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Abstract: We obtain asymptotic expansions for probabilities of moderate deviations

for stationary causal processes. The imposed dependence conditions are easily

verifiable and they are directly related to the data-generating mechanism of the

underlying processes. The results are applied to functionals of linear processes

and nonlinear time series. We carry out a simulation study and investigate the

relationship between accuracy of tail probabilities and the strength of dependence.
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1. Introduction

Let (Xi)i∈Z be a mean zero strictly stationary process. Define

Sn =

n
∑

i=1

Xi.

We are interested in the asymptotic behavior of P(Sn ≥ √
nr), where r = rn

is a sequence of positive numbers and rn diverges to ∞ at an appropriate rate.

The Central Limit Theorem (CLT) asserts that, for a fixed r, P(Sn/σ ≥ √
nr) →

1 − Φ(r) as n → ∞, where σ = limn→∞ ‖Sn‖2/
√
n. By allowing r → ∞, the

moderate deviation principle (MDP) provides a tail bound associated with the

CLT. For the special case in which the Xi are independent and identically dis-

tributed (iid), one has the following classical result. Let c > 0. Assume that

E (|X1|q) < ∞ for some q > c2 + 2 and let σ > 0 be the standard deviation of

X1. Then

P

(Sn

σ
≥ c

√

n log n
)

1 − Φ(c
√

log n)
= 1 + o(1), (1)

where Φ is the standard normal distribution function. The moderate deviation

principle of type (1) has been investigated by Osipov (1972), Michel (1976) and

Amosova (1982) for iid random variables, and by Rubin and Sethuraman (1965),
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Amosova (1972), Petrov (2002), and Frolov (2005) for arrays of independent

random variables.

It is a challenging problem to establish moderate deviation results for de-

pendent random variables. Ghosh (1974) obtained an MDP for m-dependent

sequences. Several researchers studied MDP for mixing processes; see Ghosh

and Babu (1977), Babu and Singh (1978), and Gao (1996), among others. For

MDP for Markov processes, see Chen (2001) and references therein. Recently,

Dong, Tan and Yang (2005) considered moving averages. For martingales, deep

results are obtained in Bose (1986), Dembo (1996), Gao (1996), Grama (1997),

and Grama and Haeusler (2006). The latter two papers develop asymptotic ex-

pansions of the probabilities P(Sn/σ ≥ √
nrn). Such asymptotic expansions

appear more accurate than the results based on a logarithmic scale.

In this paper we study asymptotic properties of the probability P(Sn/σ ≥√
nrn) itself instead of the one based on the logarithmic scale. In particular,

we obtain an asymptotic expansion for P(Sn/σ ≥ √
nrn) for stationary causal

processes of the form

Xi = g(. . . , εi−1, εi), (2)

where (εi)i∈Z are iid random variables and g is a measurable function such thatXi

is well-defined. The framework (2) is quite general and it includes many linear

processes and nonlinear time series models; see Section 3.2 and Wu and Shao

(2004).

We now introduce some notation. Let Fi = (. . . , εi−1, εi). For a random

variable Z write Z ∈ Lp, p > 0, if ‖Z‖p := [E (|Z|p)]1/p < ∞, and ‖Z‖ = ‖Z‖2.

For a, b ∈ R, let a ∧ b = min(a, b). For two real sequences {an} and {bn}, write

an = O(bn) if lim supn→∞ |an/bn| < ∞, and an = o(bn) if limn→∞ an/bn = 0.

The main result on asymptotic expansions is presented in Section 2 and proved in

Section 5. Section 3 provides applications to linear processes and nonlinear time

series. In Section 4, we perform a simulation study and show that the accuracy

of tail probabilities decreases as the dependence gets stronger.

