
Statistica Sinica 18(2008), 731-748

BETWEEN- AND WITHIN-CLUSTER COVARIATE EFFECTS

AND MODEL MISSPECIFICATION IN THE ANALYSIS

OF CLUSTERED DATA

Lei Shen1, Jun Shao2, Soomin Park1 and Mari Palta2

1Eli Lilly and Company and 2University of Wisconsin-Madison

Abstract: We consider the analysis of clustered data using linear mixed effects

models and generalized estimating equations, where covariates can be decomposed

into between- and within-cluster components. Under the false assumption of equal

between- and within-cluster covariate effects, we simultaneously study the asymp-

totic behavior of the estimators for regression coefficients, intra-cluster correlation

and residual error variance. This provides a more complete assessment of the effect

of such model misspecification than is currently available in the literature. We then

apply the results to gain insights into the effects of confounding and measurement

error. Key findings include the structure of bias when both cohort and period

effect confounding are present, quantification of the attenuation effect of measure-

ment error, effects of measurement error of some covariates on the estimation of

coefficients of error-free covariates, and consistent estimation in the presence of

measurement error. The results are extended to allow different cluster sizes, and

three longitudinal data sets are used for illustrative purposes.
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1. Introduction

Clustered data arise in many fields and in various forms. Although our work

is motivated by longitudinal data from health-related studies, the results in this

paper apply equally to, for example, panel data in econometrics, clustered data

in clinical trials, and survey data collected by cluster sampling. In these types of

data, a number of outcomes together with some covariates are available for each

cluster or subject. Covariates can then be decomposed into between- and within-

cluster components. For example, consider a survey completed by each subject

at multiple time points. When age is considered as a covariate, the average

of ages over all time points represents the between-cluster component, while the

deviation between the age at a specific time point and the average age constitutes

the within-cluster component. In this paper we concentrate on the situation

where the outcome variable is continuous and a linear model between the outcome

variable and the between- and within-cluster covariates is appropriate.
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Quite often, one fails to distinguish between- and within-cluster components

of covariates, which is unwise. We demonstrate unequal covariate effects in three
data sets. The first concerns the effect of aging on body mass index. The second

arose from a study of formaldehyde emission in mobile homes. The third study

investigates the relationship between perceived sleepiness and variables including

sleep latency, the length of time it takes a person to fall asleep at night. These
data sets are analyzed in Section 5 to illustrate the usefulness of findings in this

paper.

Assuming equal between- and within-cluster covariate effects leads to es-

timates which are misleading when the assumption is wrong. Scott and Holt
(1982) obtained important results in a sample survey setting. They showed that

the generalized least squares estimate of the regression coefficient, under the er-

roneous assumption, is a weighted average of the ordinary least squares estimates

from the cross-sectional and within-cluster regressions. Neuhaus and Kalbfleisch
(1998) derived extensions for linear and generalized linear mixed models. Histor-

ically, an equivalent problem was considered by Wishart (1938) who formulated

it as dependence of the distribution of the random subject effects on covariates,
and it was further addressed by Maddala (1971), Mundlak (1978) and Hausman

(1978). These authors showed that such dependence shows up as unequal covari-

ate effects.

In practice, intra-cluster correlation is typically estimated, rather than known
or fixed as assumed by Scott and Holt (1982). We often fit linear mixed effects

models to longitudinal data with continuous outcomes (Laird and Ware (1982)) or

use generalized estimating equations (Liang and Zeger (1986)). The intra-cluster

correlation is then estimated simultaneously with the regression coefficients and
the residual error variance. In Section 2, we investigate the estimators under

the false assumption of equal covariate effects. By simultaneously studying these

estimators, we are able to better evaluate the consequence of wrongly assuming

equal covariate effects. It is shown that the regression coefficient estimator un-
der the misspecified model converges to a linear combination of two covariate

effects, with coefficients related to the estimated, rather than true, intra-cluster

correlation. The estimated residual error variance under the misspecified model

over-estimates the true residual error variance. Important extensions are made
to allow multiple covariates and unequal cluster sizes, which commonly occur in

practice. Based on our results for multiple covariates, one can identify situa-

tions where different between- and within-cluster effects of some covariates not

only affect the estimates for the effects of these covariates, but also cause bi-
ases in the estimation of effects of other covariates that have equal between- and

within-cluster effects.

