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1. Introduction

Let {X(n)
jk , j = 1, . . . , p, k = 1, . . . , n}, be an array of complex random

variables for each n. Write Xn = (Xjk)1≤j≤p,1≤k≤n. Let X1, . . . ,Xn be n columns
of Xn. Throughout the paper, we assume that the X′

ks are independent. Write

Bn =
1

n
XnX ∗

n =
n∑

k=1

rkr
∗
k, Bk,n = Bn − rkr

∗
k,

where rk = n−1/2Xk, k = 1, . . . , n. Bn is the so-called sample covariance matrix.
It should be noted that in the construction of the sample covariance matrix, the
sample mean vector X = n−1

∑n
j=1 Xj is not subtracted from Xk since it does

not affect the limiting spectral distributions (LSD). The reasoning refers to the
rank inequality (see Lemma 2.6 in Bai (1999)).

Sample covariance matrices are very important in multivariate statistical

inference since many test statistics are defined by their eigenvalues or functionals.
Under the assumption that all variables Xjk are independent and identically
distributed (i.i.d.), the spectral analysis of large-dimensional sample covariance

matrices has been actively developed since the pioneering work of Marčenko and
Pastur (1967). Extensions can be found in the remarkable work of Wachter
(1978) and Yin (1986). We also refer to the review paper of Bai (1999).

To relax the independence of the entries of Xk, Silverstein (1995) considered
the case of Xk = T1/2Yk, where T is a non-negative definite matrix and Yk con-

sists of i.i.d. entries. Some further investigation on this model can be found in
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Silverstein and Bai (1995) for strong convergence of the empirical spectral distri-

bution (ESD) of sample covariance matrices, in Bai and Silverstein (1998, 1999)
for spectrum separation, and in Bai and Silverstein (2004) for a central limit the-

orem for linear spectral analysis of sample covariance matrices. Naturally, one

may ask whether we can completely get rid of the independence structure, since
multivariate populations without independence structures can be found in many

practical situations, e.g., Spearman’s rank correlation matrix discussed later in

the paper. The first attempt was made in Yin and Krishnaiah (1986), where the

vectors Xk are distributed isotropically. Extensions to products of a non-negative
definite matrix T with a sample covariance matrix when the underlying distri-

bution is isotropic are given in Bai, Yin and Krishnaiah (1986). In this paper,

we consider LSD of large sample covariance matrices under a very general de-
pendence structure. As applications of our main theorem, we obtain the LSD of

Spearman’s rank correlation matrices, sample correlation matrices without sec-

ond moment, sample covariance matrices from finite populations, and sample co-

variance matrices from causal AR(1) models. These models cannot be expressed
as Silverstein’s sample covariance matrices under independent structures.

Here is some notation. The eigenvalues of Bn are denoted by λ1, . . . , λp. The

ESD of Bn is defined as

FBn(x) =
1

p

p∑

k=1

I(λk ≤ x).

And the Stieltjes transform of FBn is given by

mn(z) = mFBn (z) =

∫
1

x− z
dFBn(x) =

1

p
tr(Bn − zI)−1,

where z = u+ iv ∈ C+, and I is the identity matrix.

In the following, we use ‖ · ‖ to denote the sup norm for bounded functions,

the Euclidean norm for vectors, and the spectral norm for matrices. We also
write Bn = Bn − zI, Bk,n = Bk,n − zI.

Theorem 1.1. As n→ ∞, assume the following.

1. For all k, EX̄jkXlk = tlj, and for any non-random p × p matrix B = (bjk)

with bounded norm, E|X∗
kBXk − tr(BT)|2 = o(n2), where T = Tn = (tjl).

2. cn := p/n→ c ∈ (0,∞).

3. The norm of the matrix T = Tn is uniformly bounded and FT tends to a

non-random probability distribution H.

Then, with probability 1, FBn tends to a probability distribution, whose Stieltjes

transform m = m(z) (z ∈ C+) satisfies

m =

∫
1

t(1 − c− czm) − z
dH(t). (1.1)
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If m(z) = −(1 − c)/z + cm(z), then (1.1) becomes

z = − 1

m
+ c

∫
t

1 +mt
dH(t), (1.2)

which gives an explicit inverse function. Sometimes, it is easier to solve (1.2)

than (1.1).

For the purpose of applications, we have the following.