2. Main Results

It is necessary to have an appropriate dependence measure to quantify the

dependence of the process (Xi). Following Wu (2005), we can view (2) as a

physical system with Fi = (. . . , εi−1, εi) being the input, Xi being the output

and g being a filter or transform. We then interpret the dependence as the degree

of dependence of output on input. To this end, we adopt the idea of coupling.
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Let (ε′i)i∈Z be an iid copy of (εi)i∈Z and F ′
i = (F−1, ε

′
0, ε1, . . . , εi) the coupled

version of Fi. Assume Xi ∈ Lq, q > 0, and define

θq(i) = ‖Xi −X ′
i‖q, where X ′

i = g(F ′
i). (3)

Roughly speaking, θq(i) measures the degree of dependence of Xi = g(Fi) on

ε0 and it is directly related to the data-generating mechanism of the underlying

process. Wu (2005) called θq(i) the physical dependence measure. Throughout

the paper we assume

Θq(k) :=

∞
∑

i=k

θq(i) <∞, k = 0, 1, . . . . (4)

The quantity Θq(0) can be interpreted as the cumulative impact of ε0 on all

future values (Xi)i≥0. In this sense the condition Θq(0) < ∞ suggests short-

range dependence since the cumulative impact of ε0 on future outputs is finite.

In Wu (2005), it is called the strong stability condition. If (4) is violated, then

Sn may have a non-Gaussian limiting distribution with a non-
√
n convergence

rate; see for example Ho and Hsing (1997).

Let p ∈ (1, 2]. For x > 1, let rx > 0 be the solution to the equation

x = (1 + rx)ν(p) exp
(r2x

2

)

, where ν(p) =

{

2p + 1 if p ∈ (1, 3
2 ];

6p − 3 if p ∈ (3
2 , 2].

(5)

We also write xr = (1 + r)ν(p) exp(r2/2). The function ν(p) results from mar-

tingale moderate deviations; see Theorem 2 and Remark 5. Let τn → ∞ be

a positive sequence and Un a sequence of random variables such that the CLT

Un ⇒ Φ holds. We say that Un satisfies MDP with rate τn and exponent p > 0

if, for every a > 0, there exists a constant C = Ca,p, independent of x and n,

such that
∣

∣

∣

∣

P(Un ≥ rx)

1 − Φ(rx)
− 1

∣

∣

∣

∣

≤ C
( x

τn

)
1

(1+2p)
and

∣

∣

∣

∣

P(Un ≤ −rx)
Φ(−rx)

− 1

∣

∣

∣

∣

≤ C
( x

τn

)
1

(1+2p)
(6)

hold uniformly in x ∈ [1, aτn]. The quantity τn gives a range for which the MDP

is applicable and larger τn is preferred for wider applicability. The MDP (6)

implies the expansion

P(Un ≥ rx) = [1 − Φ(rx)]

{

1 +O
[( x

τn

)
1

(1+2p)
]

}

=
exp

(

−r2
x

2

)

rx
√

2π
{1 + o(1)}

as x → ∞, with x = o(τn). Following Remark 1 in Grama and Haeusler (2006),

as x→ ∞, rx has the asymptotic expansion r2x = 2 log x− [2ν(p) + o(1)] log(1 +√
2 log x).
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Theorem 1. Let X0 ∈ L2p, p ∈ (1, 2] and assume Θ2p(0) < ∞. Then the limit

σ = limn→∞ ‖Sn‖/
√
n exists and is finite. Assume σ > 0 and that there exist

0 < α ≤ β ≤ α+ 1/2 such that the following conditions hold:

Θ2p(m) = O(m−α), (7)

ψ2p(m) :=

∞
∑

i=m

θ2
2p(i) = O(m−2β). (8)

Let η = αβ/(1 + α). Then Sn/(σ
√
n) satisfies MDP with rate τn = np−1, or

τn = np−1/ logp n, or τn = npη, under η > 1−1/p, or η = 1−1/p, or η < 1−1/p,

respectively, and exponent p.

Remark 1. Throughout the paper we assume σ > 0. If σ = 0, then Sn/
√
n→ 0

in probability and has a degenerate limiting distribution. One way out is to

consider Sn/‖Sn‖. It is unclear how to establish an MDP for Sn/‖Sn‖.
Remark 2. Clearly (7) implies (8) if α ≥ β. On the other hand, if β ≥
α + 1/2, then (8) implies (7). To see this, by Schwarz’s inequality for k ∈ N,
∑2k−1

i=k θ2p(i) ≤ [k
∑2k−1

i=k θ2
2p(i)]

1/2 = O(k1/2−β). So (7) follows by summing up

the latter inequality over k = 2rm, r = 0, 1, . . .. Hence the condition α ≤ β ≤
α+ 1/2 in Theorem 1 is needed to avoid redundancy of either conditions.