Even if one correctly specifies a model with different covariate effects, inter-

pretation of the between- and within-cluster coefficients is often difficult without
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explaining how the difference may have arisen. Thus, it is important to inves-

tigate possible causes. Louis et al. (1986) showed that different covariate effects

can result from non-linearity. Ware et al. (1990) proposed cohort and period

effects as possible causes. Palta and Yao (1991) formulated a formal model for

these types of confounding and showed that they lead to discrepancy between

the two covariate effects. Chao, Palta and Young (1997) derived similar results

for binary data. Using the results in Section 2, we study in Section 3 the effect of

confounding under a model which extends that of Palta and Yao (1991). Some

results on the structure of bias in parameter estimation are derived. In Section

4, we extend some results in the literature on measurement error in linear re-

gression, such as attenuation caused by measurement error and the impact of

measurement error of one covariate on the estimation of effects of other covari-

ates. The relationship between the amount of bias in the slope estimator and

cluster size, covariate structure and measurement error variance is investigated.

Furthermore, we are able to identify some situations where consistent estimators

can be derived for parameters of interest without requiring supplemental data.

Our study sheds light on the nature of different covariate effects, and on the

bias in parameter estimation when omitted confounders or measurement error

are not properly taken into account in the analysis of clustered data. Some of

our findings, such as parameter estimation in the presence of measurement error

without supplemental data and the relationship between the bias of estimators

and the cluster size, choice of working correlation in generalized estimating equa-

tions, and the structure of the covariates, have important implications for the

design and analysis of studies with clustered data.

2. Estimators under the Misspecified Model

We consider a clustered data set with n subjects (clusters). For the ith

subject, we observe outcomes Yij and a p dimensional covariate vector Xij,

j = 1, . . . , ki, where ki is the cluster size and i = 1, . . . , n. We first focus on

the balanced case of ki = k for all i. Postulate the model

Y i = α∗1 + Xiβ
∗ + e∗

i = X̃iγ
∗ + e∗

i , (1)

where Y i is the k-vector whose jth component is Yij, 1 is the k-vector of ones,

Xi is the k×p matrix whose jth row is Xij, α∗ is an unknown parameter, β∗ is a

p-vector of unknown parameters, X̃i = (1,X i), γ∗ = (α∗,β∗
′

)′, the e∗

i are inde-

pendent and identically distributed with mean zero and k × k covariance matrix

σ2
e∗V ρ∗ , V a denotes the matrix consisting of 1 for every diagonal entry and a for

every off diagonal entry, and ρ∗ and σ2
e∗ are the unknown intra-cluster correlation

and the residual error variance, respectively. In the linear mixed effects model,

the e∗

i are assumed to be normally distributed, and parameters γ∗, ρ∗ and σ2
e∗
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can be estimated by maximum likelihood (Lindstrom and Bates (1988)). These

estimates coincide with solutions to the following generalized estimating equa-

tions (Liang and Zeger (1986)) with a compound-symmetry working correlation

matrix:

γ∗ =
(

n
∑

i=1

X̃ i
′

V −1
ρ∗ X̃i

)

−1
n

∑

i=1

X̃i
′

V −1
ρ∗ Y i (2)

σ2
e∗ =

n
∑

i=1

(Y i − X̃iγ
∗)′V −1

ρ∗ (Y i − X̃ iγ
∗)

nk
(3)

[1 + (k − 1)ρ∗]σ2
e∗ =

n
∑

i=1

(Y i − X̃iγ
∗)′11′(Y i − X̃iγ

∗)

nk
. (4)

Now, assume that the true underlying data-generating model is not (1), but

Y i = α1 + (X i − X̄i)βwc + X̄iβbc + ei, (5)

where X̄i = (X̄1i1, . . . , X̄pi1)′, X̄ai is the mean of the ath covariate over the ith

cluster for a = 1, . . . , p, βbc and βwc correspond to the between- and within-

cluster covariate effects, respectively, and the ei are independent and identically

distributed with mean zero and k × k covariance matrix σ2
eV ρ.

The asymptotic properties of the estimators under the misspecified Model (1)

can be obtained by studying equations (2)-(4). Since the number of observations

for each subject is typically not large in a longitudinal study and the number

of subjects can be large, we focus on the asymptotics when n → ∞ and k is

fixed. The proof of the following result can be found in the Appendix given in

the webside www.stat.wisc.edu/∼shao.

Theorem 1. Assume that {Y i,X i} are independent and identically distributed

with finite second moments. The solutions of the equations (2)−(4), denoted

by α̂∗, β̂
∗

, ρ̂∗, and σ̂2
e∗, converge a.s. to some values α∗

∞
, β∗

∞
, ρ∗

∞
and σ2

e∗,∞,

respectively. There exists a p × p matrix Λ such that

β∗

∞
= (I − Λ)βwc + Λβbc, (6)

where I is the identity matrix of order p. Moreover, σ2
e∗,∞ ≥ σ2

e .