Corollary 1.1. If

EX̄jkXlk = tlj , for all k, (1.3)

n−1 max
j 6=l

E
∣∣∣X̄jkXlk − tlj

∣∣∣
2
→ 0 uniformly in k ≤ n, (1.4)

n−2
∑

Λ

(
E(X̄jkXlk − tlj)(Xj′kX̄l′k − tj′l′)

)2
→ 0 uniformly in k ≤ n, (1.5)

where Λ = {(j, l, j′ , l′) : 1 ≤ j, l, j′, l′ ≤ p} \ {(j, l, j′, l′) : j = j′ 6= l = l′ or

j = l′ 6= j′ = l}, then 1 of Theorem 1.1 holds. Consequently, Theorem 1.1 is true

if we replace these moment conditions by (1.3), (1.4) and (1.5).

Remark 1.1. When Tn = Ip, the identity matrix, FBn tends to the Marčenko-

Pastur (MP) law, whose Stieltjes transform is

m(z) =
1 − c− z +

√
(1 + c− z)2 − 4c

2cz
(1.6)

where, in accordance with Bai (1993), the square root of a complex number is

defined to be the one with a positive imaginary part. Equation (1.1) then reduces

to the quadratic equation czm2(z) + (c+ z − 1)m(z) + 1 = 0.

In Theorem 1.1, it does not matter if EXjk = 0 or not, because Lemma 2.6

in Bai (1999) implies that, for A = n−1/2Xn and B = A− EA,

‖FAA∗ − FBB∗‖ ≤ 1

n
rank(A−B) =

1

n
.

The proofs of Theorem 1.1 and Corollary 1.1 are deferred to Section 3.

2. Applications

2.1. Spearman’s rank correlation matrices

Suppose (X,Y ), (Xj , Yj), j = 1, . . . , n are i.i.d. random vectors from a bi-

variate normal distribution F (x, y). Define the correlation coefficient by

ρ =
E(X −EX)(Y − EY )√
E(X −EX)2(Y − EY )2

.
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We wish to test for independence, or to test H0 : ρ = 0 versus H1 : ρ 6= 0. One

test statistic is the sample correlation coefficient

ρXY =

∑n
j=1(Xj −X)(Yj − Y )

√∑n
j=1(Xj −X)2

∑n
j=1(Yj − Y )2

, (2.1)

where X =
∑n

j=1Xj/n, Y =
∑n

i=j Yj/n. If strong structural assumptions on the

population, such as normality, are not present, some nonparametric measures of

independence must be proposed. One of them is based on the Spearman’s rank

correlation coefficient.

To calculate the Spearman’s rank correlation coefficient rs, let Qj denote the

rank of Xj among {X1, . . . ,Xn} and let Sj be the rank of Yj among {Y1, . . . , Yn}.
Replace Xj ’s and Yj’s in (2.1) by Qj’s and Sj’s to get Spearman’s rank correlation

coefficient (Spearman (1904))

rs =

∑
QjSj − 1

n(
∑
Qj)(

∑
Sj)√∑

(Qj −Q)2
∑

(Sj − S)2
=

12

n(n2 − 1)

∑
(Qj −Q)(Sj − S),

where Q = S = (n + 1)/2. The most important point is that rs is distri-

bution free. For more statistical properties of rs, the reader is referred to

Hájek, Šidák and Sen (1999).

Now let us generalize the two-dimensional problem to the large-dimensional

case. Suppose that we have n i.i.d. samples Y1, . . . ,Yn, where Yk is a p-vector

consisting of i.i.d. random variables Y1k, . . . , Ypk, k = 1, . . . , n. The question is

how to test the independence among the components of Y′
ks. Consider Spear-

man’s rank correlation matrices, Rp = (rkl)1≤k,l≤p, where rkl is Spearman’s rank

correlation coefficient between the k-th and l-th rows of [Y1, . . . ,Yn]. Here, as

an application of our Corollary 1.1, we derive the limiting spectral distribution

of Rp, when cn = p/n→ c.

Actually, Rp can be expressed in the form p−1X T
p Xp. For that purpose, we

denote by Qjk the rank of Yjk among {Yj1, . . . , Yjn}. For j = 1, . . . , p, write

Xj =

√
12p√

n(n2 − 1)

(
Qj1 −

n+ 1

2
, . . . , Qjn − n+ 1

2

)T
,

and Xp = (X1, . . . ,Xp). Then Rp = p−1X T
p Xp, by noticing that Rp = (p−1XT

i

Xj)p×p. Since the spectra of X T
p Xp and XpX T

p differ by |n− p| zero eigenvalues,

it suffices to consider F p−1XpXT
p .

