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Abstract: We propose a new method for pointwise estimation of monotone, uni-

modal and U–shaped failure rates, under a right–censoring mechanism, using non-

parametric likelihood ratios. The asymptotic distribution of the likelihood ratio is

pivotal, though non–standard, and can therefore be used to construct asymptotic

confidence intervals for the failure rate at a point of interest, via inversion. Major

advantages of the new method lie in the facts that it completely avoids estima-

tion of nuisance parameters, or the choice of a bandwidth/tuning parameter, and

is extremely easy to implement. The new method is shown to perform competi-

tively in simulations, and is illustrated on a data set involving time to diagnosis of

schizophrenia in the Jerusalem Perinatal Cohort Schizophrenia Study.
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1. Introduction

The study of hazard functions arises naturally in lifetime data analysis, a key

topic of interest in reliability and biomedical studies. By “lifetime” we usually

mean the time to failure/death, infection, or the development of a syndrome of in-

terest, usually assumed random. While a random variable is typically character-

ized by its density function or distribution function, in the study of lifetimes the

instantaneous hazard function/failure rate is often a more useful way of describ-

ing the behavior of the random variable. If F denotes the distribution function

of the lifetime of an individual, then the cumulative hazard function, given by

Λ = − log(1−F ), is increasing and assumes values in [0,∞). The instantaneous

hazard rate, denoted by λ is the derivative of Λ; thus, λ(x) = f(x)/(1 − F (x)).

This quantity is called the instantaneous hazard function/failure rate; a higher

value of λ(x) indicates a greater chance of failure in the instant after x. Informa-

tion on λ(x) is of vital importance to reliability engineers/ medical practitioners,

since, among other things, it enables them to gauge the necessity of adopting

some mode of preventive action/intervention at any particular time to keep the

system/patient from failing.
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In many applications, one can impose natural qualitative constraints on the

failure rate, in terms of shape restrictions. The most important kinds of shape

restrictions are monotonicity (increasing or decreasing) and bathtub/U shapes.

Human life, for example, can be appropriately described by a bathtub-shaped

hazard. The initial period is high–risk (owing to the risk of birth defects and

infant disease), followed by a period of more or less constant risk, and then the

risk starts increasing again, due to the onset of the aging process. Models with

increasing or decreasing hazards are also fairly common. An example, given by

Gijbels and Heckman (2004), comes from an industry where manufacturers use

a “burn–in” process for their products. The products are subjected to operation

before being sold to customers. This helps in preventing an early failure of

defective items, and the robust ones that are put on the market subsequently

exhibit gradual aging (increasing failure rate with time). Decreasing hazards are

useful for modelling survival times after a successful medical treatment. If the

operation/therapy is useful and of long term consequence, then the risk of failure

from the condition that required the therapy should go down over an appreciably

long time interval following treatment.

Though shape constrained hazards appear quite frequently in many impor-

tant applications, as noted above, there are relatively few nonparametric methods

for estimating hazard rates and, in particular, for constructing reliable confidence

intervals for the hazard rate under shape constraints. Confidence sets for the haz-

ard function are important: they are more informative than the point estimate

in that they provide a range of plausible values for the hazard rate at the point of

interest, and can be used more effectively for decision making. In this paper, we

propose a novel method, using asymptotic pivots, for constructing nonparametric

pointwise confidence sets for a monotone failure rate. We then extend this idea

to the study of unimodal or U–shaped hazards. While our discussion is framed in

the realistic context of right–censored data, the proposed methodology is equally

applicable to uncensored data.

2. Background

In the uncensored case we observe X1, . . . ,Xn, i.i.d. lifetimes with distribu-

tion function F (concentrated on (0,∞)) and density function f , and the goal

is to estimate λ(x) = f(x)/(1 − F (x)) based on these data. In the case of

right–censored data, not all the Xi’s are observable; rather, one observes pairs of

random variables (T1, δ1), . . . , (Tn, δn) where δi = 1{Xi ≤ Yi} and Ti = Xi ∧ Yi

where Yi is the (random) time of observation of the i’th individual. It is assumed

that the Yi’s are mutually independent and independent of the Xi’s. For an in-

dividual, δi = 1 implies that they have been observed to fail, and that the exact

time to failure is known. On the other hand δi = 0 implies that failure was not



ESTIMATING SHAPE–CONSTRAINED FAILURE RATES 469

observed during the observation time period and the information on failure time

is therefore censored. The goal is to estimate λ.

Maximum likelihood estimators for an increasing hazard function based on

uncensored i.i.d. data were studied by Grenander (1956) and Marshall and Proschan

(1965), and the asymptotic distribution of the MLE at a fixed point in the uncen-

sored case was studied by Prakasa Rao (1970). Padgett and Wei (1980) derived

the MLE of an increasing hazard function based on right–censored data but

without further development of its asymptotic properties. Mykytyn and Sant-

ner (1981) also studied non-parametric maximum likelihood estimation based on

monotonicity assumptions concerning the hazard rate λ, and several different

censoring schemes. See also Wang (1986), Tsai (1988) and Mukerjee and Wang

(1993) for maximum likelihood based estimation for an increasing hazard func-

tion. With right–censored data, the asymptotic distribution of the MLE of a

monotone increasing hazard λ at a fixed point was derived by Huang and Wellner

(1995). This result is connected with the development in this paper, and we re-

turn to it in more detail later. Huang and Wellner (1995) showed that the rate

of convergence of λ̂(t), the MLE of λ evaluated at the point t is n1/3; more

precisely, at a fixed point t0, n1/3 (λ̂(t0) − λ(t0)) → C(t0) 2 Z, under modest as-

sumptions. In particular, the assumption of strict monotonicity of λ at the point

t0 (λ′(t0) > 0) is needed for the n1/3 rate of convergence to hold. Here, C(t0)

is a constant depending on t0 and the underlying parameters of the problem,

and Z = argminh∈R (W (h) + h2) with W (h) being two–sided Brownian motion

starting from 0.

The above result yields a method for constructing a confidence set for λ(t0).

If Ĉ(t0) is a consistent estimator for C(t0), a large sample level 1 − α confi-

dence interval for λ(t0) is given by [λ̂(t0) − n−1/32Ĉ(t0) q(Z, 1 − α/2), λ̂(t0) +

n−1/32Ĉ(t0) q(Z, 1 − α/2)], where q(Z, 1 − α/2) is the (1 − α/2)’th quantile of

the distribution of Z. Quantiles of the distribution of Z are tabulated in Groene-

boom and Wellner (2001). The main difficulty with this confidence set is that

of estimating the nuisance parameter C(t0) which, among other things, depends

on λ′(t0). Estimating the derivative of the hazard in this setting is a tricky

affair. One option is to kernel smooth the MLE λ̂; this turns out to be more

complex in comparison to the the kernel smoothing procedures employed in den-

sity estimation based on i.i.d. observations from an underlying distribution, or in

nonparametric regression. In contrast to the standard density estimation case,

the number of support points of λ̂ is of a smaller order; consequently, direct

kernel smoothing with naive bandwidth choices may not recover all the infor-

mation lost in the discrete NPMLE of λ. Selection of an optimal bandwidth in

terms of the bias–variance tradeoff that is standard for the usual density estima-

tion/nonparametric regression scenarios is also not a realistic option here, since
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convenient expressions for the bias and the variance are much harder to compute

in this case (and in similar models, involving nonparametric maximum likelihood

estimation of a monotone function). Recent work by Groeneboom and Jongbloed

(2003) in a related model suggests that a bandwidth of order n−1/7 may be ap-

propriate in this context while other options include bandwidth selection based

on cross–validation techniques, or the use of the derivative of a standard kernel

based estimator of the instantaneous hazard function, ignoring the monotonicity

constraint However, the last option is somewhat ad–hoc, and not completely de-

sirable because of its failure to guarantee a slope of the right sign. In summary,

estimation of λ′(t0) is not an easy problem and can be heavily influenced by

the choice of the bandwidth, thereby introducing variability into the constructed

confidence interval.