Corollary 1. Let X0 ∈ L2p, p ∈ (1, 2]. Assume that either [i] (7) holds for some

α >
p− 1 +

√

5p2 − 6p + 1

2p
(9)

or [ii] (8) holds for some

β >
3p− 2 +

√

17p2 − 20p + 4

4p
. (10)

Then Sn/(σ
√
n) satisfies MDP with rate τn = np−1 and exponent p.

Proof. Let η be as in Theorem 1. [i] If (7) holds, then (8) holds with β = α.

Observe that (9) implies η = α2/(1+α) > 1− 1/p. [ii] By Remark 2, if (8) holds

for some β > 1/2, then we have (7) with α = β − 1/2. Simple calculations show

that (10) implies η = β(β − 1/2)/(β + 1/2) > 1− 1/p. By Theorem 1, Corollary

1 follows.

3. Applications

To apply Theorem 1, one needs to compute the physical dependence measure

θq(i) = ‖Xi −X ′
i‖q. It is usually not difficult to work with θq(i) due to the way
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it is defined, which is directly based on the data-generating mechanism of the

underlying process. Here we calculate θq(i) for functionals of linear processes

and some nonlinear time series.

3.1. Functionals of linear processes

Let (εi)i∈Z be iid random variables with ε0 ∈ Lq, q > 0. Assume E (ε0) = 0

if q ≥ 1. Let ai be real numbers satisfying
∑∞

i=0 |ai|q∧2 < ∞. By Kolmogorov’s

Three Series Theorem, the linear process

Yi =

∞
∑

j=0

ajεi−j (11)

is well defined and strictly stationary (cf., Corollary 5.1.3 in Chow and Teicher

(2003)). Let 0 < ς ≤ 1 and υ ≥ 0; let H(ς, υ) be the collection of functions h

such that

|h(x) − h(x′)| ≤ c|x− x′|ς(1 + |x| + |x′|)υ, x, x′ ∈ R, (12)

where c = ch,ς,υ is a constant independent of x and x′. Clearly, H(ς, 0) cor-

responds to globally Hölder-continuous functions with index ς. If h(x) = |x|b,
b > 1, then h ∈ H(1, b − 1). Let h ∈ H(ς, υ) and consider

Xi = h(Yi) − E [h(Yi)].

Assume h(Y0) ∈ L2p, where p ∈ (1, 2] satisfies 2p(ς+υ) ≤ q. Then either 2pς < q

or 2pυ < q. If 2pς < q, let ̺ = q/(2pς) and ̺′ = ̺/(̺ − 1), then 2pυ̺′ ≤ q.

Recall ε0, Y0 ∈ Lq. Define Y ′
i = Yi + ai(ε

′
0 − ε0). Then θ2p(i) = O(|ai|ς) since, by

Hölder’s inequality,

θ2p
2p(i) = ‖h(Yi) − h(Y ′

i )‖2p
2p ≤ c2p

∥

∥

∥
|Yi − Y ′

i |2pς(1 + |Yi| + |Y ′
i |)2pυ

∥

∥

∥

1

≤ c2p
∥

∥

∥
|Yi − Y ′

i |2pς
∥

∥

∥

̺
×

∥

∥

∥
(1 + |Yi| + |Y ′

i |)2pυ
∥

∥

∥

̺′
= O(|ai|2pς). (13)

If 2pυ < q, then (13) holds with ̺′ = q/(2pυ) and ̺ = ̺′/(̺′ − 1). Corollary 1

[ii] entails

Corollary 2. Let ε0 ∈ Lq, q > 0, and ai = O(i−γ) for some γ > 0. Assume

h ∈ H(ς, υ), ς ∈ (0, 1], υ ≥ 0 and h(Y0) ∈ L2p for some p ∈ (1, 2]. Further

assume that

2p(ς + υ) ≤ q and γς >
5p− 2 +

√

17p2 − 20p + 4

4p
. (14)
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Then Sn/(σ
√
n) satisfies MDP with rate τn = np−1 and exponent p.

If h(x) = x, then ς = 1 and υ = 0. Let ε0 ∈ L2p, p ∈ (1, 2], and E (ε0) = 0.