By elementary calculation, we have

tjl = EXjkXlk =

{
pn−1, if j = l

−pn−1(n− 1)−1, otherwise.
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From this, one can see that T has one eigenvalue of 0 and n − 1 of p/(n − 1),

which verifies that the norm of T is uniformly bounded and H is a degenerate
distribution with mass at {c}. To apply Corollary 1.1, we need to verify

∑

Λ

(
bE(XjkXlk − tjl)(Xj′kXl′k − tj′l′)

)2
= o(n2), (2.2)

n−1 max
j 6=l

E|XjkXlk − tjl|2 → 0, (2.3)

where Λ = {(j, l, j′, l′) : 1 ≤ j, l, j′, l′ ≤ n} \ {(j, l, j′, l′) : j = j′ 6= l = l′ or
j = l′ 6= j′ = l}.

After some elementary but tedious calculations, we have

EX4
11 ∼ 18p2

5n2
, EX2

11 =
p

n
,

EX2
11X21X31 ∼ − p

2

n3
, EX11X21X31X41 ∼ 3p2

n4
,

E(X2
11 − EX2

11)(X
2
21 − EX2

21) = O(n−1),

as n → ∞, where a ∼ b means a/b → 1. (2.2)−(2.3) are direct consequences of

the above relations.

Since n/p → 1/c, Corollary 1.1 implies F p−1XpXT
p tends almost surely to a

limiting law F whose Stieltjes transform is given by

m =
1

c(1 − (1/c) − (1/c)zm) − z
=

1

c− 1 − zm− z
.

From this, we have

m(z) =
−(1 − c+ z) +

√
(1 + c− z)2 − 4c

2z
.

Noting that

F p−1XpXT
p = (1 − p

n
)I[0,∞) +

p

n
F p−1XT

p Xp , (2.4)

the limiting law F of F p−1XT
p Xp should satisfy F = (1 − c)I[0,∞) + cF and its

Stieltjes transform should satisfy m(z) = −(1 − c)z−1 + cm(z).
Thus, m(z) = (1− c−z+

√
(1 + c− z)2 − 4c)/(2cz) and we have proved the

following theorem for Spearman’s rank correlation matrix.

Theorem 2.2. Suppose that all the Yik, i = 1, . . . , p, k = 1, . . . , n are indepen-

dent and have a continuous distribution. Then FRp tends to the MP law a.s. as

p/n→ c, with Stieltjes transform given by

mRn(z) =
1 − c− z +

√
(1 + c− z)2 − 4c

2cz
. (2.5)
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Remark 2.2. We assume the continuity of the random variables in order to

avoid ties among the observations. Otherwise, the number of ties must be taken

into account. As a consequence, the expectation and the variance under the null

(independence) hypothesis need adjustment. We refer to Hollander and Wolfe

(1999) for more details. For the adjusted rij , Theorem 2.2 still holds.

2.2. Sample correlation matrices

Spectral distributions of sample correlation matrices were first studied by

Jiang (2004) under second moment conditions. In this part, we derive the MP

law for sample correlation matrices under conditions weaker than the second

moment.

Suppose {Y, Yjk, j, k = 1, . . .} are i.i.d random variables with mean 0.

Write Yn = (Yjk)1≤j≤p,1≤k≤n. Let Y1, . . . ,Yn be n columns of Yn. Then

Yn = (Y1, . . . ,Yn). From the statistical point of view, Yk consists of p ob-

servations of the kth component of the multivariate population. Hence the n by

n sample correlation matrix is RY = n−1X T
n Xn with Xn = n1/2(Y1/‖Y1‖, . . .,

Yn/‖Yn‖), where ‖ · ‖ is the usual Euclidean norm.

Theorem 2.3. Assume that Y belongs to the attraction domain of the normal

law. Then FRY tends to the MP law a.s. as p/n→ c, with Stieltjes transform

mRY
=

−(cz − c+ 1) +
√

(cz − c− 1)2 − 4c

2z
. (2.6)

As in the derivation of Theorem 2.2, we still consider Fn−1XnXT
n . In order to

apply Corollary 1.1, let us check moment conditions for Xn first. Write Xjk =

n1/2Yjk/‖Yk‖. From (3.7) and (3.10) of Giné, Götze and Mason (1997), we have

n−2EX4
11 = o(p−1), n−2EX2

11X21X31 = o(p−3), (2.7)

n−2EX11X21X31X41 = o(p−4). (2.8)

Since

1 = n−2
( p∑

i=1

X2
j1

)2
= n−2

p∑

j=1

X4
j1 + n−2

∑

1≤j 6=l≤n

X2
j1X

2
j1,

we have 1 = n−2pEX4
11+n−2p(p−1)EX2

11X
2
21 which, combined with n−2EX4

11 =

o(p−1), implies n−2EX2
11X

2
21 = O(p−2) as n → ∞. From (2.7) and n−1tjl =

o(p−2) for j 6= l (see (3.12) of Giné, Götze and Mason (1997)), we have, uniformly

in k ≤ n as n→ ∞,
∑

Λ

|E(XjkXlk − tjl)(Xj′kXl′k − tj′l′)|2 = o(n2),
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n−1 max
j 6=l