Recently, Hall, Huang, Gifford and Gijbels (2001) have proposed smooth es-

timates of the instantaneous hazard under the constraint of monotonicity, with

uncensored and both right censored data. With uncensored data, they construct

a kernel type estimate of the underlying density function, with different proba-

bilities assigned to the different observations, and choose that probability vector

that minimizes a distance measure from the vector of uniform probabilities, sub-

ject to maintaining that the hazard function corresponding to the kernel estimate

of the density is always non–negative/non–positive according to the constraint.

This minimizing vector is then used to compute the proposed estimates of the

density, distribution function and hazard. The procedure extends naturally to

the right–censored case. Their method imposes constraints at an infinite number

of points, and to employ it in practice, they discretize to a very fine grid and

resort to quadratic programming routines. This provides yet another route to

estimating the derivative of the hazard function, but still requires the choice of

bandwidth. While the emphasis in Hall et al. (2001) is to propose a new smooth

estimate of the monotone instantaneous hazard on its domain, they also indicate

how pointwise confidence bands may be constructed at the end of their Section

2, by using the asymptotic normality of the proposed estimate of the hazard.

However, they do not provide a detailed discussion of the nature or reliability of

the confidence sets thus obtained (not surprisingly, as the focus of the paper is

somewhat different) though they note that their proposed bounds do not account

for the bias component of the estimator λ̂. They also note that this problem can

be alleviated by substantial undersmoothing when computing λ̂, in which case

the bands will widen substantially (and therefore become less informative), or by

directly estimating bias, which is not really practicable.

In this paper, we provide a new method for constructing pointwise confidence

sets for a monotone hazard rate that extends readily to unimodal/U–shaped haz-

ards and dispenses with some of the issues of the existing methods. Our method
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is based on inversion of the likelihood ratio statistic for testing the value of a

monotone hazard at a point. The likelihood ratio statistic is shown to be asymp-

totically pivotal with a known limit distribution, whence confidence sets may

be obtained by regular inversion, with calibration provided by the quantiles of

the limit distribution. As we will see later, good numerical approximations to

these quantiles are well–tabulated and hence can be readily used. The most at-

tractive features of the proposed method are (i) it does not involve estimating

nuisance parameters, or the choice of a smoothing parameter, and in that respect

is more automated and objective than competing methods; (ii) it is computation-

ally inexpensive, as it requires only elementary applications of the PAVA (pool

adjacent violators algorithm) or a standard isotonic regression algorithm. To our

knowledge, this is the first method in the literature on hazard function estima-

tion under shape constraints that completely does away with the estimation of

nuisance parameters or tuning parameters. It must be noted, however, that we

are not lead to a new estimator of the instantaneous hazard (unlike the method

proposed by Hall et al. (2001)), as it is based on unconstrained and constrained

MLE’s of λ. The use of inversion of the likelihood ratio statistic to construct

a confidence set for the hazard function at a point is motivated by recent de-

velopments in likelihood ratio inference for monotone functions initiated in the

context of current status data by Banerjee and Wellner (2001), and investigated

more thoroughly in the context of conditionally parametric models by Banerjee

(2007).

The rest of the paper is organized as follows. In Section 3, we describe the

likelihood ratio method for estimating a monotone hazard, and show how the

methodology extends to the study of unimodal or U–shaped hazards. Section 4

presents results from simulation experiments and illustrates the new methodology

on a dataset on time to development of schizophrenia. Section 5 concludes with

a brief discussion of some of the open problems in this area. Proofs and proof–

sketches of some of the main results are presented in Section 6 (the appendix)

which is followed by references.

Before proceeding to the next section, we introduce the stochastic processes

and derived functionals that are needed to describe the asymptotic distributions.

We first need some notation. For a real–valued function f defined on R, let

slogcm(f, I) denote the left–hand slope of the GCM (greatest convex minorant)

of the restriction of f to the interval I. We abbreviate slogcm(f, R) to slogcm(f).

Take

slogcm0(f) = (slogcm (f, (−∞, 0]) ∧ 0) 1(−∞,0] + (slogcm (f, (0,∞)) ∨ 0) 1(0,∞) .

For positive constants c and d define the process Xc,d(z) = cW (z) + d z2,

where W (z) is standard two-sided Brownian motion starting from 0. Set gc,d =
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slogcm(Xc,d) and g0
c,d = slogcm0 (Xc,d). It is known that gc,d is a piecewise

constant increasing function, with finitely many jumps in any compact inter-
val. Also g0

c,d, like gc,d, is a piecewise constant increasing function with finitely
many jumps in any compact interval and differing, almost surely, from gc,d on
a finite interval containing 0. In fact, with probability 1, g0

c,d is identically 0
in some random neighbourhood of 0, whereas gc,d is almost surely non-zero in
some random neighbourhood of 0. The length of the interval Dc,d on which
gc,d and g0

c,d differ is Op(1). For more detailed descriptions of the processes gc,d

and g0
c,d, see Banerjee and Wellner (2001) and Wellner (2003). Thus, g1,1 and

g0
1,1 are the unconstrained and constrained versions of the slope processes as-

sociated with the canonical process X1,1(z). By Brownian scaling, the slope
processes gc,d and g0

c,d can be related in distribution to the canonical slope

processes g1,1 and g0
1,1. The following lemma holds. For positive a and b, set

Da,b =
∫

{(ga,b(u))2 − (g0
a,b(u))2} du. Abbreviate D1,1 to D.

Lemma 2.1. For positive a and b, Da,b has the same distribution as a2 D.

See Banerjee and Wellner (2001).

3. The Likelihood Ratio Method

In what follows we first assume that the hazard function is monotone in-
creasing, and we discuss the more general case of right censored data. We are
concerned with the asymptotic distribution of the likelihood ratio statistic (LRS)
for testing the null hypothesis λ(t0) = θ0, where t0 is some pre–fixed interior point
in the domain of f .

The model with right censoring: Here we have n underlying i.i.d. pairs of
non–negative random variables, (X1, Y1), . . . , (Xn, Yn), with Xi independent of
Yi. We can think of Xi as the survival time of the i’th individual and of Yi

as the time observed. We observe (T1, δ1), . . . , (Tn, δn) where δi = 1{Xi ≤ Yi}
and Ti = Xi ∧ Yi. Denote the distribution of the survival time by F and the
distribution of the observation time by K. The distribution of T = X ∧ Y is
denoted by H and relates to F and K in the following way:

H(x) = (1 − F (x)) (1 − K(x)) ≡ F (x)K(x) .