Hence, σ2
e∗,∞ is an inflated estimator of the residual error variance. The

estimator of β∗ converges to a linear combination of βbc and βwc. In many cases,

the parameter of interest is not any of βbc, βwc and β∗

∞
. This will be further

explored in Sections 3-4.

The form of Λ and more results are given for the following specific situations.

Case 1. Single Covariate



CLUSTER COVARIATE EFFECTS AND MODEL MISSPECIFICATION 735

Consider the situation where there is a single covariate (p = 1). That is,

Xi = (xi1, . . . , xik)
′. Often, the covariates within clusters are not independent.

Rather, cluster means of the covariate can be assumed to follow a certain dis-

tribution while a specific covariate value deviates from the corresponding cluster

mean. Therefore, we consider the covariate as the sum of between- and within-

cluster components. Furthermore, in longitudinal studies, the covariates are often

time-dependent. Thus, we consider the following model for the covariate:

xij = ξx,j + mxi
+ ǫxij

, (7)

where (ξx,1, . . . , ξx,k)
′ is a vector of parameters, {mxi

} and {ǫxij
} are independent

of each other and independently and identically distributed with means zero and

variances σ2
mx

and σ2
ǫx

, respectively. We denote σ2
mx

/(σ2
mx

+σ2
ǫx

) by ρx,
∑

j ξx,j/k

by ξ̄x, and
∑

j(ξx,j − ξ̄x)2/(kσ2
mx

+ kσ2
ǫx

) by S2
ξ . Then, the result in Theorem 1

applies with

α∗

∞
= α + (1 − λ)(βbc − βwc)ξ̄x (8)

β∗

∞
= (1 − λ)βwc + λβbc, (9)

where

λ = λ(ρ∗
∞

), λ(ρ) =
(1 − ρ){1 + (k − 1)ρx}k−1

1 + {k − 2 − (k − 1)ρx}ρ + {1 + (k − 1)ρ}S2
ξ

(10)

is between 0 and 1 (see the derivations in the Appendix). Moreover,

ρ∗
∞

≥ ρ if ρx ≤ 1 −
(1 − ρ) − (k − 1){1 + (k − 1)ρ}S2

ξ

(k − 1){1 + (k − 2)ρ} . (11)

These results indicate that the weights used to form the weighted average of

βbc and βwc in (6) depend on the cluster size, the estimated intra-cluster corre-

lation, and the nature of the covariate. Figures 1−2 illustrate the relationship

between the estimated regression coefficients and these parameters. Both plots

are generated under ξx,j = ξ̄x for all j, where δ = (βwc − βbc)
2(σ2

mx
+ σ2

ǫx
)/σ2

e

is a measure of the discrepancy between βwc and βbc. In general, larger cluster

size, higher intra-cluster correlation, and lower correlation among the covariate

values correspond to more longitudinal information and less cross-sectional in-

formation. Thus, it is not surprising that the estimated covariate effect under

the misspecified model is closer to the within-cluster covariate effect βwc when k

is larger, when ρx is smaller (Figure 1), and when ρ is larger (Figure 2).
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Figure 1. β∗

∞
in (9), as a function of cluster size k or ρx, when βwc = 1,

βbc = 0, ρ = 0.5, and δ = 1.
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Figure 2. λ(ρ∗
∞

) and λ(ρ) in (10) when k = 5, ρx = 0.5 and δ = 1.7.

The result also indicates that the estimation of the intercept parameter α is

affected by the different between- and within-cluster covariate effects, unless the

overall mean of the covariate is zero.

Scott and Holt (1982) considered a similar problem and derived an asymp-

totic limit of the generalized least squares estimator β̂∗, which is given by (9)

with λ replaced by λ(ρ), assuming that the correlation ρ is pre-determined.

Neuhaus and Kalbfleisch (1998) directly applied this result to maximum like-

lihood estimates, which can also be interpreted as generalized least squares es-

timates, as indicated by the score equation (2). However, we note that in the
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latter case, the correlation used in forming the generalized least squares is ρ̂∗,
the estimate of ρ∗. This correlation has complex behavior since it is obtained
under the misspecified model. Figure 2 illustrates the difference between λ(ρ)
and λ(ρ∗

∞
), which affects the calculation of β∗

∞
according to (9). The formula of

Scott and Holt (1982) leads to λ(ρ) corresponding to the higher curve, generally
about twice as large as λ = λ(ρ∗

∞
) corresponding to the lower curve.

