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Abstract: With the rapid accumulation of various high-throughput genomic and

proteomic data, one is compelled to develop new statistical methods that can

take advantage of existing multiple sources of data. In our motivating example,

a chromatin-immunoprecipitation (ChIP) microarray experiment was conducted to

detect binding target genes of a broad transcription regulator, leucine responsive

regulatory protein (Lrp) in E. coli. In addition, a cDNA microarray dataset is avail-

able to compare gene expression of the wild type with that of a mutant with the Lrp

gene deleted in E. coli. It is biologically reasonable to assume that the genes with

altered expression are more likely to be regulated by Lrp than those with no expres-

sion change. Hence we aim to borrow information in the gene expression data to

increase statistical power to detect the binding targets of Lrp. We propose a novel

joint model for protein-DNA binding data and gene expression data; under mild

modeling assumptions, it is shown that the method is optimal, equivalent to a joint

likelihood ratio test. We compare the joint modeling with two existing methods

of combining separate analyses. We adopt a nonparametric empirical Bayes (EB)

method to draw statistical inference in the joint model; in particular, we propose

a new method, maximum likelihood conditional on the binding data, to estimate

two prior probabilities for the expression data, which are non-identifiable based on

the expression data alone. We use simulated data to demonstrate the improved

performance of the joint modeling over other approaches. Application to the Lrp

data also shows better performance of the joint modeling than that of analyzing

the binding data alone.

Key words and phrases: ChIP-chip, computational biology, false discovery rate,

gene expression, Lrp, microarray.

1. Introduction

High-throughput biotechnologies, such as microarrays, have generated large

amounts and various types of genomic and proteomic data. A widespread use

of microarray experiments is to monitor genome-wide gene expression. Gene

expression or transcription is the process of genetic information flow from DNA

sequence to messenger RNA (mRNA). Although any cell of an organism contains
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all the necessary DNA information for gene expression, obviously, at any given

moment, not all the genes in the cell are equally expressed, or even expressed
at all: some genes are switched on while others are off, and those switched on

may have different expression levels. Gene expression largely depends on phys-

iological and environmental conditions of the cell at the moment. Biologically,

a fundamental question is how gene expression is regulated. A general mecha-
nism is through some regulatory proteins called transcription factors (TFs): a

TF binds to one or more specific DNA subsequences in a gene’s promoter re-

gion, called binding sites or motifs, then works with other TFs to stimulate

or inhibit the expression of the gene. Although significant progress has been
made in understanding a few specific examples, as well as the general aspect of

gene transcription regulation, it remains largely unknown which TFs regulate

which genes. The biological goal of this work is to discover the target genes of

a TF, not necessarily its binding sites or motifs. The most popular approach to
identifying bindings sites of a TF is by computationally predicting motifs (i.e.,

specific DNA sequences that a TF binds to) through DNA sequence alignment

(e.g., Liu, Neuwald and Lawrence (1999)). However, presence of a motif in a
gene’s control region does not necessarily imply that the TF indeed binds to

the site in vivo. A new application of microarray technology is to identify in

vivo genome-wide binding locations of a TF via chromatin-immunoprecipitation

(ChIP) (e.g., Ren et al. (2000)). Because the resulting DNA-protein binding
data are in the usual format of cDNA microarray gene expression data, it is

technically possible to apply any of many existing statistical methods of de-

tecting differential gene expression to binding data (Lee et al. (2002)), see Pan

(2002) and Smyth, Yang and Speed (2003) for reviews on statistical analysis of
gene expression data. Due to high noise in microarray data and typically few

replicates, any statistical method being applied may yield results with relatively

high false positives or high false negatives. To maximize statistical power, we can

take advantage of the existence of other sources of data, and thus their contained
information. One source is gene expression data. In our motivating example,

on the one hand we have a DNA-protein binding data set to detect the binding

targets of a broad transcription regulator, leucine responsive regulatory protein

(Lrp), on the other hand microarray experiments were done to survey gene ex-
pression changes for the wild type, as compared to a mutant with the Lrp gene

knocked-out (Tani, Khodursky, Blumenthal, Brown, and Matthews (2002)). It

is intuitively reasonable that, in such experiments, the genes with expression

changes are more likely to be regulated by the Lrp than those with no altered ex-
pression. Therefore, it is natural to conduct a combined analysis of DNA binding

data and expression data.

