)
1 δ

(2)
2 = 125δ

(2)
3 = 1245δ

(2)
1 δ

(2)
3 = 1235δ

(2)
2 δ

(2)
3

= 12345δ
(2)
1 δ

(2)
2 δ

(2)
3 .
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Table 3. New Effect Variances for Example 3.

Effect Variance Degrees of Freedom

1, 2, 12, 345, 1345, 2345 1
2σ2

1 + 1
8σ2

ǫ
6

3, 4, 34, 125, 1245, 1235 1
2σ2

2 + 1
8σ2

ǫ
6

5,13,14,15,23,24,25,35,45 1
8σ2

ǫ
18

and 9 others

12345 1
2 (σ2

1 + σ2
2) + 1

8σ2
ǫ

1

Notice that effect 12, 345 appears in both ∆(1) and ∆(2), and thus picks up

both σ2
1 and σ2

2. The distribution of degrees of freedom for this randomization

structure is as depicted in Table 3. Now one has sacrificed the ability to consider

12345, but can do separate half-normal plots for the other three groups that have

some validity under the usual assumptions of effect sparsity and effect hierarchy.

To see that there are different choices with varying desirability, consider instead

choosing δ
(1)
3 = 1, 234 and δ

(2)
3 = 1, 345. In this case, the common effect in ∆(1)

and ∆(2) would be 34 and the design could not be used to test for this effect.

3.3. Searching for Designs

In this section, the problem of searching for full factorial experiment designs

with randomization restrictions is considered. We describe an algorithm to do so

as a series of steps and use Example 3 to aid in the explanation of each step.

Step 1. Initial Restrictions. To set up the design selection problem, one must

first decide upon the basic desired structure: number of stages of randomization

restriction, S; which factors are at each stage; the number of groups at each stage

of randomization; split or lot (i.e., nested or crossed) structure at each stage.

The grouping of experimental units at each stage of randomization can then

be achieved by using the columns of X to construct an RDCSG for each stage

of randomization that maintains the desired structure. To do so, the framework

developed in the previous section can be applied with combinations of random-

ization restrictions, as long as some rules are followed: (i) the rs randomization

restrictions must form a sub-group of columns of X of size 2rs − 1; (ii) when

the current stage of randomization, s, is nested within another stage, s′(< s),

each of the randomization restrictions from the previous stage which describe the

nesting must be included as randomization restrictions in the current stage; (iii)

the choice of generators must not change which factors are at which stage.

The above eligibility requirements bear resemblance to rules used for split-

plot or blocked designs (Bisgaard (1994, 2000) and Bingham and Sitter (1999,

2001)). If we look at a particular stage of randomization in isolation, main effects
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and interactions that are fixed act like whole-plot or blocking factors. The eligi-

bility rules do not allow other main effects to be confounded with these blocks

or whole-plots. Overall, when effects appear in multiple RDCSG’s, these effects

are confounded with randomization restriction factors at multiple stages of ran-

domization. The spirit here, akin to blocked designs, is to have the confounding,

when possible, occur with higher-order rather than lower-order interactions.

The rules have implications on the selection of randomization restrictions.

First, when one is assigning a randomization restriction to a column of X, the

column cannot be a linear combination of other randomization restrictions at

the same stage, otherwise rule (i) would be violated. Second, rule (ii) implies

that in nested designs such as split-split-plot designs one must carry forward the

randomization restrictions from previous stages and some of these randomization

restrictions can apply to main effects. Third, a main effect cannot be confounded

with a randomization restriction factor or product of randomization restriction

factors from a different stage than its own. Any design satisfying the three rules

will be termed eligible as it has the desired structure.