When GEE are used to estimate the regression parameters, we have the
option of fixing the intra-cluster correlation at a certain value. Formula (10)
indicates that λ monotonously decreases as ρ∗

∞
increases. Therefore, choosing a

high correlation when applying GEE leads to a β∗

∞
close to the within-cluster

slope βwc, while the choice of a lower correlation results in a β∗

∞
close to the

between-cluster slope βbc.
Furthermore, (11) implies that the intra-cluster correlation estimated under

the wrong model is higher than in the true model if the covariate structure is more
longitudinal than cross-sectional, that is, ρx is small or S2

ξ is large. In fact, (11)

is guaranteed to hold if ρx ≤ (k−2)/(k−1) or S2
ξ ≥ (k−1)(1−ρ)/{1+(k−1)ρ}.

Case 2. Multiple Covariates

Consider a multiple covariates following

X ij = µx + mxi
+ ǫxij

, (12)

where µx is a p-vector of parameters, {mxi
} are independent and identically dis-

tributed with mean zero and p×p covariance matrix Σmx
, {ǫxij

} are independent
and identically distributed with mean zero and p× p covariance matrix Σǫx

, and
{mxi

} are independent of {ǫxij
}. Under (12), Theorem 1 holds with

Λ =

(

kΣmx
+ k

[1+(k−2)ρ∗
∞

1 − ρ∗
∞

]

Σǫx

)

−1

(kΣmx
+Σǫx

), (13)

α∗

∞
= α + µ′

x(I −Λ)(βbc − βwc) (14)

(see the Appendix). The structure of the matrix Λ is important in applica-
tions. When there are p covariates, some of them may have different between-
and within-cluster covariate effects, whereas the others do not. If Λ is diagonal,
then any difference between the two effects of one covariate does not affect the
consistency of the estimator of any other regression parameter under the misspec-
ified model. This can be illustrated more precisely as follows. Assume that the
between- and within-cluster covariate effects are equal for the last p−r covariates
but not for the first r covariates. We partition β∗

∞
into the first r elements and

the last (p − r) so that β∗

∞
= (β∗

′

∞,1,β
∗
′

∞,2)
′, and similarly βbc = (β′

bc,1,β
′

bc,2)
′,

βwc = (β′

wc,1,β
′

wc,2)
′, and

Λ =

(

Λ11 Λ12

Λ21 Λ22

)

,
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where Λ11 is a r × r matrix and Λ22 is a (p − r)× (p − r) matrix. From (6) and
the assumption that βbc,2 = βwc,2 = β2, we have

β∗

∞,1 = (I − Λ11)βwc,1 + Λ11βbc,1 (15)

β∗

∞,2 = β2 + Λ21(βbc,1 − βwc,1). (16)

Equation (15) indicates that asymptotically, estimators for the first r regression
parameters estimate a linear combination of the corresponding between- and
within-cluster covariate effects, while (16) implies that estimators for the remain-

ing (p − r) regression parameters may still be biased even though the between-
and within-cluster covariate effects for these covariates are equal (βbc,2 = βwc,2),
unless Λ21 = 0.

The following can be shown for the matrix Λ given by (13):

• Λ is a diagonal matrix if both Σmx
and Σex

are diagonal. That is, the p
covariates are uncorrelated with each other.

• Λ is a diagonal matrix if Σmx
and Σex

differ only by a multiplicative constant.

That is, the correlation structures of the between-cluster component and the
within-cluster component of the covariates are the same.

• Λ is a diagonal matrix if either Σmx
or Σex

is 0, i.e., the covariates vary only
within or between the clusters.

• Λ21 is 0 when the last (p − r) covariates are uncorrelated with the first r
covariates.

Finally, we extend Theorem 1 to the case of unequal cluster sizes ki with
ki ranging from 2 to some integer L, which can be due to an imbalanced design
or missing data. We assume that as n → ∞, the proportion of clusters with l

observations converges to a fixed constant pl for l = 2, . . . , L. We consider the
following underlying model for the data:

Y i = αki
1 + (X i − X̄i)βwc,ki

+ X̄iβbc,ki
+ ei. (17)

Note that we allow parameters α, βbc and βwc to depend on the cluster size.
Model (17) is natural when the difference in cluster sizes is due to an imbalanced
design. When the difference in cluster sizes is caused by missing data in responses,
(17) can be derived from (5) under the assumptions that the probabilities of
missing responses depend only on the covariates and that, given the covariates

associated with observed responses, the conditional expected values of covariates
associated with missing responses are linear functions of covariates associated
with observed responses (see the Appendix). Under Model (17), the result in
Theorem 1 still holds (see the Appendix) with

(

α∗

∞

β∗

∞

)

=

L
∑

l=2

P l

{

(I − Λl)

(

0

βwc,l

)

+ Λl

(

αl

βbc,l

)}

, (18)
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where P 2, . . . ,P L are p × p positive definite matrices whose sum is the identity

matrix and Λ2, . . . ,ΛL are some p × p matrices. In particular, when αl = α,

βwc,l = βwc, βbc,l = βbc for all l, and Model (12) holds, (6) and (14) hold with

Λ =

[

L
∑

l=2

pl

{

lΣmx
+ Σex

1+(l−1)ρ∗
∞

+
(l−1)Σex

1−ρ∗
∞

}

]−1 L
∑

l=2

pl

lΣmx
+ Σex

1+(l−1)ρ∗
∞

.