A simple way is to analyze DNA binding data and expression data sepa-

rately with each resulting in a list of genes, then take an intersection of the two
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lists and identify the common set of genes as the targets (Ren et al. (2000)).

This approach can reduce the false positive number, but is likely to yield a high

false negative number: many target genes may be missing from the common

set; it is even possible that there is no intersection between the two lists of the

genes. Existing integrated analysis strategies include regressing one source of

data on the other (e.g., Conlon, Liu, Lieb and Liu (2003), Zhao, Wu and Sun

(2003), Gao, Foat and Bussemaker (2004) and Sun, Carroll and Zhao (2006)),

using one source to validate the other (e.g., von Mering et al. (2002)), sequen-

tial methods of using one source to generate hypotheses or priors for the fol-

lowing analysis on the second source of data (Liu, Brutlag and Liu (2002) and

Xie, Pan, Jeong and Khodursky (2007)), and combining (e.g., taking an intersec-

tion of) the results of separate analyses on individual sources of data (Ren et al.

(2000) and Xiao and Pan (2005)). A potentially more powerful, though more

challenging, approach is to jointly model the two sources of data to improve

the statistical power for new discoveries, as advocated and demonstrated by

Holmes and Bruno (2000) for integrating DNA motif-finding and expression pro-

file clustering.

Here we propose a novel joint model for protein-DNA binding data and gene

expression data such that information in gene expression data is combined to

nonparametrically infer the binding targets of a TF; to our knowledge, this is the

first endeavor to do so in the literature. The basic idea is to exploit the correlation

between TF binding and altered expression of a gene. We point out a connection

of our proposal with the likelihood ratio test, thus establishing the optimality of

our proposal. We extend a nonparametric empirical Bayes (EB) approach, pro-

posed by Efron, Tibshirani, Storey and Tusher (2001) for gene expression data

alone, to the joint model; in particular, we propose a novel conditional likelihood

method to estimate two key mixing parameters for the expression data. That

are not identifiable based on the expression data alone. We compare our pro-

posal with other methods based on separate analyses of the two types of data:

an intersection method, and an analog of Fisher’s method to combine the results

from separate analyses. Because the two sources of data support two different

hypotheses, we clarify why such combined analyses are meaningful. Using both

simulated and real data, we demonstrate that the joint modeling improves over

the other methods.

2. Joint Modeling of Binding Data and Expression Data

2.1. Data and analysis goal

We assume throughout that we have DNA binding data of a TF (e.g., Lrp) as

the primary data, with secondary data drawn from a gene expression experiment
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comparing a wild type against a mutant with partial or full loss of function of

the TF (e.g., the deletion of the TF gene), both in the format of cDNA array

data. Specifically, suppose that M1ij and M2ij are the log ratios of the intensi-

ties of the two channels for gene i on array j for the binding data and expression

data, respectively, i = 1, . . . , G, j = 1, . . . , n1, in the binding experiment, and

j = 1, . . . , n2 in the expression experiment. Suppose that necessary data normal-

ization has been accomplished. The central goal is to identify the genes bound

by the TF with E(M1ij) 6= 0. With the expression data alone, we can only detect

differentially expressed (DE) genes with E(M2ij) 6= 0. Note that the expression

data cannot give unambiguous evidence for DNA-protein binding because a DE

gene may or may not be bound by the TF.