E|XjkXlk − tjl|2 → 0,

where Λ = {(j, l, j′, l′) : 1 ≤ j, l, j′, l′ ≤ p} \ {(j, l, j′, l′) : j = j′ 6= l = l′ or

j = l′ 6= j′ = l}.
Since FT(x) = p−1δt11+(p−1)t12(x) + (p − 1)p−1δt11−t12(x), the norm of T is

bounded and H is the degenerate distribution with whole mass at 1/c. So all the

assumptions of Corollary 1.1 hold for n−1XnX T
n . Hence the Stieltjes transform

of the limit of Fn−1XnXT
n is

m =
1

c−1(1 − c− czm) − z
=

c

1 − c− cz − czm
,

from which is followed that

m =
−(cz + c− 1) +

√
(cz − c− 1)2 − 4c

2cz
.

Since Fn−1XT
n Xn = (1 − p/n)I[0,∞) + (p/n)Fn−1XnXT

n , we have mRY
= [−(cz −

c+ 1) +
√

(cz − c− 1)2 − 4c]/(2z).

2.3. Sample covariance matrix for a finite population

Suppose y = (y1, . . . , yp)
T is a simple random sample of size n from a finite

population of size N with values {u1, . . . , uN}. Let y1 = (y11, . . . , yp1)
T , . . .,

yn = (y1n, . . . , ypn)T be n independent copies of y. Without loss of generality, we

assume Eyj =
∑N

s=1 us/N = 0. Write σ2 =
∑N

s=1 u
2
s/N , Xi = yi/σ, i = 1, . . . , n.

Then after some algebra, we have EX4
1 = Ey4

1/σ
4, EX2

1 = 1, and

EX2
1X2X3 =

1

σ4

1

N(N − 1)(N − 2)

∑

1≤s 6=t6=l≤N

u2
sutul

=
1

σ4

(
2

(N − 1)(N − 2)
Ey4

1 −
N

(N − 1)(N − 2)
σ4

)
,

EX1X2X3X4 =
1

σ4

1

N(N − 1)(N − 2)(N − 3)

∑

1≤s 6=t6=l 6=m≤N

usutulum

=
n

(N − 1)(N − 2)(N − 3)σ4
(−12Ey4

1 + 3Nσ4),

E(X2
1 −EX2

1 )(X2
2 − EX2

2 ) =
1

σ4

(
1

N(N − 1)

∑

1≤s 6=t≤N

u2
su

2
t − σ4

)

=
1

σ4

1

N − 1
(σ4 − Ey4

1).
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Since n ≤ N , all the moment assumptions in Corollary 1.1 are satisfied if we

suppose lim supN→∞ Ey4
1 <∞ and lim infN→∞ σ2 > 0.

Simple calculations show that tjl = −1/(N − 1) for j 6= l. Hence one eigen-

value of T is (N−p)(N−1)−1 and the other p−1 are N(N−1)−1, which implies

that the norm of T is bounded and H is a distribution concentrated on {1}.
Now we see that all the conditions of Corollary 1.1 are satisfied. Hence the

Stieltjes transform of the limit of Fn−1XnXT
n is given by

m =
1

(1 − c− czm) − z
,

from which is followed that

m =
−(z + c− 1) +

√
(z − c− 1)2 − 4c

2cz
.

Since Fn−1XT
n Xn = (1 − p/n)I[0,∞) + (p/n)Fn−1XnXT

n , we have

mn−1XT
n Xn

=
−(z − c+ 1) +

√
(z − c− 1)2 − 4c

2z
. (2.9)

Theorem 2.4. Assume that lim supN→∞ Ey4
1 < ∞ and lim infN→∞ σ2 > 0. If

p/n→ c, then Fn−1XT
n Xn tends to the MP law a.s., with Stieltjes transform given

by (2.9).

2.4. Sample covariance matrix from a causal time series model

We first consider the simple AR(1) model. Suppose that y = (y1, . . . , yp)
T

is a sample of size p from a causal AR(1) model, i.e.,

yt = φyt−1 + εt

where φ ∈ (−1, 1) is a constant and {εt} is a sequence of i.i.d. random variables

with mean 0 and variance 1. Let X1 = (X11, . . . ,Xp1)
T , . . . ,Xn = (X1n, . . .,

Xpn)T be n independent copies of y.