To illustrate, consider Example 3. There are S = 3 stages of randomization

and we wish to run both stages 1 and 2 in eight groups of four. Factors 1 and 2

are necessarily at stage 1 and factors 3 and 4 at stage 2. Since S = 3, we need

S − 1 = 2 RDCSG’s. In addition, the desired structure predetermines part of

each RDCSG so that

∆(1) = 1δ
(1)
1 = 2δ

(1)
2 = 12δ

(1)
1 δ

(1)
2 = w1δ

(1)
3 = 1w1δ

(1)
1 δ

(1)
3 = 2w1δ

(1)
2 δ

(1)
3

= 12w1δ
(1)
1 δ

(1)
2 δ

(1)
3 , (2)

∆(2) = 3δ
(2)
1 = 4δ

(2)
2 = 34δ

(2)
1 δ

(2)
2 = w2δ

(2)
3 = 3w2δ

(2)
1 δ

(2)
3 = 4w2δ

(2)
2 δ

(2)
3

= 34w2δ
(2)
1 δ

(2)
2 δ

(2)
3 , (3)

and the problem reduces to finding good generators δ
(1)
3 = w1 and δ

(2)
3 = w2.

Step 2. Constructing a Search Table. Similar to the algorithm of Franklin and

Bailey (1977) for finding fractional factorial designs (see also, Bingham and Sitter

(1999)), a search table can be constructed to aid the design search process. The

column headers of the search table represent the randomization restrictions that

are not already set by the initial structure, ordered by the stage of randomization.

The row headers of the search table are the interactions that can potentially be

confounded with a randomization factor. The elements of the search table are the

interaction between the row and column headers. The search table for Example

3 is given in Table 4.

Step 3. Obtaining an Eligible Design. Finding a design amounts to finding

an eligible randomization restriction assignment in each of the columns in the
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search table. This can be done systematically by stepping down Column 1 until

an eligible effect is obtained for the first restriction. This would then be what

we termed δ
(1)
3 = w1 in (2). Then keeping the eligible effect in Column 1 fixed,

step down Column 2 until an eligible effect is obtained; w2 in (3). If there are

additional columns, one would hold the two chosen effects in Columns 1 and 2

fixed and step down Column 3 and so on. Once a generator from each column is

obtained, we have an eligible design. (1) Note that one must take into account all

effects in ∆(s) for s = 1, . . . , S − 1 when using rules (i), (ii) and (iii) to determine

whether an effect in Column 2 is eligible. For example, in Example 3 in Column

1, all 2fi’s containing a 1 or 2, and all 3fi’s containing both 1 and 2, are ineligible,

and choosing 123δ
(1)
3 (ie., w1 = 123), implies 12w1δ

(1)
1 δ

(1)
2 δ

(1)
3 = 3δ

(1)
1 δ

(1)
2 δ

(1)
3 ,

which violates rule (iii). (2) Within a stage of randomization one need only

consider effects below the current effect from previous columns within that stage

of randomization. But, when one moves to a new stage of randomization, one

must start at the top of the column.

Step 4. Checking Isomorphism. Once an eligible design is obtained, it need only

be kept if it is non-isomorphic to the current collection of eligible designs, say D.

Thus one must check the isomorphism of the eligible design to each design in the

current collection. Here, two designs are isomorphic if one can be obtained from

the other via a sequence of row exchanges, re-labeling of 0’s as 1’s and vice versa

within a column, and re-labeling of factors within each stage of randomization.

If one is not too concerned with missing non-isomorphic choices that have the

same value of a particular design criterion, the search can be made much quicker

by declaring two designs isomorphic if they have the same value of this criterion.

We discuss the choice of a good design subsequently.

Step 5. Repeat Steps 3 and 4 until all designs have been considered; i.e., keep

all but the previous choice in the last column fixed, step down to the next effect,

etc.

3.4. Design criterion

One can use the above approach to obtain all non-isomorphic designs, and

then, in principle, choose the design which best suits the specific situation. In

practice, one would rather have a simple “measure” that ranks design choices in

some reasonable way, and then more closely view the top ten designs, say.