For our purposes, for each gene i we construct two test statistics, Xi and Yi

based on the binding data and the expression data respectively. Although any

test statistic can in principle be used, in this paper we consider the use of the

SAM statistic, a regularized t-statistic (Tusher, Tibshirani and Chu (2001)), due

to its simplicity and good performance (Xie, Jeong, Pan, Khodursky and Carlin

(2004)). Specifically, suppose that the sample mean and the sample variance for

gene i are M̄1i =
∑n1

j=1 M1ij/n1 and S2
1i =

∑n1

j=1(M1ij − M̄1i)
2/(n1 − 1). Then

Xi = M̄1i/(S1i + s10), where s10 = median(S11, . . . , S1n1
) is used to stabilize the

denominator. There are Bayesian justifications for the use of s10 (Baldi and Long

(2001), Wright and Simon (2003) and Cui, Hwang, Qiu, Blades and Churchill

(2004)). Similarly we define Yi for i = 1, . . . , G.

2.2. A joint model

Now we propose a joint model for (Xi, Yi), the test statistics calculated from

the two types of data, respectively. Define Bi as the indicator of whether gene

i is indeed bound by the TF. Our goal is to identify all the genes (i.e., i’s) with

Bi = 1. We assume that Bi ∼ Bern(π), independently.

Our joint model consists of two mixture models for binding data and ex-

pression data, respectively. First, we specify a mixture model for the binding

data:

f(Xi) = (1 − π)f0(Xi) + πf1(Xi), (1)

where f0 is the distribution of Xi for the genes with no binding, f1 is that for the

bound genes, and π is a prior probability of any gene’s being bound by the TF.

Second, we specify two mixture models for the conditional distribution of Yi:

f(Yi|Bi = 1) = p1g1(Yi) + (1 − p1)g0(Yi),

(2)
f(Yi|Bi = 0) = p0g1(Yi) + (1 − p0)g0(Yi).
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This implies a two-component mixture model for the marginal distribution of Yi:

g(Yi) = (1 − πg)g0(Yi) + πgg1(Yi), (3)

where g0 is the distribution of Yi for genes with no expression changes, while g1

is for genes with altered expression, and πg = πp1 + (1 − π)p0.

The main motivation of the model is the following. Intuitively, if a gene is

regulated by the TF, there is a higher chance (probability p1) that the gene is

DE with a distribution g1; otherwise, there is only a smaller chance (probability

p0) that the gene’s expression level will be changed. The difference between p1

and p0 measures the amount of binding information contained in the expression

data; in particular, if p1 = p0, then the binding and expression are completely

independent. Note that, because binding is neither a sufficient nor a necessary

condition for expression change, the above mixture model takes account of the

possibility of a non-bound gene’s having expression change.

We also assume that, conditional on the binding status Bi, a gene’s bind-

ing statistic Xi and expression statistic Yi are independent. Hence, the joint

distribution of Xi and Yi is

f(Xi, Yi) = f(Xi|Bi = 1)f(Yi|Bi = 1)π + f(Xi|Bi = 0)f(Yi|Bi = 0)(1 − π),

where f(Xi|Bi = 1) = f1(Xi) and f(Xi|Bi = 0) = f0(Xi). Using Bayes Theorem,

we have the posterior probability of gene i being a target as

Pr(Bi = 1|Xi, Yi) =
πf(Xi|Bi = 1)f(Yi|Bi = 1)

f(Xi, Yi)
, (4)

which is used to draw inference on whether gene i is a binding site of the TF.