Theorem 2.5. Assume that the innovations εj have mean 0, variance 1

and finite 4th moment. Then, the LSD of Bn exists and its Stieltjes transform

is given by m = m/c+ (1 − c)/(cz), where m is the unique solution in the upper

complex plane to the 4th degree polynomial equation

(zm+ 1)2(m2 + 2m(1 + φ2) + (1 − φ2)2) = c2m2. (2.10)
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It is well known that

T =
1

1 − φ2




1 φ φ2 · · · φp−1

φ 1 φ · · · φp−2

φ2 φ 1 · · · φp−3

... · · · · · · · · · ...

φp−1 φp−2 φp−3 · · · 1



.

By the Gerschgorn Theorem, the largest eigenvalue of T is not larger than (1 −
φ)−2[1 + 2(|φ| + φ2 + · · · )] ≤ 2(1 − φ2)−2.

Next, we verify the moment condition of Theorem 1.1. By the causal expres-

sion, for j ≥ l, we have

XjkXlk − tjl =
∞∑

h=0

φj−l+2h(ε2l−h − 1) +
∑

j−l6=h1−h2

h1,h2≥0

εj−h1
εl−h2

φh1+h2. (2.11)

Let j ≥ l, j′ ≥ l′ and l ≥ l′. By (2.11), we have

E(XjkXlk − tjl)(Xj′kXl′k − tj′l′) =
(Eε41 − 3)φj+j′+l−3l′

1 − φ4
+ tjj′tll′ + tjl′tj′l.

If j ≥ l, j′ ≥ l′ and l′ ≥ l. We can similarly show that

E(XjkXlk − tjl)(Xj′kXl′k − tj′l′) =
(Eε41 − 3)φj+j′+l′−3l

1 − φ4
+ tjj′tll′ + tjl′tj′l.

Using the same argument in the other six cases, one can show that

E(XjkXlk−tjl)(Xj′kXl′k−tj′l′) =
(Eε41−3)φµ1+µ2+µ4−3µ4

1 − φ4
+tjj′tll′+tjl′tj′l.

where, for t = 1, 2, 3, 4, µt is the t-th largest value among {j, j′, l, l′}. Let B be

a non-random matrix with bounded norm. Since the entries of B are bounded,

we have

∑

j,j′,l,l′

bjlbj′,l′
(Eε41 − 3)φµ1+µ2+µ4−3µ4

1 − φ3
= O(n),

∑

j,j′,l,l′

bjlbj′,l′ [tjj′tll′ + tjl′tj′l] = trTBTB + trTBTBT = O(n).

Thus, the moment condition of Theorem 1.1 is satisfied.
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To apply the main theorem, we need to find the LSD of T. To this end, we

use

T−1 =




1 − φ 0 · · · 0 0

−φ 1 + φ2 − ρ · · · 0

0 − φ 1 + φ2 · · · 0 0
... · · · · · · · · · ...

0 0 0 · · · 1 + φ2 − φ

0 0 0 · · · − φ 1




.

Make a slight modification to T−1 as

T̂−1 =




1 + φ2 − φ 0 · · · 0 0

−φ 1 + φ2 − ρ · · · 0

0 − φ 1 + φ2 · · · 0 0
... · · · · · · · · · ...

0 0 0 · · · 1 + φ2 − φ

0 0 0 · · · − φ 1 + φ2




.

By Lemma 2.2 of Bai (1999), the LSD of T−1 is the same as that T̂−1. It is not

difficult to show that the eigenvalues of T̂−1 are

1 + φ2 + 2φ cos(kπ/(p + 1)), k = 1, . . . , p. (2.12)

Then, the equation (1.6) for this case is

z = − 1

m
+ c

∫ 1

0

dt

m+ 1 + φ2 + 2φ cos(πt)

= − 1

m
+

c

2πi

∮

|ζ|=1

dζ

ζ[m+ 1 + φ2 + φ(ζ + ζ−1)]

= − 1

m
− c√

(m+ 1 + φ2)2 − 4φ2
.

This can be simplified to (2.10). The proof is complete.

All results about the AR(1) model, except for the explicit expression of the

equation for the Stieltjes transform, can be easily extended to the causal time

series model. Let

yt =

∞∑

h=0

ψ(h)εt−h

with
∑

h |ψ(h)| = L <∞. Then T = (tij)n×n with tij =
∑∞

h=0 ψ(h)ψ(|i− j|+h).

By the Gerschgorn Theorem, one can show that the norm of the matrix T is not
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larger than 2L2. It is easy to show that for each fixed k, n−1tr(T k) → νk ≤ 2kL2k,

which shows the Carleman condition is satisfied. By the Moment Convergence

Theorem, the ESD of T tends to a limit H.