There is not going to be a globally best criterion for all situations. However,

we can consider what is trying to be achieved in this complicated setting. As

was alluded to in Example 3, we would like to have as few effects in common

between RDCSG’s at differing stages, as these effects will inherit variances from

both stages. We would also like to have a few main effects and 2fi’s at each stage,
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Table 4. Search Table

Level 1 Level 2

δ
(1)
3 δ

(2)
3

12 12δ
(1)
2 12δ

(3)
2

13 13δ
(1)
2 13δ

(3)
2

14 14δ
(1)
2 14δ

(3)
2

15 15δ
(1)
2 15δ

(3)
2

23 23δ
(1)
2 23δ

(3)
2

24 24δ
(1)
2 24δ

(3)
2

25 25δ
(1)
2 25δ

(3)
2

34 34δ
(1)
2 34δ

(3)
2

35 35δ
(1)
2 35δ

(3)
2

45 45δ
(1)
2 45δ

(3)
2

123 123δ
(1)
2 123δ

(3)
2

...
...

...

2345 2345δ
(1)
2 2345δ

(3)
2

12345 12345δ
(1)
2 12345δ

(3)
2

and the rest of the effects at that stage to be higher-order interactions, so that

half-normal plots or pooling of higher-order effects is a viable analysis strategy.

That is, we would like to uniformly spread out our ability to consider main effects

and lower-order effects at each stage of randomization. This allows us to avoid

placing all potentially active effects at the same stage of randomization.

With these ideas in mind, we introduce a simple 3-step criterion to rank the

set of eligible designs. Order designs first on number of effects which are common

to multiple stages, with fewer being better, and then sequentially minimize the

number of such words of each length to ensure that as few lower order terms as

possible appear in multiple RDCSG’s. Lastly, for designs of equal rank, order on

V =

S−1∑

s=1

(ps − p̄)2, (4)

where ps is the proportion of degrees of freedom at the s-th stage that are asso-

ciated with main effects or 2fi’s and p̄ =
∑

s ps/(S − 1). Designs with a small V

are regarded as better. Being cognizant that the effect sparsity principle refers

to the entire experiment design and not the individual stages of randomization,
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the criterion in (4) aims to evenly spread the number of potentially active effects

across stages of the analysis.

As an example, in Table 3 of Example 3, only one effect is common to

multiple stages, and p1 = 3/6 = 0.5, p2 = 3/6 = 0.5, and p3 = 9/18 = 0.5, so

that V = 0.

3.5. The plutonium processing example

We now reconsider the motivating plutonium application of Section 2 as a

further illustration of applying the search strategy of Sections 3.3 and 3.4.

Step 1. There are S = 5 stages of randomization. It was desirable to use only

four cookies at the first stage, each consisting of eight coupons. As such, Stage

1, consisting of settings of factor 1, must necessarily be run in four groups of

eight coupons. Following this stage, each cookie is cut in half. Next, factor 2 is

set and the heat treatment is applied to a half-cookie. The levels of factor 2 are

set within fixed settings of factor 1, (i.e., a split-plot structure between Stage 1

and Stage 2). As each half-cookie consists of four useable coupons, the second

stage is run as eight groups of four coupons. After Stage 2, the half-cookies are

cut into coupons. Due to the time it takes to do each of the heat treatments in

Stages 3 and 4 it was desired to run at most eight groups in each of these stages.

Suppose we first chose to consider running eight groups of four coupons in Stages

3 and 4 and then four groups of eight in Stage 5. Here, none of the stages are

nested within any of the previous stages.

Since S = 5, we need 4 RDCSG’s. As before, the above desired structure

predetermines part of each RDCSG. Thus we have

∆(1)1δ
(1)
1 = w1δ

(1)
2 = 1w1δ

(1)
1 δ

(1)
2 ,

∆(2) = 1δ
(2)
1 = w1δ

(2)
2 = 1w1δ

(2)
1 δ

(2)
2 = 2δ

(2)
3 = 12δ

(2)
1 δ

(2)
3 = w12δ

(2)
2 δ

(2)
3

= 12w1δ
(2)
1 δ

(2)
2 δ

(2)
3 , (5)