With D ≡ ((T1, δ1), . . . , (Tn, δn)), the likelihood function for the data can be
written as:

Ln(D, λ) = Πn
i=1

(

f(Ti)K(Ti)
)δi

(

g(Ti)F (Ti)
)1−δi

= Πn
i=1

(

f(Ti)

F (Ti)

)δi

F (Ti) × Πn
i=1 K(Ti)

δi g(Ti)
1−δi

= Πn
i=1 λ(Ti)

δi exp(−Λ(Ti)) × K(Ti)
δi g(Ti)

1−δi ,
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where Λ = − log (1 − F ) is the cumulative hazard function, and f and g are the
densities of F and K, respectively. Now, ignoring the part of the above likelihood
that does not involve Λ, the log-likelihood is given by

ln(D, λ) =

n
∑

i=1

(δi log λ(Ti) − Λ(Ti)) . (3.1)

We now discuss the maximum likelihood estimation procedure for the censored
data model. It is not difficult to see that (3.1) cannot be meaningfully max-
imized over all increasing λ (since the maximum hits ∞). One way to cir-

cumvent this problem is to consider a sieved maximization scheme as employed
in Marshall and Proschan (1965). However, we adopt a different route. As in
Huang and Wellner (1995), we restrict the MLE of λ to be an increasing left-
continuous step function with potential jumps at the T(i)’s (T(i) is the i’th small-
est of the Tj ’s and the corresponding indicator is denoted by δ(i)) that maximizes
the right hand side of (3.1). Then, we can write,

Λ(T(i)) =

i
∑

j=1

(T(j) − T(j−1))λ(T(j)) ,

whence

ln(D,λ) =

n
∑

i=1

(δ(i) log λ(T(i)) − Λ(T(i)) (3.2)

=

n
∑

i=1

{

δ(i) log λ(T(i)) −
i

∑

j=1

(T(j) − T(j−1))λ(T(j))

}

(3.3)

=
n

∑

i=1

{

δ(i) log λ(T(i)) − (n − i + 1) (T(i) − T(i−1))λ(T(i))
}

. (3.4)

We then maximize (3.4) over all 0 ≤ λ1 ≤ · · · ≤ λn (where λi ≡ λ(T(i))) to

obtain λ̂n. This expression can indeed be meaningfully maximized. We obtain
λ̂0

n, the MLE of λ under the null hypothesis λ(t0) = θ0 by maximizing (3.4)
over all 0 ≤ λ1 ≤ · · · ≤ λm ≤ θ0 ≤ λm+1 ≤ · · · ≤ λn. Here m is such that
T(m) < t0 < T(m+1).

The Kuhn–Tucker theorem (see, for example, Section 1.5 of Robertson,
Wright and Dykstra (1988)) allows us to characterize both the unconstrained and
the constrained (under the null hypothesis) MLE’s of λ as solutions to isotonic
regression problems. Thus we can show that λ̂n(T(i)) is f̂i where f̂1 ≤ · · · ≤ f̂n

minimizes
∑n

i=1 wi(gi − fi)
2 over all 0 ≤ f1 · · · ≤ fn, with

wi = (n − i + 1) (T(i) − T(i−1)) and gi =
δ(i)

(n − i + 1) (T(i) − T(i−1))
.
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Also λ̂0
n(T(i)) is f̂0

i where 0 ≤ f̂0
1 ≤ · · · ≤ f̂0

n solves the constrained isotonic least

squares problem: Minimize
∑n

i=1 wi(gi − fi)
2 over all 0 ≤ f1 ≤ · · · ≤ fm ≤ θ0 ≤

fm+1 ≤ · · · ≤ fn. For i 6= m + 1, λ̂0
n(t) is taken to be λ̂0

n(T(i)) on (T(i−1), T(i)], to

be θ0 on (T(m), t0], to be λ̂0
n(T(m+1)) on (t0, T(m+1)].

Before proceeding further, some more notation. For points {(x0, y0), . . .,

(xk, yk)}, where x0 = y0 = 0 and x0 < · · · < xk, consider the left-continuous

function P (x) such that P (xi) = yi and such that P (x) is constant on (xi−1, xi).

We denote the vector of slopes (left–derivatives) of the GCM of P (x) computed

at the points (x1, . . . , xk) by slogcm {(xi, yi)}k
i=0.

It is not difficult to see that {λ̂n(T(i))}n
i=1 = slogcm{∑i

j=1 wj ,
∑i

j=1 wj gj}n
i=0,

where summation over an empty set is interpreted as 0. Also, {λ̂0
n(T(i))}m

i=1 =

θ0∧slogcm{∑i
j=1 wj,

∑i
j=1 wj gj}m

i=0, where the minimum is interpreted as being

taken componentwise, while {λ̂0
n(T(i))}n

i=m+1 = θ0∨slogcm{∑i
j=m+1 wj,

∑i
j=m+1

wj gj}n
i=m, where the maximum is once again interpreted as being taken compo-

nentwise.

Define the likelihood ratio statistic for testing H0 : λ(t0) = θ0 as

2 log ξn(θ0) = 2

[

n
∑

i=1

{

δ(i) log λ̂n(T(i)) − (n − i + 1) (T(i) − T(i−1)) λ̂n(T(i))
}

−
n

∑

i=1

{

δ(i) log λ̂0
n(T(i)) − (n − i + 1) (T(i) − T(i−1)) λ̂0

n(T(i))
}

]

.

The limit distribution of 2 log ξn(θ0) is established under a number of regularity

conditions.

(i) Let τF = inf {t : F (t) = 1}, and let τH and τK be defined analogously. We

assume that τK < ∞ and that 0 < τH = τK < τF . We also assume that

0 < t0 < τH .

(ii) F and K are absolutely continuous and their densities f and g are continuous

in a neighborhood of t0 with f(t0) > 0 and g(t0) > 0.

(iii)λ(t) is continuously differentiable in a neighborhood of t0 with | λ
′

(t0) |> 0.

We are now in a position to state the key result of this paper.

Theorem 3.1. Assume (i), (ii) and (iii). Then, under H0, 2 log ξn(θ0) →d D as

n → ∞.

Remark. The proposed procedure has some of the flavour of empirical likeli-

hood. Recall that, in order to maximize the likelihood function, we restricted

our parameter space for λ to the class of increasing left–continuous step functions

with potential jumps at the observed times. The likelihood was then maximized

in this class, once under no constraints and once under the constraint that the
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hazard function at a point assumes a fixed value. This is analogous, in spirit,

to what is done in classical empirical likelihood. For example, for inference on

the mean of a univariate distribution based on i.i.d. data, one restricts to all

distributions that put mass only at the observed data points and maximizes the

likelihood function in this restricted class of distributions under no constraints,

and also under a hypothesis that the mean assumes a fixed value (see, for exam-

ple, Owen (2001)). In classical empirical likelihood, the likelihood ratio statistic

is a χ2, as in regular parametric models, but this is no longer the case in the

current situation, because of the shape constraint on λ. The limit distribution,

D, obtained in this case can however be viewed as an analogue of the χ2
1 distribu-

tion that is obtained for likelihood ratio tests in regular one–parameter models.

See, for example, the introduction of Banerjee (2007) for a discussion of this is-

sue. For some insight into the form of the limiting likelihood ratio statistic, the

integrated discrepancy between squared slopes of unconstrained and constrained

convex minorants of Brownian motion with quadratic drift, see Wellner (2003)

and, in particular, Theorem 5.1 of this paper, where it is shown that D is ex-

actly the distribution of the likelihood ratio statistic for testing for the value of

a monotone function perturbed by Brownian motion (a “white noise model”).

The form of D falls out of the Cameron–Martin–Girsanov theorem on change of

measure, and an integration by parts argument that invokes the properties of

convex minorants of Brownian motion with drift.

Construction of confidence sets using the likelihood ratio statistic. Con-

struction of confidence sets for λ(t0) based on Theorem 3.1 proceeds by standard

inversion. Let 2 log ξn(θ) denote the likelihood ratio statistic computed under

the null hypothesis H0,θ : λ(t0) = θ. Then, an asymptotic level 1 − α confidence

set for λ(t0) is given by {θ : 2 log ξn(θ) ≤ q(D, 1 − α)}, where q(D, 1 − α) is the

(1 − α)’th quantile of D. Thus, finding the confidence set simply amounts to

computing the likelihood ratio statistic under a family of null hypotheses. Quan-

tiles of D, based on discrete approximations to Brownian motion, are available

in Banerjee and Wellner (2005a, Table 1).

Decreasing hazards. The result on the limit distribution of the likelihood ratio

statistic in Theorem 3.1 also holds if the hazard function is decreasing. In this

case, the unconstrained and constrained MLE’s of λ are no longer characterized as

the slopes of greatest convex minorants, but as slopes of least concave majorants.