Similar to the AR(1) case, one can show that

E(XjkXlk − tjl)(Xj′kXl′k − tj′l′)

= (Eε41 − 3)
∞∑

h=0

ψ(µ1 − µ4 + h)ψ(µ2 − µ4 + h)ψ(µ3 − µ4 + h)ψ(h)

+tjj′tll′ + tjl′tj′l.

From this, one can check the moment condition of Theorem 1.1. Therefore, the

LSD of Bn exists and its Stieltjes transform is given by (1.1).

3. Proof of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1. We now proceed with the proof by the following

steps.

1. mn(z) − Emn(z) → 0, a.s..

2. Emn(z) → m, which satisfies (1.1).

3. The equation has a unique solution in C+.

Step 1. Proof of mn(z) − Emn(z) → 0, a.s..

Ek denotes the conditional expectation given Xk+1, . . . ,Xn. With this no-

tation, we have mn(z) = E0(mn(z)), Emn(z) = En(mn(z)). Therefore,

mn(z) − Emn(z) =

n∑

k=1

(Ek−1(mn(z)) − Ek(mn(z)))

=
1

p

n∑

k=1

[Ek−1 − Ek]
(
trB−1

n − trB−1
k,n

)

=
1

p

n∑

k=1

[Ek−1 − Ek]γk,

where

γk =
r∗kB−2

k,nrk

1 + r∗kB−1
k,nrk

.

Since |γk| ≤ v−1, {[Ek−1 − Ek]γk} forms a bounded martingale difference se-

quence. Applying Burkholder inequality, we have

E|mn(z) − Emn(z)|q ≤Kqp
−qE

( n∑

k=1

|(Ek−1 − Ek)γk|2
) q

2
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≤Kq(
2

v
)qp−

q

2 (
p

n
)−

q

2 (3.1)

which, for q > 2, implies p−1
∑n

k=1(Ek−1 − Ek)γk → 0, a.s..

Step 2. Proof of Emn(z) → m, which satisfies (1.1).

Write K = T(1 + n−1trB−1
k,nT)−1. Since

(Bn − zI) − (K − zI) =

p∑

k=1

rkr
∗
k −K,

we have

(K − zI)−1 − (Bn − zI)−1

=

p∑

k=1

(K − zI)−1rkr
∗
k(Bn − zI)−1 − (K − zI)−1K(Bn − zI)−1

=

p∑

k=1

(K − zI)−1rkr
∗
kB−1

k,n

1 + r∗kB−1
k,nrk

− (K − zI)−1K(Bn − zI)−1 (3.2)

where, in the last equation we have used the formula,

r∗kB−1
n =

r∗kB−1
k,n

1 + r∗kB−1
k,nrk

.

Multiplying Tℓ for ℓ = 0, 1 on both sides of (3.2), we obtain

Tℓ(K − zI)−1 − TℓB−1
n

=

p∑

k=1

Tℓ(K − zI)−1rkr
∗
kB−1

k,n

1 + r∗kB−1
k,nrk

− Tℓ(K − zI)−1K(Bn − zI)−1.

Taking the trace and dividing by p we find

1

p
trTℓ(K − zI)−1 − 1

p
tr

(
TℓB−1

n

)

=
1

p

n∑

k=1

r∗kB−1
k,nT

ℓ(K − zI)−1rk

1 + r∗kB−1
k,nrk

− 1

p
trTℓ(K − zI)−1KB−1

n

=
1

p

n∑

k=1

dk

1 + r∗kB−1
k,nrk

, (3.3)

where

dk = r∗kB−1
k,nT

ℓ(K − zI)−1rk − 1

n
trTℓ(K − zI)−1KB−1

n (1 + r∗kB−1
k,nrk).
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Write dk = dk1 + dk2 + dk3 with

dk1 =
1

n
tr(K − zI)−1Tℓ+1B−1

k,n − 1

n
tr(K − zI)−1Tℓ+1B−1

n ,

dk2 = r∗kB−1
k,nT

ℓ(K − zI)−1rk − 1

n
trB−1

k,nT
ℓ+1(K − zI)−1,

dk3 =
1

n
tr

(
(K − zI)−1Tℓ+1B−1

n

( 1 + r∗kB−1
k,nrk

1 + 1
ntrB−1

k,nT
− 1

))
,

noting T(K − zI)−1 = (K − zI)−1T.

We first show that

‖(K − zI)−1‖ ≤ L

v2
, (3.4)

for some constant L.