∆(3) = 3δ
(3)
1 = w2δ

(3)
2 = w3δ

(3)
3 = 3w2δ

(3)
1 δ

(3)
2 = 3w3δ

(3)
1 δ

(3)
3 = w2w3δ

(3)
2 δ

(3)
3

= 3w2w3δ
(3)
1 δ

(3)
2 δ

(3)
3 , (6)

∆(4) = 4δ
(4)
1 = 5δ

(4)
2 = w4δ

(4)
3 = 45δ

(4)
1 δ

(4)
2 = 4w4δ

(4)
1 δ

(4)
3 = 5w4δ

(4)
2 δ

(4)
3

= 45w4δ
(4)
1 δ

(4)
2 δ

(4)
3 . (7)

Note that the fact that 1, w1 and 1w1 appear in both ∆(1) and ∆(2) implies

the first two stages have a split-plot structure. This design might be termed a

split-split-lot experiment in five stages. Within this structure we must search

for a good set of four generators; δ
(1)
2 = δ

(2)
2 = w1, δ

(3)
2 = w2, δ

(3)
3 = w3 and

δ
(4)
3 = w4.
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Step 2. With the desired randomization structure set, the search table is con-

structed for the four remaining randomization restrictions, in Table 5. The en-

tries in Column 1 are the possible products of the randomization restrictions,

δ
(1)
2 = δ

(2)
2 , and the interactions, w1. Similarly for Columns 2-4 and the respec-

tive randomization restrictions. For illustration purposes, we have grouped the

columns by stage of randomization.

Step 3. To choose w1, . . . , w4 that result in eligible designs, systematically search

through the entries in Table 5. Beginning at the top of Column 1 for w1, we

first consider w1 = 12 (i.e., 12δ
(1)
2 ). Since by rule (i) the three randomization

restrictions must form a group of size 23−1, w1 = 12 will not produce an eligible

design. Stepping down the column, the next choice is w1 = 13. Notice that

the RDCSG in (5) contains the term 1w1δ
(2)
1 δ

(2)
2 , meaning that w1 = 13 gives

a product of 3δ
(2)
1 δ

(2)
2 . This assignment results in factor 3 being present at the

second stage of randomization, thereby violating rule (iii). Continuing in this

manner, the first assignment that produces an eligible design is w1 = 34.

Next, the first of two randomization restrictions for the third stage is selected.

Beginning at the top of Column 2, we step down the column until an assignment

for w2 that gives an eligible design is found . The first such choice is w2 = 14.

Moving to the next randomization restriction at this stage, w3 must be selected.

There is no need to ever consider a choice of w3 above w2 in the search table

because these assignments have already been considered by w2. We emphasize

this by placing a “-” at the top of Column 3 since this assignment need never be

considered. Starting with w3 = 15, we step down Column 3 until a choice of w3

is found which produces an eligible design. Notice that w3 = 15 is such a choice.
Finally, w4 is chosen for the final stage of randomization. Beginning at the

top of Column 4, we step down the column until a w4 is found that yields an

eligible design. The first such assignment is w4 = 13. Thus, the first elegible

design has w1 = 34, w2 = 14, w3 = 15 and w4 = 13.

The next design is found by keeping w1 − w3 fixed and continuing to step

down Column 4, searching for eligible choices of w4. When every choice of w4 has

been entertained, we step back to the third column and consider the next eligible

choice of w3, keeping w1 and w2 fixed, and repeat the procedure as before for

Column 4. Continue in this manner for all columns until all choices for w1 − w4

have been considered and all eligible designs have been identified.

Steps 4 and 5. To check isomorphism we use the complete definition given in

Step 4 of Section 3.3. We step through every choice and obtain the set of non-

isomorphic eligible designs. We ranked designs by first minimizing the number

of effects which appear in multiple RDCSG’s, then sequentially minimizing the

number of effects of each length appearing in multiple RDCSG’s, and lastly min-

imizing (4). Following this strategy, the best design has w1 = 12, 345, w2 = 235,
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Table 5. Search Table