We present the characterizations of the MLE’s in the decreasing hazard case

below. We first introduce some notation. For points {(x0, y0), . . . , (xk, yk)},
where x0 = y0 = 0 and x0 < · · · < xk, consider the right–continuous function

P (x) such that P (xi) = yi and such that P (x) is constant on (xi−1, xi). We

denote the vector of slopes (left–derivatives) of the LCM (least concave majorant)

of P (x) computed at the points (x1, . . . , xk) by slolcm {(xi, yi)}k
i=0.
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With {wj , gj}n
j=1 as before, it is not difficult to see that {λ̂n(T(i))}n

i=1 =

slolcm{∑i
j=1 wj ,

∑i
j=1 wj gj}n

i=0, where summation over an empty set is inter-

preted as 0. Also, the MLE under H0 : λ(t0) = θ0 is given by {λ̂0
n(T(i))}m

i=1 =

θ0∨slolcm{∑i
j=1 wj ,

∑i
j=1 wj gj}m

i=0, where the maximum is interpreted as being

taken componentwise, while {λ̂0
n(T(i))}n

i=m+1 = θ0∧slolcm{∑i
j=m+1 wj,

∑i
j=m+1

wj gj}n
i=m, where the minimum is once again interpreted as being taken compo-

nentwise.

Unimodal hazards. Suppose now that the hazard function is unimodal. Thus

there exists M > 0 such that the hazard function is increasing on [0,M ] and

decreasing to the right of M , with the derivative at M being equal to 0. The

goal is to construct a confidence set for the hazard function at a point t0 6= M .

We consider the more realistic case for which M is unknown.

First compute a consistent estimator, M̂n, of the mode M . With probability

tending to 1, t0 < M̂n if t0 is to the left of M and t0 > M̂n if t0 is to the right of

M .

Assume first that t0 < M∧Mn. Let mn be such that T(mn) ≤ M̂n < T(mn+1).

Let λ̂n denote the unconstrained MLE of λ, using M̂n as the mode. Then λ̂n

is obtained by maximizing (3.4) over all λ1, . . . , λn with λ1 ≤ · · · ≤ λmn
and

λmn+1 ≥ λmn+2 ≥ . . . ≥ λn. It is not difficult to verify that {λ̂n(T(i))}mn

i=1 =

slogcm{∑i
j=1 wj ,

∑i
j=1wjgj}mn

i=0, while {λ̂n(T(i))}n
i=mn+1 = slolcm{∑i

j=mn+1 wj,
∑i

j=1 wj gj}n
i=mn

. Now consider testing the (true) null hypothesis that λ(t0) =

θ0. Let m < mn be the number of T(i)’s that do not exceed t0. Denoting, as

before, the constrained MLE by λ̂0
n(t), it can be checked that λ̂0

n(T(j)) = λ̂n(T(j))

for j > mn, whereas {λ̂0
n(T(i))}m

i=1 = θ0 ∧ slogcm{
∑i

j=1 wj ,
∑i

j=1 wj gj}m
i=0 and

{λ̂0
n(T(i))}mn

i=m+1 = θ0 ∨ slogcm{∑i
j=m+1 wj ,

∑i
j=m+1 wj gj}mn

i=m. The likelihood

ratio statistic for testing λ(t0) = θ0, denoted by 2 log ξn(θ0), is

2

[ mn
∑

i=1

δ(i)(log λ̂n(T(i)) − log λ̂0
n(T(i)))

−
mn
∑

i=1

(n − i + 1) (T(i) − T(i−1)) (λ̂n(T(i)) − λ̂0
n(T(i)))

]

.

As in the monotone hazard case, 2 log ξn(θ0) converges in distribution to D un-

der the assumptions of Theorem 2.1, and the asymptotic distribution of λ̂n(t0) is

similar to that in the monotone function case. For a similar result for the max-

imum likelihood estimator, in the setting of unimodal density estimation away

from the mode, we refer the reader to Theorem 1 of Bickel and Fan (1996). A
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rigorous derivation in our problem involves some embellishments of the argu-

ments in Section 6 of the paper and are omitted. Intuitively, it is not difficult

to see why the asymptotic behavior remains unaltered. The characterization of

the MLE on the interval [0,Mn], with Mn converging to M is in terms of un-

constrained/constrained slopes of convex minorants exactly as in the monotone

function case. Furthermore, the behavior at the point t0, which is bounded away

from Mn with probability increasing to 1, is only influenced by the behavior of

localized versions of the processes Vn and Gn in a shrinking n−1/3 neighborhood

of the point t0 (where the unconstrained and the constrained MLE’s differ), and

these behave asymptotically in exactly the same fashion as for the monotone

hazard case. Consequently, the behavior of the MLE’s and the likelihood ratio

statistic are unaffected. An asymptotic confidence interval of level 1−α for λ(t0)

can therefore be constructed as in the monotone function case.

The other situation is when M ∨Mn < t0. In this case λ̂n has the same form

as above. Now, consider testing the (true) null hypothesis that λ(t0) = θ0. Let m

be the number of T(i)’s such Mn < Ti ≤ t0. Now, λ̂0
n(T(j)) = λ̂n(T(j)) for 1 ≤ j ≤

mn, while {λ̂n(T(i))}mn+m
i=mn+1 = θ0 ∨ slolcm{∑i

j=mn+1 wj,
∑i

j=1 wj gj}mn+m
i=mn

and

{λ̂n(T(i))}n
i=mn+m+1 = θ0 ∧ slolcm{∑i

j=mn+m+1 wj ,
∑i

j=1 wj gj}n
i=mn+m. The

likelihood ratio statistic, 2 log ξn(θ0), is

2

[ n
∑

i=mn+1

δ(i)(log λ̂n(T(i)) − log λ̂0
n(T(i)))

−
n

∑

i=mn+1

(n − i + 1) (T(i) − T(i−1)) (λ̂n(T(i)) − λ̂0
n(T(i))

]

,

and converges in distribution to D as above. Confidence sets may be constructed

in the usual fashion.

U–shaped hazards. Our methodology extends also to U-shaped hazards. A

U-shaped hazard is a unimodal hazard turned upside down (we assume a unique

minimum for the hazard). As in the unimodal hazard case, once a consistent es-

timator of the point at which the hazard attains its minimum has been obtained,

the likelihood ratio test for the null hypothesis λ(t0) = θ0 can be conducted in

a manner similar to the unimodal case. The alterations of the above formulas

that need to be made are quite obvious, given that the hazard is now intially

decreasing and then increasing. We omit these details. The limit distribution

of the likelihood ratio statistic is, of course, given by D (under the conditions of

Theorem 2.1).

Consistent estimation of the mode. It remains to prescribe a consistent

estimate of the mode in the unimodal case. Let λ̂(k) be the MLE of λ based
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on {(∆(j), T(j)), j 6= k}, assuming that the mode of the hazard is at T(k) (so

the log–likelihood function is maximized subject to λ increasing on [0, T(k)] and

decreasing to the right of T(k)), and let ln,k be the corresponding maximized value

of the log–likelihood function. Then a consistent estimate of the mode is given by

T(k⋆), where k⋆ = argmax1≤k≤n ln,k. For a similar estimator in (a) the setting of a

unimodal density and (b) for a unimodal regression function, see Bickel and Fan

(1996) and Shoung and Zhang (2001), respectively. An analogous prescription

applies to a U–shaped hazard.

4. Simulation Studies and Data Analysis

4.1.Simulation Studies

In this section, we illustrate the performance of the likelihood ratio method

(LR in the tables that follow) and competing methods for constructing confidence

sets for a monotone hazard rate at a point of interest, in a right–censored setting.

Simulation A. Two settings are considered. In each, the Xi’s come from a

Weibull distribution with F (x) = 1 − exp(−x2/2), whence λ(x) = x, and the

Yi’s follow a uniform distribution on (0, b). The first setting has b = 4 (light

censoring at 30%), and the second setting has b = 1.5 (heavy censoring at 70%).