For any real t, we have

ℑ
(
t+ z

(
1 +

1

n
trB−1

k,nT
))

= v +
v

n
tr

(
Bk,n

(
(Bk,n − uI)2 + v2

)−1
T

)
> v,

noting that tr(Bk,n(Bk,n − uI)2 + v2)−1T) is the trace of a non-negative definite

Hermitian matrix since

tr
(
Bk,n

(
(Bk,n − uI)2 + v2

)−1
T

)
= tr

(
EkX∗

kBk,n

(
(Bk,n − uI)2 + v2

)−1
Xk

)
,

where Ek denotes the conditional expectation given X1, . . . ,Xk−1,Xk+1, . . . ,Xn.

Thus, using the spectral decomposition of K,

‖(K − zI)−1‖ ≤ max
t≥0

∣∣∣∣
t

1 + 1
ntr

(
B−1

k,nT
) − z

∣∣∣∣
−1

≤ max
t≥0

∣∣∣∣
1 + 1

ntr
(
B−1

k,nT
)

t− z
(
1 + 1

ntr
(
B−1

k,nT
))

∣∣∣∣
−1

≤ L

v2
,

where L can be chosen as any number > v+ ‖T‖. The assertion (3.4) is proved.

Lemma 2.6 of Silverstein and Bai (1995) implies

|dk1| ≤
‖(K − zI)−1Tℓ+1‖

nv
≤ L

nv3
→ 0, (3.5)

where L is a constant which may take different values in different appearances.
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Next, we analyze dk2. Write B−1
k,nT

ℓ(K−zI)−1 = (bjl). Then, by the moment

conditions for Xn, we have

E|dk2|2 = n−2E
∣∣∣
∑

j,l

bj,l(X̄jkXlk − tlj)
∣∣∣
2
→ 0. (3.6)

Note that

|dk3| ≤ ‖(K − zI)−1‖‖T‖ℓ+1|z|v−2|r∗kB−1
k,nrk − 1

n
trB−1

k,nT|.

Therefore, by moment conditions, we have

E|dk3|2 ≤ LE|r∗kB−1
k,nrk − 1

n
trB−1

k,nT|2 → 0. (3.7)

Notice that

∣∣∣
1

1 + r∗kB−1
k,nrk

∣∣∣ ≤ |z|
v
.

Hence it follows from (3.3) and (3.5), (3.6), (3.7) that

1

p

(
EtrTℓ(K − zI)−1 − EtrTℓB−1

n

)
→ 0, (3.8)

as n→ ∞.

Let K̃ = T(1 + n−1EtrTB−1
n )−1. Similarly, we can prove that (3.4) holds

also when K is replaced by K̃. Then

1

p

∣∣∣∣E
(
trTℓ(K − zI)−1 − trTℓ(K̃ − zI)−1

)∣∣∣∣

≤ L2‖T‖ℓv−4E‖K − K̃‖
≤ L2|z|2‖T‖ℓ+1v−6n−1E|trTB−1

k,n − EtrTB−1
n |

≤ L2|z|2‖T‖ℓ+1v−6n−1
(
E|trTB−1

k,n − trTB−1
n | (3.9)

+E|trTB−1
n − EtrTB−1

n |
)

(3.10)

→ 0 (3.11)

where, to obtain the limit, the expectation in (3.9) can be estimated by Lemma

2.6 of Silverstein and Bai (1995), and the expectation in (3.10) can be estimated

by the similar martingale decomposition in Step 1. Hence, we finally reached

1

p

(
EtrTℓ(K̃ − zI)−1 − EtrTℓB−1

n

)
→ 0,
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as n→ ∞. Noting (3.8), we have

1

p
Etr

( T

1 + cnan(z)
− zI

)−1
− Emn(z) → 0, (3.12)

1

p
EtrT

( T

1 + cnan(z)
− zI

)−1
− an(z) → 0, (3.13)

where an(z) = p−1EtrTB−1
n . After noticing |(1 + cnan(z))−1| ≤ |z|/v, multiply

(1 + cnan(z))−1 on both sides of (3.13) to obtain

1 +
z

p
Etr

( T

1 + cnan(z)
− zI

)−1
− an(z)

1 + cnan(z)
→ 0,

as n→ ∞. Then, by (3.12), we have

1 + zEmn(z) − an(z)

1 + cnan(z)
→ 0.

From this, we conclude

1

1 + cnan(z)
= 1 − cn(1 + zEmn(z)) + o(1).

Substituting this into (3.12), we obtain

1

p
Etr

(
T(1 − cn(1 + zEmn(z))) − zI

)−1
− Emn(z) → 0. (3.14)

For each fixed z, {Emn(z)} is a bounded sequence. Thus, for any subse-

quence n′, there is a subsequence {n′′} of {n′} such that Emn′′ (z) tends to a

limit, say m. Then m should satisfy the equation

m =

∫
1

t(1 − c− czm) − z
dH(t). (3.15)

Since ℑ(Emn(z)) > 0, we conclude that ℑ(m) ≥ 0. Obviously, it is impossible

that ℑ(m) = 0 because the right hand side of (3.15) has a positive imaginary

part.