Level 1 & 2 Level 3 Level 4

δ
(1)
2 = δ

(2)
2 δ

(3)
2 δ

(3)
3 δ

(4)
3

12 12δ
(1)
2 12δ

(3)
2 - 12δ

(4)
3

13 13δ
(1)
2 13δ

(3)
2 13δ

(3)
3 13δ

(4)
3

14 14δ
(1)
2 14δ

(3)
2 14δ

(3)
3 14δ

(4)
3

15 15δ
(1)
2 15δ

(3)
2 15δ

(3)
3 15δ

(4)
3

23 23δ
(1)
2 23δ

(3)
2 23δ

(3)
3 23δ

(4)
3

24 24δ
(1)
2 24δ

(3)
2 24δ

(3)
3 24δ

(4)
3

25 25δ
(1)
2 25δ

(3)
2 25δ

(3)
3 25δ

(4)
3

34 34δ
(1)
2 34δ

(3)
2 34δ

(3)
3 34δ

(4)
3

35 35δ
(1)
2 35δ

(3)
2 35δ

(3)
3 35δ

(4)
3

45 45δ
(1)
2 45δ

(3)
2 45δ

(3)
3 45δ

(4)
3

123 123δ
(1)
2 123δ

(3)
2 123δ

(3)
3 123δ

(4)
3

...
...

...
...

...

2345 2345δ
(1)
2 2345δ

(3)
2 2345δ

(3)
3 2345δ

(4)
3

12345 12345δ
(1)
2 12345δ

(3)
2 12345δ

(3)
3 12345δ

(4)
3

w3 = 134 and w4 = 1, 235, with V = 0. There are some features of this design,

which we shall call D1, worth noting. First, each of the four defining contrast

subgroups (DCSG) contain the 12, 345 interaction. Therefore, the variance of

the estimator of the 5-factor interaction is a linear combination of each of the

variance components and cannot be evaluated without replication. Further, D1

has 2, 4, 6, 6 and 12 degrees of freedom for effect estimation at the five stages of

randomization, respectively. At each stage, half of the degrees of freedom corre-

spond to main effects or two-factor interactions. The effects associated with each

stage of randomization for this design are summarized in column D1 of Table 6.

Of course, the optimal design is not the only eligible design. For instance,

if one ranks the designs by first minimizing the number of effects which appear

in multiple RDCSG’s, then sequentially minimizes the number of effects of each

length appearing in multiple RDCSG’s, then the second best design (D2), in

terms of (4) has w1 = 345, w2 = 14, w3 = 25 and w4 = 123, with V = 0.0139.

Again, there is only one effect 12, 345 which appears in multiple RDCSG’s, but

unlike the first design, this effect does not appear in each of the RDCSG’s.

Instead, the common effect appears only in the RDCSG’s associated with Stages

2-4 of the randomization. The effects associated with each stage of randomization

for this design are summarized in the D2 column of Table 6.

Comparing the designs D1 and D2, we see that they have essentially the same

properties with respect to Stages 3-5 of randomization. The main differences are
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Table 6. Distribution of effects across levels of randomization

Randomization Stage D1 D2 D3

1 1, 2345 1, 345, 1345 1, 145

2 2, 12, 345, 1345 2, 12, 2345 2, 12, 245, 1245

3 3, 14, 25, 134, 3, 14, 25, 134, 3, 14, 15, 134,

235, 1245 235, 1245 135, 345

4 4, 5, 45, 123, 4, 5, 45, 123, 4, 5, 23, 234,

1234, 1235 1234, 1235 235, 2345

5 13, 15, 23, 24, 13, 15, 23, 24, 13, 23, 24, 25, 35,

34, 35, 124, 125, 34, 35, 124, 125, 123, 124, 125, 1235,

135, 145, 234, 245 135, 145, 234, 245 1345, 2345, 12345

Multiple 12345 12345 45

in the number of effects associated with the first two stages of randomization.

There are 6 degrees of freedom in total at these stages, with D1 having 2 and

D2 having 3 degrees of freedom at the first stage of randomization, respectively.