In each case, we are interested in estimating λ at the point t0 =
√

2 log 2, the

median of F . When b = 4, 1,500 replicates are generated for each sample size

(the sequence of chosen sample sizes is displayed in Table 1); when b = 1.5,

6,000 replicates are generated for each chosen sample size (shown in Table 2).

For each n, the average length (AL) of nominal 95% (asymptotic) C.I’s for λ(t0)

and their observed coverage (C), are recorded for each of three different methods

and displayed in the corresponding table. The three different methods are (a)

likelihood ratio inversion, (b) model–based parameter estimation using the limit

distribution of the MLE and (c) subsampling (also using the limit distribution

of the MLE).

The parameter estimation based procedure is briefly described below. From

Theorem 2.2 of Huang and Wellner (1995), we have: n1/3 (λ̂n(t0) − λ(t0)) →d

(4λ(t0)λ
′(t0)/H(t0))

1/3 Z, whence, an approximate asymptotic level 1 − α confi-

dence interval for λ(t0) is given by

[

λ̂n(t0)−n− 1
3 q(Z, 1−α

2
)(

4λ̂(t0)λ̂
′(t0)

Ĥ(t0)
)

1
3 , λ̂n(t0)+n− 1

3 q(Z, 1−α

2
)
(4λ̂(t0)λ̂

′(t0)

Ĥ(t0)

)
1
3

]

,

where λ̂(t0), λ̂
′(t0), Ĥ(t0) are consistent estimates of the corresponding popula-

tion parameters. For α = 0.05, q(Z, 1 − α/2) is approximately 0.99818. The

method PE uses such specific estimates: λ(t0) is estimated by the MLE λ̂n(t0),
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Table 1. Simulation setting A.1. Average length (AL) and empirical cover-

age (C) of asymptotic 95% confidence intervals using likelihood ratio (LR),

subsampling based (SB) and parameter–estimation based (PE) methods.

LR SB PE

n AL C AL C AL C

50 1.283 0.927 1.570 0.939 1.565 0.955

100 0.980 0.939 1.103 0.947 1.191 0.957

200 0.767 0.943 0.933 0.970 0.917 0.947

500 0.549 0.947 0.592 0.953 0.653 0.957
1000 0.426 0.945 0.447 0.931 0.503 0.954

1500 0.372 0.940 0.392 0.942 0.434 0.953

2000 0.338 0.946 0.358 0.943 0.391 0.961

5000 0.247 0.945 0.265 0.957 0.283 0.947

H(t0) is estimated by the empirical proportion of Ti’s that exceed t0, while λ′(t0)

is estimated as the slope of the straight line that best fits the MLE λ̂ (in the sense

of least squares). While this method gives a consistent estimate of λ′(t0), it is

not generally applicable for derivative estimation. We adopt this method for our

simulation studies as it provides a computationally inexpensive way of estimating

the derivative. The subsampling based method (SB) was implemented by draw-

ing a large number of subsamples of size b < n from the original sample, without

replacement, and estimating the limiting quantiles of | n1/3(λ̂n(t0) − λ(t0)) | us-

ing the empirical distribution of | b1/3 (λ̂⋆
n(t0) − λ̂n(t0)) |; here λ̂⋆

n(t0) denotes

the estimate of the hazard rate at the point t0, based on the subsample. For

consistent estimation of the quantiles, b/n should converge to 0 as n increases.

A data driven choice of b (the block–size) is often resorted to, but can be compu-

tationally intensive; see, for example, Sections 2 and 3 of Banerjee and Wellner

(2005b) for more discussion on this issue in the context of current status data (a

similar model exhibiting n1/3 asymptotics). For our simulation experiments we

did not use data–driven blocksize selection. Since the data generating process is

known to us, we generated separate data sets (1,000 replicates) for each sample

size (and for each simulation setting), and computed subsampling based intervals

for λ(t0) = t0 using a selection of block–sizes. We then computed the empirical

coverage of the 1,000 C.I’s produced for each block–size, and chose the optimal

block–size for the simulations presented here, as the one for which the empiri-

cal coverage was closest to 0.95. The likelihood ratio method was implemented

as described in the previous section, by inverting a family of null hypotheses

H0,θ : λ(t0) = θ, with θ being allowed to vary on a fine grid between 0 and 6.

Table 1 shows the performances of the three methods at low censoring. The

likelihood ratio based C.I’s are shorter, on average, in comparison to the other
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Table 2. Simulation setting A.2: Average length (AL) and empirical cover-

age (C) of asymptotic 95% confidence intervals using likelihood ratio (LR),

subsampling based (SB) and parameter–estimation based (PE) methods.

LR SB PE

n AL C AL C AL C

50 3.110 0.911 9.502 0.950 2.647 0.893

100 2.408 0.917 3.270 0.970 1.972 0.906

200 1.684 0.929 2.050 0.972 1.462 0.917

500 1.073 0.932 1.283 0.974 1.016 0.927
1000 0.782 0.936 0.937 0.975 0.781 0.942

1500 0.653 0.941 0.785 0.977 0.669 0.944

methods for each displayed sample size. The likelihood ratio intervals are an-

ticonservative at n = 50, but exhibit steady coverage between 94% and 95%

from n = 200 onwards. The PE based method gives higher coverage than the

LR based method and is generally conservative, which is not surprising in view

of the larger intervals that it produces. The subsampling based method shows

the greatest fluctuations in terms of coverage, dropping from 97% at n = 200

to 93% at n = 1, 000 and rising again to around 96% at n = 5, 000. Table 2

shows simulation results for the second setting, where we have heavy censoring.

In this case, the median
√

2 log 2 = 1.18 (approximately) is fairly close to the

right end of the support of the distribution of the observation times (1.5), and

the estimation problem is more difficult than in the first setting. Consequently,

the C.I’s produced in this setting are wider than the corresponding C.I’s in the

previous case, and the small sample coverage of the LR and the PE based C.I’s

both suffer. However, in this case, the LR intervals are wider than the PE inter-

vals at smaller sample sizes; both are anticonservative, but the PE intervals are

even more so. At higher sample sizes, the two methods essentially catch up with

each other in terms of length and coverage. The subsampling based intervals are,

systematically, the widest of the three (the average length of 9.5 at n = 50 is the

outcome of heavy right skewness in the length of the subsampling based C.I. and

the median length, 3.34, is more reflective of the location of the distribution),

and quite conservative. Furthermore, while the other methods produce observed

coverage that approach the nominal, this does not happen with the subsampling

based C.I’s.

The above observations show that the LR method performs quite well against

the two competing methods, producing C.I’s that trade off coverage and length

nicely. This is especially notable in light of the fact that the competition among

the three methods is not completely fair, since both the PE and SB methods

enjoyed the advantage of background knowledge (the manner of derivative es-

timation in the PE method, and the determination of optimal block size for
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the subsampling method), which the likelihood ratio method did not have and

more importantly, did not require. Complete data–driven estimation of nuisance

parameters for the PE and SB procedures introduces more variability into the

confidence intervals, and can affect the performance of these methods adversely.

These issues are absent with the likelihood based procedure and make it an at-

tractive choice.

Simulation B. For this simulation, the Xi’s come from a Weibull distribution

with F (x) = 1 − exp(−x3/3), so that λ(x) = x2, and the Yi’s follow a uniform

distribution on (0, 2). The goal is to estimate λ(t0) = t20, where t0 = (3 log 2)1/3

(approximately 1.28) is the median of F . We study the performance of the like-

lihood ratio method in comparison to two kernel–based procedures: the first

relies on bootstrapping (BS) using an estimate of the optimal local bandwidth,

and the second is a recent procedure (CHT) advocated in Cheng, Hall and Tu

(2006) that avoids bootstrapping. The average length and coverage of (asymp-

totic) 95% C.I’s are presented for each method, based on 2,000 replicates for

each sample size (here, we restrict ourselves to moderate sample sizes), and are

displayed in Table 3.