Remark 1. Optimality. From (3), we have

Pr(Bi =1|Xi, Yi)=
π

π+(1−π)f(Xi|Bi=0)
f(Xi|Bi=1)

f(Yi|Bi=0)
f(Yi|Bi=1)

=
π

π+ 1−π

LRT(Bi|Xi)LRT(Bi|Yi)

,

where LRT(Bi|Xi) = f(Xi|Bi = 1)/f(Xi|Bi = 0) and LRT(Bi|Yi) = f(Yi|Bi =

1)/f(Yi|Bi = 0) are the two likelihood ratio test (LRT) statistics for testing H0i:

Bi = 0 vs H1i: Bi = 1 based on the binding data Xi and expression data Yi,

respectively. On the other hand, the corresponding LRT statistic based on both

the binding and expression data is

LRT(Bi|Xi, Yi) =
f(Xi, Yi|Bi = 1)

f(Xi, Yi|Bi = 0)
= LRT(Bi|Xi)LRT(Bi|Yi),
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with the last equality holding because of the conditional independence between

Xi and Yi. Thus, if π < 1, Pr(Bi = 1|Xi, Yi) is an increasing function of the

joint likelihood ratio test statistic LRT(Bi|Xi, Yi), and thus is optimal.

Remark 2. Robustness. The joint modeling can automatically account for vary-

ing amounts of information contained in the two sources of data. For example,

if there is almost no binding information contained in the expression data Yi (or

more generally in a subspace of Y ), then we have f(Yi|Bi = 1) ≈ f(Yi|Bi = 0)

and

Pr(Bi = 1|Xi, Yi) ≈
πf(Xi|Bi = 1)

πf(Xi|Bi = 1) + (1 − π)f(Xi|Bi = 0)
= Pr(Bi = 1|Xi),

which is equivalent to using the binding data X alone. Similarly, one uses only

expression data if there is almost no information in the binding data (due to,

e.g., a too small sample size). More generally, Pr(B1 = 1|Xi, Yi) dictates a data-

adaptive weighting on each source of data based on their relative information

contents. Hence, our approach accounts for possibly different heterogeneity and

specificity of multiple sources of data.

2.3. Statistical inference using empirical Bayes

Our joint model is general and flexible, allowing the unknown parameters in

the model to be estimated by extending some existing methods for gene expres-

sion data to the current context. Here we consider a nonparametric EB method

(Efron et al. (2001))

In each mixture model for one source of data, we use the observed data X

and Y , respectively, to estimate f and g nonparametrically using finite Normal

mixture models (Pan, Lin and Le (2003)), where the number of components is

determined by a model selection criterion, such as BIC. As in Efron et al. (2001)

and Pan et al. (2003), we permute the original binding data M1ij and expression

data M2ij to estimate f0 and g0. We randomly keep or flip the sign of each Mkij,

that is, M∗
kij = a∗Mkij with a = 1 or −1 with equal probability. Calculating the

SAM statistics on the permuted data M∗
kij ’s, we obtain permuted test statistics

X∗ = (X∗
1 , . . . ,X∗

n1
) and Y ∗ = (Y ∗

1 , . . . , Y ∗
n2

). Again we fit Normal mixture

models to X∗ and Y ∗ to estimate f0 and g0, respectively.

As suggested in Efron et al. (2001), although π (or πg) is not identifiable

nonparametrically based on only X (or Y ), a sensible estimate (more exactly, its

lower bound) is

π̂ = 1 −

∫
A

f̂(z)dz
∫
A

f̂0(z)dz
(5)
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with A a small interval around 0; similarly for π̂g. Then estimates of f1 and g1

can be obtained: f̂1 = f̂ /π̂ − f̂0(1 − π̂)/π̂ and ĝ1 = ĝ/π̂g − ĝ0(1 − π̂g)/π̂g.

The marginal distribution of Yi, conditional on Xi, is

f(Yi|Xi) =

1∑

k=0

f(Yi|Xi, Bi = k)f(Bi = k|Xi) =

1∑

k=0

f(Yi|Bi = k)Pr(Bi = k|Xi),

where the last equality follows from the conditional independence between Xi

and Yi. Hence, plugging-in the estimates and using (2) and (7) (see next), con-

ditioning on Xi’s, we obtain the maximum conditional likelihood estimates of p1

and p0,

(p̂1, p̂0) = argmax(p1,p0)

G∏

i=1

{
[p1ĝ1(Yi) + (1 − p1)ĝ0(Yi)]

π̂f̂1(Xi)

f̂(Xi)

+ [p0ĝ1(Yi) + (1 − p0)ĝ0(Yi)]

(
1 −

π̂f̂1(Xi)

f̂(Xi)

)}
.