Then σ has a closed form: σ = |∑∞
i=0 ai|‖ε0‖ (cf., (24)). Assume σ > 0 and that

(14) holds with q = 2p. Then Corollary 2 is applicable.

Example 1. Let q ≥ 4 and ai = O(i−γ), γ > 1 +
√

2/2. Let h(Y0) ∈ L4 and

h be Lipschitz continuous. Then Sn/(σ
√
n) satisfies MDP with rate τn = n and

exponent 2.

Example 2. Consider the AR(r) model Yn = b1Yn−1+b2Yn−2+· · ·+brYn−r+εn.

Assume that 1 − b1x − b2x
2 − · · · − brx

r 6= 0 for all |x| ≤ 1. Then Yn is of the

form (11) with the coefficients ai = O(λi) for some |λ| < 1. Let ε0 ∈ Lq for some

q > 0 and h ∈ H(ς, υ) such that h(Y0) ∈ L4. If q ≥ 4(ς + υ), then Sn/(σ
√
n)

satisfies MDP with rate τn = n and exponent 2. A similar example is considered

in Grama and Haeusler (2006). Comparing with their method, our approach is

simpler and it allows for functionals of AR(r) processes. The latter situation

seems difficult to deal with using Grama and Haeusler’s method.

It is slightly more complicated to deal with the empirical process in which

hx(·) = 1·≤x. Stronger conditions on γ and εi are needed.

Corollary 3. Let ai = O(i−γ), γ > 0. Assume either [i] ε0 ∈ L1, γ > 4 + 2
√

2

and ε0 has a bounded density, or [ii] ε0 ∈ Lq, γ(q ∧ 4) > 20 + 10
√

2 and Y0 has a

Lipschitz-continuous distribution function. Then Sn/(σ
√
n) satisfies MDP with

rate τn = n and exponent 2.

Proof. By Corollary 1[ii], it suffices to verify (8) for some β > (1 +
√

2)/2 and

p = 2.

[i] Without loss of generality let a0 = 1. Denote by Fε and fε the distribution

and density functions of εi, respectively. Clearly, θ4(0) ≤ 1. Let i ∈ N. If ai = 0,

then Y ′
i = Yi and θ4(i) = 0. If ai 6= 0, since ε0 ∈ L1, we have

E

{

Fε

(x− εi
ai

)[

1 − Fε

(x− εi
ai

)]

}

=

∫

R

Fε

(x− u

ai

)

[

1 − Fε

(x− u

ai

)

]

fε(u)du

= |ai|
∫

R

Fε(t)[1 − Fε(t)]fε(x− ait)dt

= O(|ai|).

Observe that

E
∣

∣

∣
1εi+aiε0≤x − E (1εi+aiε0≤x|εi)

∣

∣

∣
= 2E

{

Fε

(x− εi
ai

)[

1 − Fε

(x− εi
ai

)]

}
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and E (1εi+aiε0≤x|εi) = E (1εi+aiε′0≤x|εi). We have by the triangle inequality that

E
∣

∣

∣
1εi+aiε0≤x − 1εi+aiε′0≤x

∣

∣

∣
≤ 2E

∣

∣

∣
1εi+aiε0≤x − E (1εi+aiε0≤x|εi)

∣

∣

∣
= O(|ai|)

uniformly in x. By independence, the preceding relation implies supx E |1Yi≤x −
1Y ′

i ≤x| = O(|ai|). Hence θ4(i) = O(|ai|1/4) and (8) is satisfied with β = γ/4−1/2.

[ii] Let i be fixed. Define ω(u) = 1u≤x +1x<u<x+λ(x+λ−u)/λ. Then ω(·) is

bounded and Lipschitz continuous with Lipschitz constant 1/λ. By the triangle

inequality,

‖1Yi≤x − 1Y ′

i ≤x‖4 ≤ ‖ω(Yi) − ω(Y ′
i )‖4 + 2‖1Yi≤x − ω(Yi)‖4

= O

( |ai|
(q∧4)

4

λ
+ λ

1
4

)

in view of the Lipschitz continuity of the distribution function of Yi. Let λ =

i−γ(q∧4)/5. Then θ4(i) = O(i−γ(q∧4)/20) and (8) holds with β = γ(q∧4)/20−1/2.