To implement the bootstrap based method, we employed the Epanechnikov

kernel to compute λ̃(t0), the usual smoothed version of the Nelson–Aalen estima-

tor (see, for example, page 12 of Wang (2005)), using an estimate of the optimal

local bandwith (display (23) in Wang (2005)) that is of order n−1/5; this corre-

sponds to the fact that the Epanechnikov kernel has order 2. The formula for

the optimal bandwidth at a point t0 involves the unknown quantities λ(t0),H(t0)

and λ(2)(t0). For (optimal) bandwidth estimation, a preliminary estimate of λ(t0)

based on the “pilot” bandwidth 2n−1/5 was used, whereas H(t0) was estimated

by its empirical version based on the Ti’s. To avoid derivative estimation, we

used the true value of λ(2)(t0) ≡ 2. Approximate 95% C.I’s were constructed by

approximating the quantiles of the distribution of n2/5(λ̃(t0)−λ(t0)) by those of

n2/5(λ̃⋆(t0) − λ̃(t0)), where λ̃⋆(t0) is the estimate based on a bootstrap sample.

We used 2,000 bootstrap realizations from the sample to estimate the (0.025’th

and the 0.975’th quantiles of the) bootstrap distribution.

For the CHT method, we used the bandwidth prescription given in display

(2.4) of Cheng, Hall and Tu (2006), and obtained approximate 95% bias–ignored

confidence intervals for λ(t0) using the formula in the topmost display on page

361 of their paper. The CHT intervals shrink with increasing sample size at rate

n−1/3, the same as the likelihood ratio intervals, while the bootstrap intervals

shrink at rate n−2/5. Table 3 shows the relative performance of these procedures.

The LR intervals, on average, are the widest of the three, but also provide bet-

ter coverage at small sample sizes, with the bootstrap based C.I’s being quite
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Table 3. Simulation B. Average length (AL) and empirical coverage (C) of

asymptotic 95% confidence intervals using likelihood ratio (LR), bootstrap–

based (BS) and the Cheng–Hall–Tu (CHT) methods.

LR BS CHT

n AL C AL C AL C

50 2.673 0.925 1.426 0.664 2.389 .876

100 2.037 0.932 1.441 0.802 1.841 .910

200 1.522 0.937 1.255 0.892 1.449 .930

400 1.159 0.943 0.906 0.947 1.154 .936
500 1.072 0.944 0.792 0.935 1.069 .942

markedly anticonservative. At higher sample sizes, the coverages of all three
procedures are comparable.

A few words regarding the pros and cons of likelihood ratio estimation ver-
sus estimation based on standard smoothing techniques are in order. The perfor-

mance of smoothing procedures often depends heavily on the choice of the tuning
parameter. Thus the choice of bandwidth is important for kernel smoothing, es-
pecially at moderate sample sizes, while alternative procedures like spline based

estimation of hazards (see, for example, Section 4 of Wang (2005) for a discus-
sion and references) require judicious selection of a smoothing parameter. For

example, estimation of the optimal bandwidth involves nuisance parameter esti-
mation, like derivatives of the hazard function. While we bypassed this step for
our simulation study, this is unavoidable with real–life data. The likelihood ratio

procedure, as noted before, does not depend on tuning parameters and, in that
sense, is a more automated procedure. Another attractive feature of likelihood

ratio inversion is that it avoids estimation of nuisance parameters, which is hard
to bypass with smoothing techniques. On the other hand, the likelihood ratio
procedure is based on n1/3 consistent estimates, while smoothing can produce

faster rates of convergence under modest assumptions, and therefore, (typically)
shorter confidence intervals. Furthermore, standard smoothing techniques do

not require shape–restrictions, and are therefore more widely applicable. An ex-
tended simulation study comparing the likelihood ratio procedure to smoothing

techniques employing advanced bandwidth selection techniques would be inter-
esting and is left as a topic of future research.

4.2. Illustration on a data set

In this section, we apply the likelihood ratio method to construct confidence
intervals for the risk (hazard rate) of developing schizophrenia in puberty and

youth. The data come from the Jerusalem Perinatal Cohort Schizophrenia Study
(JPSS) of approximately 92,000 individuals born between 1964 and 1976 to Is-

raeli women living in Jersualem (and the adjoining rural areas). The data set
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available to us is for around 88,000 of these individuals. For each individual, we

know the minimum of time to diagnosis of schizophrenia and follow-up time. De-

noting the age of schizophrenia development for the i’th individual by Xi and the

follow-up time by Yi, the available data is right–censored with ∆i = 1(Xi ≤ Yi)

denoting the indicator of diagnosis of schizophrenia and Ti = Xi ∧ Yi denot-

ing the time at which the individual was removed from the study. Information

on a number of potentially influential covariates (like sex, social class, pater-

nal age at the time of the individual’s birth) is also available. Out of these

different covariates, paternal age is believed to play a major role, with higher pa-

ternal age associated with higher risk for developing schizophrenia at some point

in life. Malaspina, Harlap, Fennig, Heiman, Nahon, Feldman and Susser (2001)

demonstrate a steady increase in schizophrenia risk with advanced paternal age,

a finding since replicated in subsequent studies. The rate of genetic mutation in

paternal germ cells is known to increase significantly with age. Such increased

mutation frequency has a strong clinical association with strong paternal age ef-

fects for multiple diseases and disorders including schizophrenia, possibly because

of accumulating replication errors in spermatogonial cell lines.

For the purpose of this paper, we only take into account paternal age, the

primary covariate of interest. We split the cohort into two groups, with the

first (Group A) corresponding to individuals for whom the paternal age does

not exceed 35 years (younger fathers), and the second (Group B) corresponding

to individuals for which it does (older fathers), and analyze these two different

groups separately. Precedents for subgroup analysis through stratification using

a threshold value for paternal age exist in this setting, though the threshold can

vary between 30 and 45 years. (Indeed, a data-driven choice of threshold is one

of the interesting questions from an epidemiological standpoint. Furthemore,

a better understanding of the functional dependence of schizophrenia risk on

paternal age is also sought. However, full justice to such issues cannot be done

within the context of this paper.) Kernel based estimates of the instantaneous

hazard rate for these two sets of data indicate quite clearly that in either case

the hazard risk is unimodal with a fairly sharp peak around age 20.

We estimated the (unimodal) hazard function of the age of schizophrenia

diagnosis for each subgroup using the methods of Section 2. The modal value for

Group A was estimated to be 19.86 years and that for Group B was estimated as

18.8 years. Asymptotically 95% confidence intervals for the hazard functions, in

the two different groups, at a number of different ages were then constructed using

the likelihood ratio method. Figure 1 shows two different estimates of the hazard

function for Group A: the smooth estimate is obtained by kernel–smoothing the

Nelson-Aalen estimator with bandwidth 34 × n−1/5 (where n is the size of the

group, approximately 65,600, and 34 is approximately the age–range), and the
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step–wise estimate is computed using maximum likelihood. Note the “spiking

problem” with the MLE in the vicinity of the mode – this is a consequence of

the upward bias of the MLE at the mode, and is a well–known phenomenon in

shape–restricted estimation. It is seen that the kernel estimate tracks the MLE

well over the entire domain, with the exception of a small neighborhood around

the mode, owing to the inconsistency referred to above. Pointwise confidence

sets for a selection of ages are also exhibited in the figure. A pattern similar to

Figure 1 is observed in Group B.
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Figure 1. Estimates of the hazard function in Group A and LR based con-

fidence sets.