Since the second stage of randomization is nested within the first, the first stage

effects will have estimators whose variance is a linear combination of two variance

components. In contrast, the second stage effects will have a variance which is a

function of only one variance component and is smaller than the first stage effect

variance. While we would not want to argue that one design is vastly superior to

the other, D1 can be viewed as better than D2 in the sense that it has one more

2fi with a smaller variance than D2, and has smaller V .

If one ranked the designs only using (4), there are other designs to consider.

For example, consider D3 with w1 = 45, w2 = 14, w3 = 15, w4 = 23, and

V = 0.0014. Looking at V alone, this design is almost optimal. However, a

quick glance at the D3 column in Table 6 shows that the 45 interaction will

have a variance component from multiple stages of randomization. Therefore

this design will have less power for estimating 2fi’s than either D1 or D2

The methodology presented was used above to construct a multi-stage design

for the plutonium processing experiment. There were some practical disadvan-

tages to this design however. For instance, see that there are at most three

degrees of freedom associated with the first stage of randomization. Since the

experiment was unreplicated, it is difficult to assess the significance of these

effects using half-normal plots. Indeed, this is true for the first two stages of

randomization.

The obvious first thought is to use more cookies at Stage 1 to obtain some

form of replication. This was undesirable for various economic reasons. After

some discussion with the scientists, we learned of one feature of the process that

could be exploited. There was considerable experience and knowledge with the

first two stages of the process, and the experimenters felt that the unit-to-unit
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variability at the first casting stage was essentially zero. This fact allowed us to

view the first two stages of randomization as one.

The experiment then reduces to a four stage split-lot design, with factors 1

and 2 at Stage 1, factor 3 at Stage 2 and factors 4 and 5 at Stage 3. We could

consider running eight (half-cookies) groups of four at Stage 1, at Stage 2 and

again at Stage 3. Since S = 4, we need three RDCSG’s. This desired structure

again predetermines part of each RDCSG. Thus we have

∆(1) = 1δ
(1)
1 = 2δ

(1)
2 = w1δ

(1)
3 = 12δ

(1)
1 δ

(1)
2 = 1w1δ

(1)
1 δ

(1)
3 = 2w1δ

(1)
2 δ

(1)
3

= 12w1δ
(1)
1 δ

(1)
2 δ

(1)
3 ,

∆(2) = 3δ
(2)
1 = w2δ

(2)
2 = w3δ

(2)
3 = 3w2δ

(2)
1 δ

(2)
2 = 3w3δ

(2)
1 δ

(2)
3 = w2w3δ

(2)
2 δ

(2)
3

= 3w2w3δ
(2)
1 δ

(2)
2 δ

(2)
3 ,

∆(3) = 4δ
(3)
1 = 5δ

(3)
2 = w4δ

(3)
3 = 45δ

(3)
1 δ

(3)
2 = 4w4δ

(3)
1 δ

(3)
3 = 5w4δ

(3)
2 δ

(3)
3

= 45w4δ
(3)
1 δ

(3)
2 δ

(3)
3 ,

and the problem reduces to finding a good set of four generators; δ
(1)
3 = w1,

δ
(2)
2 = w2, δ

(2)
3 = w3 and δ

(3)
3 = w4, within this structure.

The search table approach was applied and the suggested criterion used to

rank designs. The best design has w1 = 345, w2 = 14, w3 = 25 and w4 = 123.

The effects associated with each stage of randomization and their respective

variances are shown in Table 7. Note that p1 = p2 = p3 = p4 = 0.5, and V = 0.

There are other designs with V > 0 that have similar properties. For in-

stance, the next best set of designs in terms of the proportion of effects equally dis-

tributed across the RDCSG’s have V = 0.0017. One such design has w1 = 1, 245,

w2 = 234, w3 = 235, and w4 = 1, 345. Similar to the above design, there is one

effect which appears in each of the RDCSG’s. However, unlike the best design,

this effect is a 2fi (the 23 interaction). Clearly, one would prefer to assess the

importance of this interaction and thus the previous design is superior.