Remark 3. Let ε0 ∈ Lq. If q ≥ 1, then [ii] imposes a more restrictive decay rate

on ai while relaxing the assumption on the distribution function of εi. If q < 1,

[i] is not applicable. So [i] and [ii] have different ranges of applicability.

Example 3. Consider the AR(1) process Yn = aYn−1 + (1 − a)εn, where εn
are Bernoulli random variables with success probability 1/2. Then an = O(an).

In the particular case of a = 1/2, this model has uniform(0, 1) as its invariant

distribution. Solomyak (1995) showed that for almost all a ∈ [1/2, 1) (Lebesgue),

Yn has an absolutely continuous invariant measure. Therefore for those a (say,

a = 1/2) such that the density of Yn is bounded, conditions [ii] in Corollary 3

are satisfied and the moderate deviation principle (6) holds for Un = Sn/(σ
√
n)

with rate τn = n and exponent 2.

3.2. Nonlinear time series

Let εi, i ∈ Z, be iid random variables and define recursively

Xn = R(Xn−1, εn), (15)

where R(·, ε) is a measurable random map. Many popular nonlinear time series

models are of the form (15), including the TAR(1) model Xn = aX+
n−1+bX−

n−1+

εn, the ARCH model Xn = εn(a2 + b2X2
n−1)

1/2, and the EAR model Xn =

[a + b exp(−cX2
n−1)]Xn−1 + εn, among others. Assume that there exist x0 and

α > 0 such that R(x0, ε0) ∈ Lα and

ρ := sup
x 6=x′

‖R(x, ε0) −R(x′, ε0)‖α

|x− x′| < 1. (16)
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Under (16), Wu and Shao (2004) showed that, by iterating (15), Xn is of the form

(2) for some function g. Furthermore, Xn satisfies the following property: let

(ε′i)i∈Z be an iid copy of (εi)i∈Z and F∗
n = (. . . , ε′−1, ε

′
0, ε1, . . . , εn) be the coupled

processes of Fn, then

‖Xn − g(F∗
n)‖α = O(ρn). (17)

Following Wu (2005), (17) implies θα(n) = O(ρn). By Corollary 1, we have

Corollary 4. Assume (Xn) satisfies (17) for some α > 2. Let p = (α ∧ 4)/2.

Then [Sn − E (Sn)]/(σ
√
n) satisfies MDP with rate τn = np−1 and exponent p.

4. A Simulation Study

In this section we carry out a simulation study to investigate the relationship

between the accuracy of tail probabilities and the strength of dependence. Given

observations (Xi)1≤i≤n of a stationary process, the population mean µ = E (Xi)

can be estimated by the sample mean X̄n = Sn/n. For α ∈ (0, 1), a 100(1−α)%

level confidence interval can be constructed as X̄n ± z1−α/2σ̂/
√
n, where σ̂ is an

estimate of long-run standard deviation σ (see Theorem 1) and z1−α/2 is the upper

(1−α/2)th quantile of a standard normal distribution. In many applications the

values of α are small and hence it is more desirable to apply results of type (6)

which provide asymptotic expansions for tail probabilities. Typical values of α

are 0.01 or 0.05.

Consider the nonlinear time series model

Xi = θ|Xi−1| +
√

1 − θ2εi, (18)

where εi are iid standard normals and θ ∈ (−1, 1). Let φ = Φ′ be the standard

normal density function. The stationary distribution of (18) has a close form

density function f(u) = 2φ(u)Φ(δu) which corresponds to a skew-normal distri-

bution with the skewness parameter δ = θ/
√

1 − θ2 (Andel, Netuka and Svara

(1984)). So the mean µ = E(Xi) =
∫

xf(x)dx = θ
√

2/π. For θ = 0.1, 0.3, 0.5,

0.7 and 0.9, the estimated long-run standard deviations σ̂ are 1.01, 1.04, 1.11,

1.28, and 1.87, respectively (Wu and Zhao (2007)).