Note that, without the binding data, the parameters p1 and p0 are not identifi-

able.

After obtaining the estimates of the parameters, we can plug them in to

estimate the posterior probability P̂ r(Bi = 1|Xi, Yi) for each gene i, and then

declare the genes with high P̂ r(Bi = 1|Xi, Yi) (i.e., larger than a cut-off value

c) as the significant target genes. Similarly we can calculate P̂ r(Bi = 1|Xi) and

P̂ r(DEi|Yi), thus giving two lists of the significant target genes. The cut-off value

will be determined using the false discovery rate (FDR) (Benjamini and Hochberg

(1995)) to be discussed next.

2.4. FDR and its estimation

It is important to estimate FDR for any given cut-off value c. Several meth-

ods have appeared to estimate FDR based on permutations (e.g., Efron et al.

(2001), Xu, Olson and Zhao (2002), Pan (2003) and Storey and Tibshirani

(2003)). Here we consider an approach based on a direct use of the posterior

probability Pr(Bi = 1| · ) that has been shown to work better than permutation-

based methods (Newton, Noueiry, Sarkar and Ahlquist (2004)). Specifically, for

any given cut-off value c, the corresponding FDR is

FDR(c) =

∑G
i=1 βiI(βi ≤ c)
∑G

i=1 I(βi ≤ c)
, (6)
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where I() is an indicator function and βi = Pr(Bi = 0| · ) = 1 − Pr(Bi = 1| · ).

Plugging in the parameter estimates, we obtain an estimated FDR.

3. Other Approaches

3.1. Separate analyses and combining their results

Based on the binding data Xi or expression data Yi alone, respectively, we

have the posterior probabilities

Pr(Bi = 1|Xi) =
πf1(Xi)

f(Xi)
, P r(DEi|Yi) =

πgg1(Yi)

g(Yi)
, (7)

and use them to infer whether gene i is a binding target. Note that, because a

DE gene may or may not be bound by the TF, DE genes are used in practice only

as putative binding targets (e.g., Tani et al. (2002)), and, in general, incorrectly

so.

A simple method to combine the above two separate analyses is to take the

intersection of their identified gene lists; equivalently, we define

P̃ r(Bi = 1| · ) = min{Pr(Bi = 1|Xi), P r(DEi|Yi)}

and compare P̃ r(Bi = 1| · ) to a cut-off value to declare significant genes. The

intersection method is simple and intuitively reasonable, and is used in practice

(Ren et al. (2000)).

Another simple method, analogous to Fisher’s method of combining two p-

values, defines

˜̃
Pr(Bi = 1| · ) =

√
Pr(Bi = 1|Xi)Pr(DEi|Yi)

and then uses this to select significant genes. We call it Fisher’s method.

3.2. A justification

Combining separate analyses is intuitively reasonable, but ad hoc; in partic-

ular, because Pr(DEi|Yi) provides statistical evidence for DE, not for binding

as supported by Pr(Bi = 1|Xi), it is not immediately clear why this type of

method would work. Below, based on our mixture models, we provide a jus-

tification which, along with Remark 1 in Section 2.2, also explains why these

methods are suboptimal as compared to the joint modeling.