Table 4 shows likelihood–ratio–based (asymptotically) 95% pointwise con-

fidence intervals for the hazard rate at a number of selected ages for the two

different groups. Because of the spiking problem, we do not report C.I’s at ages

19 and 20 (these are extremely close to the estimated modes in Group B and

Group A, respectively). At ages 17 and 18, the C.I’s in Group B start shifting to

the right of the corresponding C.I’s in Group A, providing some evidence of the

effect of paternal age on schizophrenia propensity. This effect is more pronounced

in early youth: notice, the generally pronounced separation of the C.I’s in the

two groups at ages 21–24. In the late 20’s the C.I.’s start overlapping once again.

Since the above confidence intervals are only valid pointwise, it is important not
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Table 4. 95% C.I.’s for the hazard function at selected ages in the two groups

(in units of 10−4).

t C.I (A) C.I (B)

14.00 [0.95 , 2.60] [0.35 , 3.05]

15.00 [1.90 , 3.54] [1.25 , 4.35]

16.00 [2.25 , 4.10] [2.20 , 5.05]

17.00 [2.60 , 5.25] [3.15 , 12.10]
18.00 [5.15 , 9.00] [6.50 , 15.30]

21.00 [5.00 , 8.10] [6.70 , 11.60]

22.00 [4.50 , 6.80] [6.50 , 10.70]

23.00 [4.40 , 5.90] [6.00 , 10.10]

24.00 [4.40 , 5.80] [5.90 , 9.80]
25.00 [4.30 , 5.80] [5.00 , 9.60]

26.00 [3.90 , 5.80] [4.40 , 8.50]

27.00 [2.80 , 5.20] [4.30 , 8.40]

28.00 [2.70 , 5.10] [3.60 , 8.30]

to draw global comparisons between the hazard rates for the groups based solely

on them. However, the pattern depicted in the table can be used as an initial step

to identify age–ranges where differences between the two groups become more

prominent, so that epidemiological features of the individuals in the sub–cohorts,

defined by these age ranges, can be studied more closely.

5. Conclusion

In this paper, we have developed new methodology for pivot-based estimation

of a monotone, unimodal or a U–shaped hazard, through the use of large sample

likelihood ratio statistics. The most attractive feature of the proposed method

is the fact that it is fully automatic and does not require estimation of nuisance

parameters or smoothing parameters for its implementation. On the other hand,

since the estimates underlying the likelihood ratio statistic exhibit n1/3 rates of

convergence, the procedure may not work well for very small sample sizes. In

such cases, parametric fits may be more desirable from a modelling perspective.

The proposed method works for points away from the mode (in the unimodal

setting) or the minimizer of the hazard (in the U shaped setting), but cannot be

applied to estimation of the hazard function at the mode/the minimizer. Even

if the true mode is known, naive likelihood inference for the value at the mode,

which is akin to estimating a monotone function at an end–point will not work

because isotonic estimators tend to be inconsistent at boundaries. The “spiking

problem” in the context of estimating a monotone density at an end–point is

well known. Consistent estimation at the end–point requires penalization (as

in Woodroofe and Sun (1993)), or computation of the isotonic estimator at a
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sequence of points converging to the end-point at an appropriate rate, with in-

creasing sample size (Kulikov and Lopuhaa (2006)). It seems quite plausible that

such techniques could be adapted to work in this situation. Yet another problem

that seems to have no satisfactory solution as yet is inference for the mode of the

hazard itself. While the problem of estimating the mode of a density function has

been studied by a number of different authors, nonparametric large sample tech-

niques for constructing a confidence interval for the mode, by and large, remain

to be developed in the hazard setting. Shoung and Zhang (2001) derive a rate of

convergence for their proposed estimator of the mode for a unimodal regression

function (and an analogous result can be expected to hold in the hazard function

situation), but do not derive the asymptotic distribution. A more challenging

problem would be the construction of joint confidence sets for the mode and the

modal value. One can envisage many different situations where this would find

application, one particular instance being the schizophrenia study dealt with in

Section 3.

Finally, the study of shape restricted hazard functions in semiparametric

settings (as opposed to the fully nonparametric setting of this paper) also requires

investigation and is expected to provide exciting avenues for future research, in

particular, a more refined analysis of the data from the schizophrenia study.
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Appendix

Let Pn denote the empirical measure of the pair (T, δ) and let Qn denote the

empirical measure of the unobserved (X,Y ). Take

Vn(t) =

∫

1{x ≤ y ∧ t} d Qn(x, y) = Pn δ 1{T ≤ t} =
1

n

n
∑

i=1

δi 1 {Ti ≤ t} ,

Gn(t) =

∫

((x ∧ y) 1 {x ∧ y ≤ t} + t 1 {x ∧ y > t}) d Qn(x, y)

= Pn (T 1{T ≤ t} + t 1{T > t}) .

Note that Vn is an increasing, piecewise constant, right-continuous process with

a jump of δ(i)/n at the point T(i), and that these are the only possible jumps.
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On the other hand, Gn is a continuous increasing process (in t) with

Gn(t) =
1

n

(

T(1) + · · · + T(i) + (n − i) t
)

, t ∈ [T(i), T(i+1)) .

Note that
∫

(T(i−1),T(i)]
dGn(t) =

(n − i + 1)

n
(T(i) − T(i−1)) . (A.1)

Set ξ1(T, δ, t) = δ 1{T ≤ t} and ξ0(T, δ, t) = T 1{T ≤ t}+t 1{T > t}. Straightfor-
ward computations show that V (t) ≡ E(ξ1(T, δ, t)) =

∫ t
0 F (y)g(y)dy + F (t)K(t),

so that V ′(t) = F (t)g(t) − F (t)g(t) + f(t)K(t) = f(t)K(t) = λ(t)H(t). Also,
G(t) ≡ E(ξ0(T, δ, t)) =

∫ t
0 xh(x) dx + t H(t), so that G′(t) = t h(t) − t h(t) +

H(t) = H(t). It follows that V ′(t) = λ(t)G′(t), a fact that we will use later.
To study the likelihood ratio statistic for testing H0 : λ(t0) = θ0, we need

the asymptotic behavior of the processes,

Xn(z) = n
1
3

(

λ̂n(t0 + z n− 1
3 ) − θ0

)

and Yn(z) = n
1
3

(

λ̂0
n(t0 + z n− 1

3 ) − θ0

)

,

the appropriately centered and scaled versions of the MLE’s of λ, treated as

processes in a local time scale.

Theorem A.1. Assume Conditions (i)−(iii). Take a = (λ(t0)/H(t0))
1/2 =

(θ0/H(t0))
1/2 and b = λ

′

(t0)/2. Then, under H0 : λ(t0) = θ0,

(Xn(z), Yn(z)) →d

(

ga,b(z), g0
a,b(z)

)

,

finite–dimensionally, and also in the space L×L, where L is the space of func-

tions from R → R that are bounded on every compact set, equipped with the

topology of L2 convergence with respect to Lebesgue measure on compact sets.

For a proof-sketch of Theorem A.1, see Banerjee (2007).

Proof of Theorem 3.1. In what follows, we denote the set of indices i on which

λ̂n(T(i)) differs from λ̂0
n(T(i)) by D. Let Dn denote the time interval on which λ̂n

and λ̂0
n differ, and let D̃n = n1/3 (Dn − t0). Now

2 log ξn(θ0) = 2

n
∑

i=1

δ(i) log λ̂n(T(i)) − 2

n
∑

i=1

δ(i) log λ̂0
n(T(i))

−2
n

∑

i=1

(n − i + 1)(T(i) − T(i−1)) (λ̂n(T(i)) − λ̂0
n(T(i))) .