3. Omitted Confounders

Having derived results for how a difference in between- and within-cluster

effects affect parameter estimates, we now investigate how such difference may

arise from a subject matter point of view to aid in model interpretation. A

confounder is a factor, the control of which changes the relationship between the

primary factor under study and the outcome Rothman and Greenland (1998,

p.59). In multiple regression this occurs when the factor is correlated with both

the outcome and covariates under investigation. The investigation and control

of confounding is a major emphasis in the analysis of observational studies.

The nature of clustered data allows the relationship between an omitted con-

founder and the covariate of interest to be different within versus across clusters.

Well-known examples of such confounders are the so-called cohort and period ef-

fects in longitudinal studies of aging. The former arise as cross-sectional analyses

estimate a combination of the effects of true aging and covariates associated with

birth cohort. The latter arise in longitudinal data collection as the progression

of time leads to changes in measurement technique or general health status of

the population.

Let xi and zi be vectors of values of a measured covariate and an omitted

confounder for the ith subject, respectively. Conditional on both xi and zi, the

vector of outcomes Y i satisfies a multivariate normal regression model:

Y i|xi,zi ∼ N(β01 + βxxi + βzzi, σ
2
ẽV ρ̃). (19)

We assume that the covariate and confounder are sums of two components:

xi = ξx + mxi
1 + exi

(20)

zi = mzi
1 + ezi

, (21)

where ξx is a vector of parameters, {(mxi
,mzi

)} are independent and normally

distributed with mean zero and 2 × 2 covariance matrix

σ2
mx

(

1 rm
√

cm

rm
√

cm cm

)

,
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{exi
} are independent and normally distributed with mean zero and covari-

ance matrix σ2
ex

I, {ezi
} are independent and normally distributed, conditional

on {exi
}, with mean vectors {γ01 + γexi

} and covariance matrix σ2
ez

I, and

{(mxi
,mzi

)} are independent of {(exi
,ezi

)}. By allowing systematic time de-

pendence, (20)-(21) extend the model of Palta and Yao (1991). The {mzi
} and

{ezi
}, correspond to cohort effects and period effects, respectively.

Using properties of the multivariate normal distribution, we can derive (see

the Appendix)

Y i|xi ∼ N(α1 + βwc(xi − x̄i1) + βbcx̄i1, σ2
eV ρ), (22)

where βwc = βx + γβz, βbc = βx + ηxrm
√

cmβz + (1 − ηx)γβz , and α, σ2
e , ρ are

functions of β0, βx, βz, σ2
ẽ , ρ̃, σ2

mx
, rm, cm, ξ̄x, γ0, γ, σ2

ex
, σ2

ez
and k. Here

ηx = σ2
mx

/(σ2
mx

+ σ2
ex

/k) indicates the structure of the covariate.

As shown by (22), omitted confounders potentially lead to different between-

and within-cluster covariate effects in the marginal model relating the outcome to

the measured covariate. Assuming equal between- and within-cluster covariate

effects in this case is the same as ignoring the omitted confounder. Thus, we

can apply the results in Section 2 to investigate the effects of cohort and period

effects. Under the above model, we have the following conclusions on β̂∗, the

estimator for the regression coefficient under the assumption of equal covariate

effects:

• When only a cohort effect is present (γ = 0), βwc is equal to βx, whereas βbc is

not. The bias of β̂∗ is ληxrm
√

cmβz, which can be reduced if the study design

is more longitudinal (for example larger S2
ξ ).

• When only a period effect is present (rm = 0), βwc differs from βx more than

βbc does. The bias of β̂∗ is (1 − ληx)γβz , which can be reduced if the study

design is more cross-sectional (for example smaller S2
ξ ).

• When the between- and within-cluster correlations between the covariate

and the confounder are both positive (negative), β̂∗ over-estimates (under-

estimates) βx.

• In general, the bias of β̂∗ as an estimator of βx is {(1 − φ)γ + φrm
√

cm}βz,

where φ = ληx ∈ [0, 1].

• The estimator of σ2
e∗ is an inflated estimator of the original residual error

variance σ2
ẽ .