It is easy to see that

Pr(Bi = 1|Xi) =
π

π + (1−π)

LRT(Bi|Xi)

, P r(DEi|Yi) =
πg

πg +
(1−πg)

LRT(DEi|Yi)

,
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where LRT(DEi|Yi) = g1(Yi)/g0(Yi) is the likelihood ratio statistic to test for

DE. On the other hand,

LRT(Bi|Yi) =
p1g1(Yi) + (1 − p1)g0(Yi)

p0g1(Yi) + (1 − p0)g0(Yi)
=

p1LRT(DEi|Yi) + 1 − p1

p0LRT(DEi|Yi) + 1 − p0
,

which is an increasing function of LRT(DEi|Yi) if p1 > p0, as expected. Thus,

a method combining the two separate posterior probabilities Pr(Bi = 1|Xi) and

Pr(DEi|Yi) is equivalent to combining the two likelihood ratio statistics based

on each data source alone.

3.3. Other methods

In the Supplement, we introduce two special cases of the joint modeling with

possibly over-simplified assumptions, and a new sequential Bayesian method that

uses the gene expression data to generate priors for the subsequent analysis of

binding data. It turns that the sequential method is related to a special case of

the joint modeling, and none worked as well as the joint modeling.

4. Simulation

To demonstrate the feasibility and potential gain of our proposal, we did a

simulation study.

4.1 Simulation set-ups

To be as practical as possible, we generated simulated data by mimicking the

Lrp binding data and expression data. First, based on the actual Lrp binding

data, we calculated the SAM statistic (Tusher et al. (2001)) for each gene. Then

we picked up the top G1 genes with the largest SAM statistics and treated them

as the true binding targets of Lrp. For each of the G1 targets, we simulated its

binding log-ratios from a Normal distribution with mean and variance the sample

mean and sample variance from the data; for the other (4, 281 − G1) non-target

genes, their log-ratios were generated independently from Normal distributions

with mean 0 and variances equal to their sample variances in the binding data.

To generate a expression data set, we first randomly selected p1G1 genes

from the G1 target genes as DE genes; second, among the other (4, 281 − G1)

non-target genes, we randomly selected a proportion p0 of them as DE genes, and

the remaining ones as equally-expressed (EE) genes. Again the expression levels

of each gene were simulated from a Normal distribution with variance equal to

its sample variance in the expression data, and mean 0 if it was selected as an

EE gene, or mean equal to its sample mean in the data if it was selected as a DE

gene.
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To mimic the actual data, we had total 4,281 genes, 5 replicates for the bind-
ing data and 6 replicates for the expression data. The simulation was conducted
in R (Ihaka and Gentleman (1996)). In particular, we used package mclust to
fit a finite Normal mixture model with the number of components selected by
BIC (Fraley and Raftery (2003)).

Three sets of parameter values were used: (i) G1 = 400 (and thus π =
400/4281 = 0.093), p1 = 0.9 and p0 = 0.2 (and thus πg = πp1+(1−π)p0 = 0.265);
(ii) G1 = 400 and p1 = p0 = 0.2; (iii) similar to Case (i) except that the replicates
of both binding and expression data were correlated: there was a within-gene (i.e.,
between-array) correlation of 0.1 for each gene; for a dataset with eight arrays,
Efron (2004, Table 3) demonstrated that there were positive pairwise correlations
among the first four arrays and the next four, with a median of 0.085, which mo-
tivated our choosing the within-gene correlation at 0.1. Specifically, for Case (iii),
if a binding log-ratio M ′

ij ∼ N(µx,i, σ
2
x,i), a random effect bi ∼ N(0, σ2

x,i), and if
M ′

ij and bi are independent, then Mij = M ′
ij + bi was gene i’s binding log-ratio

on array j; expression data were generated similarly. In Case i), with p1 > p0,
the expression data contained some information about binding. Case (ii) repre-
sented a null case where, due to p1 = p0, there was no information about binding
contained in the expression data. We considered the robustness of the methods
in Case (iii), where the commonly used assumption of independent arrays was
incorrect, which could happen in practice (Efron (2004)). Note that, although
our methods are all nonparametric without strong distributional assumptions, a
modeling assumption was violated even in Cases (i) and (ii): the null distribu-
tion of the SAM statistics was not a finite mixture of normals as used in our
estimation procedure. The goal of simulation was to show that a joint analysis
could improve over using binding data alone if expression data indeed contained
binding information and, at the same time, the joint analysis did not deteriorate
otherwise.