Expanding

An ≡ 2

n
∑

i=1

δ(i) log λ̂n(T(i)) − 2

n
∑

i=1

δ(i) log λ̂0
n(T(i))
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in a Taylor series around θ0 ≡ λ(t0), we get

An = 2
∑

i∈D

δ(i)

λ̂n(T(i)) − θ0

θ0
−

∑

i∈D

δ(i)

(λ̂n(T(i)) − θ0)
2

θ2
0

−2
∑

i∈D

δ(i)

λ̂0
n(T(i)) − θ0

θ0
+

∑

i∈D

δ(i)

(λ̂0
n(T(i)) − θ0)

2

θ2
0

+ rn ,

where rn can be shown to be op(1). Some rearrangement and rewriting of terms

then yields that,

2 log ξn(θ0)

=
2

θ0

∑

i∈D

[

(λ̂n(T(i))−θ0)−(λ̂0
n(T(i))−θ0)

]

[

δ(i) − θ0(n−i + 1)(T(i)−T(i−1))
]

− 1

θ2
0

∑

i∈D

δ(i)

[

(λ̂n(T(i)) − θ0)
2 − (λ̂0

n(T(i)) − θ0)
2
]

+ op(1) ≡ T1 − T2 + op(1).

Now, consider T1. We have

T1 =
2

θ0

[

∑

i∈D

(λ̂n(T(i)) − θ0)
(

δ(i) − θ0 (n − i + 1) (T(i) − T(i−1))
)

−
∑

i∈D

(λ̂0
n(T(i)) − θ0)

(

δ(i) − θ0 (n − i + 1) (T(i) − T(i−1))
)

]

=
2

θ0

[

∑

i∈D

(λ̂n(T(i)) − θ0)
2 (n − i + 1) (T(i) − T(i−1))

−
∑

i∈D

(λ̂0
n(T(i)) − θ0)

2 (n − i + 1) (T(i) − T(i−1))

]

=
2

θ0

[

∑

i∈D

(

(λ̂n(T(i)) − θ0)
2 − (λ̂0

n(T(i)) − θ0)
2
)

(n − i + 1)(T(i) − T(i−1))

]

,

on using the facts that (i) D can be split up into blocks of indices, such that the

constrained solution λ̂0
n is constant on each block, and on any block B where the

constant value cB is different from θ0, we have

cB =

∑

i∈B δ(i)
∑

i∈B (n − i + 1) (T(i) − T(i−1))
;

and (ii) the same holds true for the unconstrained solution λ̂n. Now, for i 6= m+1,

λ̂n(t) ≡ λ̂n(T(i)) for t ∈ (T(i−1), T(i)] and λ̂0
n(t) ≡ λ̂0

n(T(i)) for t ∈ (T(i−1), T(i)]. In
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view of (A.1) it follows easily that
(

(λ̂n(T(i)) − θ0)
2 − (λ̂0

n(T(i)) − θ0)
2
)

(n − i + 1) (T(i) − T(i−1))

= n

∫ T(i)

T(i−1)

(

(λ̂n(t) − θ0)
2 − (λ̂0

n(t) − θ0)
2
)

dGn(t) .

For i = m + 1, owing to the facts that λ̂0
n(t) is θ0 for t ∈ (T(m), t0], is λ̂0

n(T(m+1))

for t ∈ (t0, T(m+1)], and that these two values need not coincide, we have

(

(λ̂n(T(m+1)) − θ0)
2 − (λ̂0

n(T(m+1)) − θ0)
2
)

(n − m)(T(m+1) − T(m))

= n

∫ T(m+1)

T(m)

(

(λ̂n(t) − θ0)
2 − (λ̂0

n(t) − θ0)
2
)

dGn(t)

−n (λ̂0
n(T(m+1)) − θ0)

2(Gn(t0) − Gn(T(m))).

But

n (λ̂0
n(T(m+1)) − θ0)

2 (Gn(t0) − Gn(T(m)))

=
n − m

n
n

1
3 (t0 − T(m))

(

n
1
3 (λ̂0

n (T(m+1)) − θ0)
)2

= op(1) ,

on using the facts that n1/3 (T(m) − t0) is op(1), that T(m+1) eventually lies in the

difference set Dn with arbitrarily high probability, and supt∈Dn
(n1/3(λ̂0

n(t)−θ0))
2

is Op(1). It follows that

T1 =
2n

θ0

∫

Dn

(

(λ̂n(t) − θ0)
2 − (λ̂0

n(t) − θ0)
2
)

dGn(t) + op(1) .

Also easily,

T2 =
n

θ2
0

∫

Dn

(

(λ̂n(t) − θ0)
2 − (λ̂0

n(t) − θ0)
2
)

dVn(t) .

Thus

2 log ξn(θ0) =
2n

θ0

∫

Dn

(

(λ̂n(t) − θ0)
2 − (λ̂0

n(t) − θ0)
2
)

dGn(t)

− n

θ2
0

∫

Dn

(

(λ̂n(t) − θ0)
2 − (λ̂0

n(t) − θ0)
2
)

dVn(t) + op(1)

=
2n

θ0

∫

Dn

(

(λ̂n(t) − θ0)
2 − (λ̂0

n(t) − θ0)
2
)

dG(t)

− n

θ2
0

∫

Dn

(

(λ̂n(t) − θ0)
2 − (λ̂0

n(t) − θ0)
2
)

dV (t) + op(1) (A.2)
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=
2

θ0

∫

D̃n

(

X2
n(z) − Y 2

n (z)
)

G
′

(t0 + n− 1
3 z) dz

− 1

θ2
0

∫

D̃n

(

X2
n(z) − Y 2

n (z)
)

V
′

(t0 + n− 1
3 z) dz + op(1)

=
2G

′

(t0)

θ0

∫

D̃n

(

X2
n(z) − Y 2

n (z)
)

dz

−V
′

(t0)

θ2
0

∫

D̃n

(

X2
n(z) − Y 2

n (z)
)

dz + op(1), (A.3)

where (A.2) follows from the step above it on noting that
∫

Dn

{

(n
1
3 (λ̂n(t) − θ0))

2 − (n
1
3 (λ̂0

n(t) − θ0))
2
}

d
(

n
1
3 (Gn(t) − G(t))

)

and
∫

Dn

{

(n
1
3 (λ̂n(t) − θ0))

2 − (n
1
3 (λ̂0

n(t) − θ0))
2
}

d
(

n
1
3 (Vn(t) − V (t))

)

are op(1), using arguments from empirical process theory. For example, the

expression in the display immediately above can be rewritten as n1/3 (Hn −
H)∆ Ψn(T ), where Hn is the empirical measure of the pairs {∆i, Ti}n

i=1, H de-

notes the joint distribution of (∆, T ) and

Ψn(t) =

{

(

n
1
3 (λ̂n(t) − θ0)

)2
−

(

n
1
3 (λ̂0

n(t) − θ0)
)2

}

1Dn
(t) .

But this is op(1) on noting that the function ∆ Ψn(T ) eventually lies in a Donsker
class of functions with arbitrarily high pre-assigned probability.

Recalling that V
′

(t0) = λ(t0)G
′

(t0) ≡ θ0 G
′

(t0) and G
′

(t0) = H(t0), from

(A.3) we get

2 log ξn(θ0) =
H(t0)

θ0

∫

D̃n

(

X2
n(z) − Y 2

n (z)
)

dz =
1

a2

∫

D̃n

(

X2
n(z)−Y 2

n (z)
)

dz

→d a−2

∫

{

(ga,b(z))2 −
(

g0
a,b(z)

)2
}

dz .

The last step in the above display follows from that above it by virtue of the fact

that the length of D̃n is Op(1), by applying Theorem A.1 in conjunction with

the Continous Mapping Theorem for distributional convergence, and the fact

that (f, g) 7→
∫

(f2 − g2) dλ, with λ denoting Lebesgue measure, is a continuous
function from L× L to R. But, by Lemma 2.1,

a−2

∫

{

(ga,b(z))2 −
(

g0
a,b(z)

)2
}

dz ≡d D ,

completing the proof.
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