4. Measurement Error

It is well-known that measurement error in covariates leads to biased estima-

tors of regression parameters. Measurement error is often assumed to be additive

and independent of the true covariate. Then, the regression coefficient estimator
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is known to be subject to attenuation in linear regression. In this section, we

study the effects of measurement error on the analysis of clustered data. Since

between- and within-cluster effects of the error-prone covariate are shown to be

different, results in Section 2 are useful. Our results in this section are extensions

of those of Wang et al. (1998) to multiple covariates.

Let T ij be the p-vector of covariate values associated with Yij, and T i be

the k × p matrix whose jth row is T ij , j = 1, . . . , k, i = 1, . . . , n. We consider

the normal regression model

Y i|T i ∼ N(α̃1 + T iβ̃, V (Y i|T i)), (23)

where V (Y i|T i) is the conditional covariance matrix of Y i given T i. The covari-

ate T ij is assumed to follow Model (12).

Instead of T ij , we observe an error-prone covariate

X ij = T ij + U ij, (24)

where {U ij} are independent and normally distributed with mean 0 and variance

Σu, and are independent of {T ij} and {Yij}. This model is often referred to as

the classical measurement error model. As in the situation of confounding, we

can derive the model that relates the outcome to the observed covariate Xij

(derivations are in the Appendix), which involves different covariate effects:

Y i|X i ∼ N(α1 + (X i − X̄i)βwc + X̄iβbc, V (Y i|T i) + Σ∆),

where

α = α̃ + β̃
′

Σu(kΣmx
+ Σex

+ Σu)−1µx, (25)

βwc = (Σex
+ Σu)−1Σex

β̃, (26)

βbc = (kΣmx
+ Σex

+ Σu)−1(kΣmx
+ Σex

)β̃, (27)

and Σ∆ is a compound symmetric matrix with diagonal entries

β̃
′

Σu(kΣmx
+Σex

+ Σu)−1[Σex
+Σmx

(Σex
+Σu)−1(kΣex

+Σu)]β̃

and off-diagonal entries

β̃
′

Σu(kΣmx
+ Σex

+ Σu)−1Σmx
(Σex

+ Σu)−1Σuβ̃.

In this case, assuming equal between- and within-cluster covariate effects is the

same as ignoring measurement error.

In multiple linear regression, measurement error following model (24) causes

attenuation in parameter estimation. Applying the results in Section 2 shows
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attenuation by measurement error also in the analysis of clustered data. In this

case, (6) holds with

Λ = [kΣmx
+k{1+(k−2)ρ∞}(1−ρ∞)−1(Σex

+Σu)]−1(kΣmx
+Σex

+Σu),

where ρ∞ is the asymptotic limit of the estimated working correlation. Using

Theorem 1 and (25)-(27), we can show that the estimators of β̃ and α̃ with mea-

surement error ignored, i.e., those assuming equal between- and within-cluster

covariate effects, converge a.s. to

Λ∗β̃ and α̃ − β̃
′

(I − Λ∗)µx, (28)

respectively, where

Λ∗ = I − [Σmx
{1 + (k − 2)ρ∞}−1(1 − ρ∞) + Σex

+ Σu]−1Σu. (29)

From the form of Λ∗ in (29) we conclude that, when there are multiple covariates,

one of which is measured with error, in general the regression coefficients of

other covariates are also biased, unless the covariate with measurement error is

uncorrelated with other covariates.

If β̃ and α̃ are the parameters of interest, then consistent estimators can be

derived using (25)-(29). If we have supplemental data (e.g., validation or replicate

data) to estimate Σu, which is necessary for cross-sectional data problems, then

consistent estimators of β̃ and α̃ can be obtained using (28)-(29) with Σmx
and

Σex
estimated by the between- and within-cluster variabilities of the observed

{Xij}. For clustered data, supplemental data are not necessary, since data within

each cluster can be regarded as partial replicates. It follows from (25)-(27) that

β̃ = (kΣmx
)−1[(kΣmx

+ Σex
+ Σu)βbc − (Σex

+ Σu)βwc], (30)

α̃ = α + µ′

x(βbc − β̃). (31)

Consistent estimators of α, βbc, and βwc can be obtained by fitting Model (5).