Larger values of θ indicate higher skewness and stronger dependence. For our

simulation we choose 4 levels of α: α = 0.005, 0.01, 0.025 and 0.05, and calculate

the tail probabilities l(α) = P[
√
n(X̄n − µ)/σ ≤ zα] and u(α) = P[

√
n(X̄n −

µ)/σ ≥ z1−α] based on 106 realizations of (18). Note that z0.005 = −2.575829,

z0.01 = −2.326348, z0.025 = −1.959964, and z0.05 = −1.644854. The sample size

n = 200. The ratios of tail probabilities with respect to α are displayed in Table

1. The 2nd-5th columns show the ratios of lower tail probabilities l(α) and α.
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Table 1. Ratios of tail probabilities with respect to α. The 2nd-5th columns:
the ratios of lower tail probabilities l(α) and α. The 6th-9th columns: the
ratios of upper tail probabilities u(α) and α.

α 0.005 0.01 0.025 0.05 0.05 0.025 0.01 0.005

θ=0.9 0.258 0.423 0.667 0.857 1.374 1.679 2.239 2.877

θ=0.7 0.546 0.664 0.807 0.899 1.118 1.228 1.413 1.577

θ=0.5 0.714 0.777 0.867 0.923 1.048 1.087 1.167 1.248
θ=0.3 0.786 0.843 0.905 0.937 1.008 1.021 1.047 1.080

θ=0.1 0.906 0.936 0.948 0.964 0.995 0.994 1.001 1.004

The last four columns shows the ratios of upper tail probabilities. We say that

the approximation is good if the ratio is close to 1.

Table 1 shows that, as θ increases, namely the dependence gets stronger, then

the approximation becomes worse, especially when α is small. This phenomenon

can be explained by Theorem 1. If the dependence is stronger, then the martin-

gale approximation (cf., (25) and (26) in the proof of Theorem 1) becomes less

accurate, and the range of the applicability of MDP is narrower. Consequently

the tail probabilities are further away from their nominal levels.

Remark 4. The MDP of type (6) provides more accurate information than

the one based on the logarithmic scale. For example let α = 0.005 and θ =

0.9. Then the ratio 0.258 is far below 1. In comparison, the lower tail prob-

ability is 0.258 × 0.005 = 0.00129 and the ratio in the logarithmic scale is

log(0.00129)/ log(0.005) = 1.2557, which is relatively closer to 1, and it does

not seem to imply that the approximation is unsatisfactory.

5. Proofs

To prove Theorem 1, we need the following Theorems 2 and 3. The former

is adapted from Grama (1997) and Grama and Haeusler (2006), hereafter abbre-

viated as G97 and GH06, respectively. The latter is a variant of the maximal

inequality given in Peligrad, Utev and Wu (2007), where the case p ≥ 2 is dealt

with.

Theorem 2. Let ξn,k ∈ L2p, 1 < p ≤ 2, be martingale differences with respect to

the filtration Fn,k, 1 ≤ k ≤ n, and let Ξn =
∑n

k=1 ξn,k. Define

Ln
p =

n
∑

k=1

E |ξn,k|2p and Nn
p = E

∣

∣

∣

∣

n
∑

k=1

E (ξ2n,k|Fn,k) − 1

∣

∣

∣

∣

p

. (19)

Let rx be the solution to the equation (5). Then for every a > 0 there exists a

constant Ca,p, depending only on a and p, such that uniformly over x ∈ [1, a(Ln
p +
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Nn
p )−1],

max

{

∣

∣

∣

P(Ξn≥rx)

1 − Φ(rx)
−1

∣

∣

∣
,

∣

∣

∣

P(Ξn≤−rx)
Φ(−rx)

−1
∣

∣

∣

}

≤Ca,p[x(L
n
p +Nn

p )]
1

(2p+1) . (20)

Remark 5. Under p ∈ (1, 2], G97 proved (20) for rx satisfying x = (1 +

rx)6p−3 exp(r2x/2). If p ∈ (1, 3/2], GH06 obtained (20) for rx satisfying x =

(1 + rx)2p+1 exp(r2x/2), thus improving G97’s result by allowing a wider range

of rx since 6p − 3 > 2p + 1. GH06 argued that the exponent 2p + 1 is optimal

if p ∈ (1, 3/2]. However, if p ∈ (3/2, 2], then in certain applications the G97

result allows a wider range of rx, while for GH06 the higher moment property

p ∈ (3/2, 2] is not advantageous since one can only use p = 3/2. For example, in

the application to nonlinear time series in Section 3.2, if (17) holds with α = 4,

then Corollary 4 asserts an MDP with τn = np−1 = n since p = 2. In comparison,

using GH06, one can only obtain the narrower range with τn = n3/2−1 = n1/2.