4. Fractional Factorial Designs with Randomization Restrictions

The construction of fractional factorial designs with randomization restric-

tions can be a challenging problem. The reasons for this are related to the im-

pact of fractionation on the alias structure and also the requirements to maintain

the desired randomization structure (see Bisgaard (2000) or Bingham and Sitter

(2001)). However, in the framework of the previous sections, it does not change

the procedure. One merely sets up the desired randomization structure, the

number of stages of randomization restriction, S, which factors are at each stage,

the number of groups at each stage of randomization, and the split or lot struc-

ture at each stage. Once this is done, one places the randomization restriction
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Table 7. Effect variances for final plutonium design.

Effect Variance Degrees of Freedom

1, 2, 12, 345, 1345, 2345 1
2σ2

1 + 1
8σ2

ǫ
6

3, 14, 25, 134, 235, 1245 1
2σ2

2 + 1
8σ2

ǫ
6

4, 5, 45, 123, 1235, 1234 1
2σ2

3 + 1
8σ2

ǫ
6

13,14,15,23,24,35 bσ2
ǫ

12
and 6 others

12345 1
2 (σ2

1 + σ2
2 + σ2

3) + 1
8σ2

ǫ
1

factors and the fractionation factors at the top of columns of the search table

and, as before, searches for all eligible designs. For common smaller designs,

all non-isomorphic fractional factorial (FF) designs are available in the liter-

ature (see Chen, Sun and Wu (1993)). Thus one can take an approach more

akin to Huang, Chen and Voelkel (1998) whereby, for a particular fractionation,

one begins with the minimum aberration (MA) design. Next apply the search-

table approach to the randomization restriction structure, but including the alias

structure of the MA design when viewing the rules for eligibility. If there are no

eligible designs, go to the next best design according to the aberration criterion.

This approach first ranks designs using a criterion which captures the ability

to estimate as many of the effects of interest as possible (e.g., MA or clear effects).

Thus, an eligible resolution IV design would be preferred to an eligible resolution

III design. Next, designs are ranked by (4) in an attempt to make the effect

sparsity principle hold for each level of randomization.

A special case worth commenting on is blocked fractional factorial designs.

It is common to consider the effects that are confounded with blocks as not

interpretable. The reason is that block effects are viewed as fixed effects. If blocks

are random effects, then interactions confounded with blocks are simply effects

with a different error variance than the other effects, and the significance of these

can be assessed using a separate half-normal plot. If instead one prefers to use

a criterion (Sitter, Chen and Feder (1997), Sun, Wu and Chen (1997) Bisgaard

(2000) and Chen and Chen (1999)) with different types of words in the defining

contrast sub-group (words that contain blocks and those that do not), one would

first rank designs using the criterion and then by (4).

If the situation with multiple design choices arises, a criterion, such as was

done for the full factorial case, to choose between the eligible designs can be

used. For example, we could still use V , but when counting the proportion of

main effects and 2fi’s at a particular stage of the design we would include all

effects within each alias string. We illustrate via the following example.
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Example 4. Consider an example based on the final 4-stage split-lot version of

the plutonium example. Suppose there was one more factor at the second stage

of randomization (factor 6). Let the desired structure remain the same, so that

∆(1) = 1δ
(1)
1 = 2δ

(1)
2 = w1δ

(1)
3 = 12δ

(1)
1 δ

(1)
2 = 1w1δ

(1)
1 δ

(1)
3 = 2w1δ

(1)
2 δ

(1)
3

= 12w1δ
(1)
1 δ

(1)
2 δ

(1)
3 ,

∆(2) = 3δ
(2)
1 = 6δ

(2)
2 = w2δ

(2)
3 = 36δ

(2)
1 δ

(2)
2 = 3w2δ

(2)
1 δ

(2)
3 = 6w2δ

(2)
2 δ

(2)
3

= 36w2δ
(2)
1 δ

(2)
2 δ

(2)
3 ,

∆(3) = 4δ
(3)
1 = 5δ

(3)
2 = w3δ

(3)
3 = 45δ

(3)
1 δ

(3)
2 = 4w3δ

(3)
1 δ

(3)
3 = 5w3δ

(3)
2 δ

(3)
3

= 45w3δ
(3)
1 δ

(3)
2 δ

(3)
3 .