Although each of Σex
and Σu may not be estimable, the sum Σex

+ Σu has a

consistent estimator Swc =
∑

i

∑

j(Xij − X̄i)(X ij − X̄i)
′/n(k− 1). Also, a con-

sistent estimator of µx is X̄, the average of all Xij , and a consistent estimator

of Σmx
is Sbc−Swc/k, where Sbc =

∑

i(X̄i − X̄)(X̄ i − X̄)′/n. Therefore, under

the above assumptions on covariate structure and measurement error, consistent

estimators of β̃ and α̃ can be obtained by using (30)-(31) with unknown param-

eters replaced by the previously constructed consistent estimators. Because this

method first decomposes covariates into between- and within-cluster components,

and then recombines estimated regression parameters according to (30), we refer

to it as the Decomposition and Recombination (DeAR) method.
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Table 1. Estimates of regression parameters in Example 1. The response
variable is the logarithm of BMI and the predictor variable is age in decades.

The numbers in the parentheses are standard errors.

Model (1) Model (5)

Covariate within between

Intercept 3.00 3.16
Age 0.065 (0.003) 0.088 (0.003) 0.029 (0.004)

(Age −µAge)
2 -0.01 -0.01

correlation 0.928 0.927

Tosteson, Buonaccorsi and Demidenko (1998) and Buonaccorsi, Demidenko,

and Tosteson (2000) considered the similar problem of covariate measurement

error for a linear mixed effects model. For the situation of measurement error in

a single variable, they derived a consistent estimator for the regression coefficients

without supplemental data by taking advantage of an assumption on the variance

structure of the covariates.

5. Examples

Example 1 (Body Mass Index and Aging). We consider data from the Wisconsin

Sleep Cohort Study (Young et al. (1993)). A total of 3211 employees age 30-

60 at four State of Wisconsin agencies filled out a survey twice, approximately

four years apart. We are interested in changes in body mass index (weight in

kilograms divided by the square of height in meters) with age. The logarithm

of body mass index (BMI) shows an increasing trend with age, and it appears

reasonable to assume that the data are normally distributed. Even after slight

non-linearity is removed by including a quadratic term, the estimated between-

and within-cluster slopes are rather different. Table 1 shows the results of fitting

both Model (5) and Model (1).

Note the large discrepancy between the within-cluster (0.088) and between-

cluster (0.029) slope estimates. If one unsuspectingly fits the model which as-

sumes common covariate effects, an estimate of 0.065 would be obtained, which

lies between the between- and within-cluster slope estimates as our theory pre-

dicted. The estimated regression parameters represent the change in the loga-

rithm of BMI per decade of age. For a more direct interpretation, the within-

cluster and between-cluster estimates correspond to 9.2% and 2.9% change in

BMI per decade of age, respectively, whereas the naive estimate implies a 6.7%

change.

Since the effect of the quadratic term is very small and estimated to be the

same in the two models, we may treat this problem as a single covariate problem.

The covariate in this data follows Model (7) rather well. It can be estimated
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that (ξx1
, ξx,2) = (42.88, 46.52) and ρx = 0.854. Thus the λ(ρ̂∗) defined by (10)

is calculated to be 0.384, leading to α̂∗ = 2.9987 and β̂∗ = 0.065, both of which

agree with the GEE estimates from Model (1).

In this example, a likely cohort effect can be attributed to the weight-gaining

trend of the U.S. population. It is well known that the American (as well as other

countries’) population has continuously experienced substantial weight gain. In

other words, the population cohort born in 1970, for example, is on the average

heavier than the cohort born in 1960. This corresponds to a cohort effect nega-

tively correlated with the primary covariate. The results of Section 3 imply that,

if a cohort effect is the only cause of the different between- and within-cluster

effects of aging, the estimate 0.088 is produced by an unbiased estimator of βx

whereas 0.029 is the value of a biased estimator. The direction of bias agrees with

that given by Theorem 1, when the omitted confounder is negatively correlated

with age.

Example 2 (Formaldehyde Emission in Mobile Homes). Hanrahan et al. (1985)

examined the health effects and trends in formaldehyde levels in mobile homes, by

collecting data in mobile homes during 1980-1981. The number of observations

in each home ranges from 2 to 10, with 9 the modal value. For illustration, we

consider two subsets of data: 49 homes with 6 observations and 51 homes with

9 observations. We study changes in formaldehyde level (in ppm) with home

aging. Previous studies (Palta, Yao and Velu (1994)) have found that taking the

logarithm of home age (in months) removes the non-linearity of the trend. We

fit Models (5) and (1) to the first group, the second group, and the combined

data. The results are summarized in Table 2. The estimated slope in Model

(1) is negative, consistent with a decrease in formaldehyde emission as building

materials age. However, in Model (5), the rate of decrease is rather different

within and across the clusters. For each group of the data, the estimates from

the misspecified model follow the results in Theorem 1. In the combined data set,

the slope estimate (−0.27) in the misspecified model is a weighted combination

of the two slope estimates (−0.25 and −0.31) from the two groups, as indicated

by (18).
Previous analysis (Palta and Qu (1995)) of this data set provided evidence

for the presence of period effect caused by the variation of temperature, as many
homes entered the study in spring and were followed through fall and formalde-
hyde emission decreases with lower temperature and humidity. Based on the
results in Section 3, this would suggest that −0.20 is a better estimate of βx than
−0.49.