Theorem 3. Let ξi, i ∈ Z, be a stationary Markov chain; let Zi = h(ξi) be

a stationary process with zero mean and Zi ∈ Lp, 1 < p ≤ 2. Write Ti =

Z1 + · · · + Zi and T ∗
n = maxi≤n |Ti|. Then for every non-negative integer d, we

have

‖T ∗
2d‖p ≤ Cp2

d
p

d
∑

r=0

2−
r
p ‖E (T2r |ξ0)‖p +Bp2

d
p ‖Z1‖p, (21)

where Bp = 18p5/3(p− 1)−3/2 and Cp = Bp + 2−1/p +Bp2
1−1/p.

Proof. We apply an induction argument. Clearly (21) holds if d = 0. Assume

that it holds for d−1. Let Yi = E(Z2i−1|ξ2i−2)+E (Z2i|ξ2i−1), Wi = Y1 + · · ·+Yi

and W ∗
n = maxi≤n |Wi|. By the induction hypothesis,

‖W ∗
2d−1‖p ≤ Cp2

(d−1)
p

d−1
∑

r=0

2
− r

p ‖E (W2r |ξ0)‖p +Bp2
(d−1)

p ‖Y1‖p. (22)

Let Lj = Zj − E (Zj |ξj−1). Then Mk :=
∑k

j=1 Lj is a martingale. Observe that

T ∗
2d ≤ max

k≤2d
|Mk| +W ∗

2d−1 + max
k≤2d−1

|E (Z2k−1|ξ2k−2)|.

By Burkholder’s inequality, ‖maxk≤n |Mk|‖p ≤ Bpn
1/p‖L1‖p. Hence

‖T ∗
2d‖p ≤ Bp2

d
p ‖L1‖p + ‖W ∗

2d−1‖p + 2
(d−1)

p ‖E (Z1|ξ0)‖p. (23)

Note that E (W2r |ξ0) = E (T21+r |ξ0). Elementary calculations show that (21) fol-

lows from (22) and (23) in view of ‖L1‖p ≤ ‖E (Z1|ξ0)‖p+‖Z1‖p and ‖E (Z1|ξ0)‖p

≤ ‖Z1‖p.
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Proof of Theorem 1. We only prove the first half of (6) since the second half

follows similarly. Let Cp be a generic constant which may vary among lines. For

notational simplicity we omit the subscript 2p and write θ(i) (resp. Θ(i) or ψ(i))

for θ2p(i) (resp. Θ2p(i) or ψ2p(i)). Recall Fi = (. . . , εi−1, εi). For k ∈ Z let

Dk =
∞
∑

i=k

PkXi, where PkZ = E(Z|Fk) − E (Z|Fk−1). (24)

Since P0Xi = E(Xi − X ′
i|F0), Jensen’s inequality has ‖P0Xi‖2p ≤ θ(i) which,

by the condition Θ2p(0) < ∞, implies that D0 ∈ L2p. Note that the Dk, k ∈
Z, are stationary and ergodic martingale differences with respect to Fk, and

limn→∞ ‖Sn‖/
√
n = σ = ‖D0‖ (cf., Theorem 1 in Wu (2007)). Define

Mk =

k
∑

i=1

Di and Rk = Sk −Mk. (25)

By Theorem 1(ii) in Wu (2007), there exists a positive constant Cp such that

‖Rn‖2
2p ≤ Cp

n
∑

i=1

[

∞
∑

j=i

‖P0Xj‖2p

]2
≤ Cp

n
∑

i=1

Θ2(i). (26)

Let

Λ(n) =
[

n−1
n

∑

i=1

Θ2(i)
]p

and ǫx =
[xΛ(n)]

1
(1+2p)

1 + rx
. (27)

Since Sn = Mn +Rn, by the triangle and Markov’s inequalities, we have

P(Mn ≥
√
nσ(rx + ǫx)) ≤ P(|Rn| ≥

√
nσǫx) + P(Sn ≥

√
nσrx)