The DCSG for the MA FF design is I = 123, 456. If we view the known

words in ∆(1), ∆(2) and ∆(3), there are no obvious problems. For example,

36δ
(2)
1 δ

(2)
2 when combined with the DCSG implies that 1, 245 picks up σ2

2 , but no

main effect is inadvertently moved to a different stage of randomization. Strictly

speaking, one should combine the DCSG with the RDCSG’s,

∆(1) = 1δ
(1)
1 = 2δ

(1)
2 = w1δ

(1)
3 = 12δ

(1)
1 δ

(1)
2 = 1w1δ

(1)
1 δ

(1)
3 = 2w1δ

(1)
2 δ

(1)
3

= 12w1δ
(1)
1 δ

(1)
2 δ

(1)
3 = 23456δ

(1)
1 = 13456δ

(1)
2 = 123456w1δ

(1)
3 = 3456δ

(1)
1 δ

(1)
2

= 23456w1δ
(1)
1 δ

(1)
3 = 13456w1δ

(1)
2 δ

(1)
3 = 3456w1δ

(1)
1 δ

(1)
2 δ

(1)
3 = 123456. (8)

In (8), w1 must be chosen to heed rules (i), (ii) and (iii) from Section 3.3. One

proceeds similarly for the subsequent stages of randomization. We do not give the

full ∆(2) and ∆(3) to save space. Construction of ∆(2) and ∆(3) merely amounts

to adding each word in the DCSG to the words in the RDCSG, modulo 2.

The choice of w1, w2 and w3 must be done with care. To illustrate, consider

the MA design with the following two choices: D1 with w1 = 345, w2 = 14, w3 =

123; and D2 with w1 = 34, w2 = 14, w3 = 13. To compare the designs, the RD-

CSG’s must be constructed and crossed with the FF DCSG (i.e., I = 123, 456).

We do not present these here, and instead discuss the results. For D1, for in-

stance, notice that 12, 345 is contained in ∆(1). Thus, when crossing the DCSG

with the RDCSG, the term 6δ
(1)
1 δ

(1)
2 δ

(1)
3 appears. This means that factor 6 is

also a factor at the first stage of randomization, violating rule (ii) in Section 3.3.

So, D1 is not an eligible design. On the other hand, D2 is eligible and has 5

main effects or 2fi’s at each of the first three stages of randomization. The last

stage of randomization (with effects getting only replication error) has six 2fi’s

to be assessed. It turns out that there is only one value of V for eligible designs

(V = 0.0033).
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Now suppose that instead one prefers a design which is not MA, say I =

12346, and consider D3 with w1 = 34, w2 = 14 and w3 = 13. This design has

V = 0.013 and thus would be viewed as inferior by both the MA and the V

criteria. However, this design has some desirable properties. First, this design

has resolution V and still has main effects and 2fi’s aliased only with negligible

interactions. Second, D3 has 5, 4 and 4 main effects or 2fi’s, respectively at each

of the first three stages of randomization. Furthermore D3 has eight 2fi’s at the

final stage of randomization. As a consequence, D3 has more effects with an error

variance that is only a multiple of replication error, and thus has more power to

detect significant effects of interest.

When there are more factors at a stage of randomization than randomization

restriction factors, one proceeds by assigning the first rs of these factors to the

randomization restriction factors. The only eligible fractional generators for the

remaining factors at this stage will be interactions in the RDCSG associated with

the rs factors. Once the RDCSG and DCSG have been constructed, they can be

combined to verify that the design obeys rules (i), (ii) and (iii) from Section 3.3.

5. Concluding Remarks

Factorial and fractional factorial designs with randomization restrictions are

frequently used in industrial applications. Here, we have developed a general

framework for constructing and evaluating such experiment plans so as to search

for a “good” design. We do so by introducing the randomization defining contrast

subgroup and using the defining generators to form sets of experiment units that

will be processed together.
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