Example 3 (Perceived Sleepiness). In the Wisconsin Sleep Cohort Study, sub-
jects scored themselves at five levels from “never” to “almost always” on aspects
of perceived sleepiness, such as “not feeling rested during the day, no matter
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Table 2. Estimates of regression parameters in Example 2. The response
variable is formaldehyde level in ppm and the predictor is the logarithm of

home age in months. The numbers in the parentheses are standard errors.

Model (1) Model (5)

Covariate within between

k = 6 Intercept 1.24 1.12
log(age) -0.25(0.04) -0.47(0.10) -0.21(0.04)

k = 9 Intercept 1.43 1.04
log(age) -0.31(0.03) -0.49(0.05) -0.18(0.04)

Combined Intercept 1.32 1.09

log(age) -0.27(0.02) -0.49(0.05) -0.20(0.03)

how many hours of sleep you had”, “feelings of excessive daytime sleepiness”,
and “need for coffee or other stimulants to stay awake during the day”. A factor
score based on answers to six questions has been found to be significantly related
to general health status. It takes values between 0 and 100, with higher scores
indicating more serious day-time sleepiness. Our interest is to assess the relation-
ship between the factor score and sleep latency, which is the amount of time (in
minutes) required to fall asleep at night, and some other covariates, including the
amount of sleep during a workday night (in hours), body mass index (weight in
kilograms divided by the square of height in meters), and age (in years). Prelim-
inary analysis indicated that the log-transformation should be applied to sleep
latency and body mass index (BMI).

Results from two different models are in Table 3. The estimated coefficient
for sleep latency (2.932) under the misspecified model lies between the corre-
sponding between- and within-cluster coefficients estimates (4.450 and 1.268).
The estimated coefficients of sleep time and BMI do not significantly differ be-
tween the two models. The estimated longitudinal and cross-sectional correlation
matrices indicate that these covariates are essentially uncorrelated with age and
sleep latency. Therefore, according to Section 2, their effects can still be con-
sistently estimated despite the false assumption of the common between- and
within-cluster effects of age and sleep latency.

In this study, measurement error may have caused the discrepancy between

two covariate effects of sleep latency. Conceivably, it is difficult to accurately

self-assess how long it takes before one falls asleep, thus the self-reported sleep

latency contains a fair amount of measurement error. This is confirmed by labo-

ratory measurements on a subset of subjects. Estimates from the DeAR method

developed in Section 4 are given in the last column of Table 3. The DeAR es-

timate of the coefficient for sleep latency is 5.212, with a standard error 0.669

estimated from 10,000 bootstrap samples. This is very different from the naive

estimate, 2.932, obtained by fitting Model (1) with ignored measurement error
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Table 3. Estimates of regression parameters in Example 3. The response
variable is score for sleepiness (between 0 and 100) and the predictor vari-

ables are the logarithm of sleep latency in minutes, sleep time in hours, the

logarithm of BMI in kg/m2 and age in years. The numbers in the parentheses

are standard errors.

Model (1) Model (5) DeAR

Covariate within between

log(Latency) 2.932(0.365) 4.450(0.507) 1.268(0.524) 5.212(0.669)

Sleep time -2.451(0.294) -2.654(0.434) -2.212(0.399) -2.741(0.616)

log(BMI) 7.652(1.789) 7.375(1.946) 6.938(4.543) 6.976(2.200)
Age -0.305(0.047) -0.296(0.048) 0.069(0.314) -0.307(0.051)

in sleep latency. The DeAR estimates of other regression coefficients are not

very different from the naive ones, because of the weak correlation among the

covariates.

6. Conclusion

When the between- and within-cluster covariate effects are different, we have

shown, for general situations such as multiple covariates and unequal cluster sizes,

that fitting the naive Model (1) not only leads to misleading regression coefficient

estimates, but also produces biased estimators for the variance components. Any

meaningful interpretation of the coefficients in Model (5) requires an underlying

framework which explains the difference between the between- and within-cluster

covariate effects. We have studied omitted confounders and measurement error,

and shown that different between- and within-cluster covariate effects arise from

these two situations, and derived results on the bias of the naive estimators. Our

study provides important information for the design of longitudinal studies when

confounding or measurement error is of concern. We have shown that, for the

measurement error models discussed in this paper, it is possible to consistently

estimate regression parameters without using supplemental data.
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