≤
‖Rn‖2p

2p

(
√
nσǫx)2p

+ P(Sn ≥
√
nσrx)

≤ Cp
pΛ(n)

(σǫx)2p
+ P(Sn ≥

√
nσrx). (28)

Similarly,

P(Sn ≥
√
nσrx) ≤ P(Mn ≥

√
nσ(rx − ǫx)) +

Cp
pΛ(n)

(σǫx)2p
. (29)

Observe that Λ(n) = O(n−p) if α > 1/2, Λ(n) = O[(n−1 log n)p] if α = 1/2, and

Λ(n) = O(n−2αp) if α < 1/2. Since α ≤ β ≤ 1/2 + α, simple calculations show

that τnΛ(n) → 0 for all three cases η > 1 − 1/p, η = 1 − 1/p, or η < 1 − 1/p.
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Hence ǫx(1 + rx) → 0 as n→ ∞ uniformly in x ∈ (1, ατn]. Note that 1− Φ(t) ≥
φ(t)/(1 + t), t > 0. Then

1−Φ(rx − ǫx)

1 − Φ(rx)
−1 ≤ ǫxφ(rx−ǫx)

1 − Φ(rx)
= O(ǫx(1+rx)eǫxrx) = O(ǫx(1+rx)). (30)

To deal with Mn, we now apply Theorem 2. A major difficulty and key step in

applying Theorem 2 is to find a bound for

In =
n

∑

i=1

‖Di‖2p
2p

np
+

∥

∥

∥

Vn

n
− σ2

∥

∥

∥

p

p
= n1−p‖D0‖2p

2p +
∥

∥

∥

Vn

n
− σ2

∥

∥

∥

p

p
, (31)

where Vn is the sum of conditional variances or quadratic characteristic

Vn =
n

∑

i=1

E (D2
i |Fi−1). (32)

Interestingly, with our physical dependence measure (3), a bound with simple

and explicit form can be found. To this end, by Proposition 3 in Wu (2007),

there exists a constant Cp > 0 such that

‖E (D2
m|F0)−σ2‖p ≤ Θ(0)Cpψ

1
2 (m) + Θ(0)Cp

∞
∑

i=m

min
[

ψ
1
2 (i+1), θ(i−m+1)

]

.

Let m1 = ⌊mβ/(1+α)⌋. By (7) and (8),

∞
∑

i=m

min
[

ψ
1
2 (i+1), θ(i−m+1)

]

≤
m+m1
∑

i=m

ψ
1
2 (i+1)+

∞
∑

i=m+m1+1

θ(i−m+1)=O(m−η).

So ‖E (D2
m|F0) − σ2‖p = O(m−η) and, by the triangle inequality, ‖E (Vm|F0) −

mσ2‖p =
∑m

i=1O(i−η). Applying Theorem 3 with ξi = Fi−1 and Zi = Vi −
iσ2, elementary calculations show that ‖Vn − nσ2‖p = O(n1/p), O(n1/p log n), or

O(n1−η) if η > 1 − 1/p, η = 1 − 1/p, or η < 1 − 1/p, respectively. Combining

these three cases, we have In = O(τ−1
n ).

By Theorem 2, since xrx−ǫx/x = 1 + O((1 + rx)ǫx), there exists a constant

C independent of x and n such that

∣

∣

∣

P(Mn ≥ √
nσ(rx − ǫx))

1 − Φ(rx − ǫx)
− 1

∣

∣

∣
≤ C(xIn)

1
(1+2p) (33)

holds uniformly in x ∈ [1, aτn]. Clearly the above relation also holds with rx − ǫx
replaced by rx + ǫx. By (29), (30) and (33),

P(Sn ≥ √
nσrx)

1 − Φ(rx)
− 1 ≤ P(Mn ≥ √

nσ(rx − ǫx))

1 − Φ(rx)
− 1 +

Λ(n)

(1 − Φ(rx))(σǫx)2p
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= O
{

(xIn)
1

(1+2p)

}

+O(ǫx(1 + rx)) +
O(Λ(n))(1 + rx)

φ(rx)ǫ2p
x

.

A lower bound for P(Sn ≥ √
nσrx)/[1 − Φ(rx)] can be similarly obtained. So

Theorem 1 follows in view of the choice of ǫx in (27).
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