By the uniqueness of the solution to the equation (3.15), proved in the next

step, we conclude that for all z with ℑ(z) > 0, Emn(z) converges to a limit which

is the unique solution to (3.15).

By Step 1, we conclude that for each z with ℑ(z) > 0, mn(z) → m(z) a.s. as

n→ ∞. Finally, applying the Vitali Lemma, we conclude that, with probability

1 on any compact subset of {z : ℑ(z) > 0}, mn(z) → m(z), which satisfies the

equation (3.15).
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Step 3. Uniqueness of solution of (1.1).
Suppose we have two solutions m1, m2 ∈ C+ of the equation (1.1). Let

M1(z) = −(1 − c)/z + cm1(z) and M2(z) = −(1 − c)/z + cm2(z). Both M1(z)
and M2(z) are Stieltjes transforms of some distributions. Hence ℑ(M1(z)) > 0
and ℑ(M2(z)) > 0. Since m1(z) and m2(z) are solutions of (1.1), we have

M1 =
(
c

∫
t

tM1 + c
dH(t) − z

)−1
, (3.16)

M2 =
(
c

∫
t

tM2 + c
dH(t) − z

)−1
. (3.17)

Hence

M1 −M2 = c(M1 −M2)

∫
t2

(tM1 + c)(tM2 + c)
dH(t)

(
c

∫
t

tM1 + c
dH(t) − z

)−1(
c

∫
t

tM2 + c
dH(t) − z

)−1
.

If m1 6= m2, we have

1 = c

∫
t2

(tM1 + c)(tM2 + c)
dH(t)

×
(
c

∫
t

tM1 + c
dH(t) − z

)−1(
c

∫
t

tM2 + c
dH(t) − z

)−1

which, by the Cauchy inequality yields

1 ≤ c
( ∫

t2

|tM1 + c|2 dH(t)

∫
t2

|tM2 + c|2 dH(t)
) 1

2

∣∣∣∣
(
c

∫
t

tM1 + c
dH(t) − z

)−1(
c

∫
t

tM2 + c
dH(t) − z

)−1∣∣∣. (3.18)

From (3.16) and (3.17), we have

ℑ Mj =
(
v + c ℑMj

∫
t2

|tMj + c|2 dH(t)
)∣∣∣∣

(
c

∫
t

tMj + c
dH(t) − z

)∣∣∣∣
−2

> cℑMj

∫
t2

|tMj + c|2 dH(t)

∣∣∣∣
(
c

∫
t

tMj + c
dH(t) − z

)∣∣∣∣
−2

,

which implies that for both j = 1 and 2,

1 > c

∫
t2

|tMj + c|2 dH(t)

∣∣∣∣
(
c

∫
t

tMj + c
dH(t) − z

)∣∣∣∣
−2

. (3.19)

The contradiction of (3.18) and (3.19) proves that m1 = m2 and hence (1.1) has
at most one solution. The existence of solutions to (1.1) has been seen in Step

2, the proof is complete.
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Proof of Corollary 1.1. Under the conditions of Corollary 1.1, for any non-

random p× p matrix B = (bjk) with bounded norm, we have

n−2E
∣∣∣
∑

j,l

bj,l(X̄jkXlk − tjl)
∣∣∣
2

= n−2E
∑

j,l

∑

j′,l′

bj,lb̄j′,l′E(X̄jkXlk − tjl)(Xj′kX̄l′k − t̄j′l′)

≤ n−2E(
∑

Λ

|bj,lb̄j′,l′|2)
1

2

(∑

Λ

∣∣∣E(X̄jkXlk − tjl)(Xj′kX̄l′k − t̄j′l′)
∣∣∣
2) 1

2

+2n−1 max
j 6=l

E|X̄jkXlk − tjl|2E‖(bj,l)‖2

≤ n−1E‖(bj,l)‖2
(∑

Λ

∣∣∣E(X̄jkXlk − tjl)(Xj′kX̄l′k − t̄j′l′)
∣∣∣
2) 1

2

+2n−1 max
j 6=l

E
∣∣∣X̄jkXlk − tjl

∣∣∣
2
E‖(bj,l)‖2

→ 0

where in the above inequality, we used

∑

j,l

∑

j′,l′

|bj,lb̄j′,l′ | = (
∑

j,l

|bj,l|)2 ≤ n2‖(bj,l)‖4.
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Giné, E., Götze, F. and Mason, D. M. (1997). When is the Student t-statistic asymptotically

standard normal? Ann. Probab. 25, 1514-1531.
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