Two more simulation set-ups are considered in the Supplement.

4.2. Results

The averages of the estimates based on 100 simulations for each set-up are
summarized in Figure 1. Both a receiver operating characteristic (ROC) plot and
a realized FDR plot was used to compare the performance of the four methods:
using the binding data alone, combining the separate analyses of binding and
expression data using the intersection method or Fisher’s method, and the joint
analysis. For any simulated dataset with cutoff c, the claimed positive number
is T̂ P (c) = #{i : Pr(Bi = 1| · ) ≥ c}, which is a sum of true positive number TP
and false positive number FP :

TP (c) = #{i : Pr(Bi = 1| · ) ≥ c,Bi = 1},

FP (c) = #{i : Pr(Bi = 1| · ) ≥ c,Bi = 0}.
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The realized sensitivity, specificity and FDR are

sens(c) =
TP (c)

G1
, spec(c) = 1 −

FP

(G − G1)
, FDR(c) =

TP (c)

T̂ P (c)
,

while the estimated FDR was obtained from (6); their averages across 100 sim-

ulations are plotted in Figure 1.
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Figure 1. ROC curves, realized/estimated FDR vs number of estimated
significant genes for various methods for simulated data. In Case (ii), the
curves for “bind” (i.e., using binding data alone) and “joint” (i.e., the joint
model) completely overlap.
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In Case (i) with binding information contained in expression data, joint

analysis was the obvious winner: it was the most powerful with the highest

sensitivity for a given specificity. In particular, compared to using binding data

alone and at a high specificity level, the joint analysis shows a large improvement

in sensitivity over using binding data alone; consistently, at a low FDR, the joint

analysis gave many more positives (Table 1). Notably, this efficiency gain of

joint analysis was achieved even though the information content in the expression

data was limited: among all the genes with expression changes, (1 − π)p0/πg =

68% were not binding targets. In general, the information content contained

in expression data, or the degree of correlation between the two types of data,

can be measured by (1 − π)p0/πg or, for a fixed π, by the ratio p1/p0; it was

confirmed that there was even a larger efficiency gain from the joint analysis as

p1/p0 increased (results not shown). The simulation set-up of Case (i) was chosen

to give a realistic scenario. On the other hand, the two methods of combining

separate analyses performed well only if the number of the declared significant

genes was small, and overall, surprisingly, they might not improve over analyzing

binding data alone.

Table 1. Comparison of statistical powers of the joint analysis (joint) and

using binding data alone (bind) with simulated data for Case (i): sensitivity

vs specificity, and the claimed positive number (T̂ P ) vs realized FDR, all

averaged over 100 simulations; Impr=100(joint-bind)/bind, the percentage

improvement of the joint analysis over using binding data alone.

spec 0.99 0.98 0.97 0.96 0.95 0.90 0.85 0.80

sens binding 0.417 0.565 0.652 0.708 0.751 0.853 0.899 0.922

joint 0.504 0.628 0.701 0.748 0.784 0.874 0.912 0.933

Impr(%) 20.9 11.2 7.5 5.6 4.4 2.5 1.4 1.2

FDR 0.05 0.06 0.07 0.08 0.09 0.10 0.15 0.20

T̂ P binding 1 8 23 37 54 65 146 222

joint 74 98 117 134 147 162 239 288
Impr(%) 7300 1125 409 262 172 149 64 30

When expression data contained no binding information, as in Case (ii), the

joint analysis reduced to using the binding data alone: averaged ROC curves

and realized FDR curves, respectively, almost completely overlapped with each

other. It was reassuring that the joint analysis did not lose efficiency in a null

case. In contrast, the two methods of combining separate analyses deteriorated

dramatically. When replicated arrays were not independent, as in Case (iii), the
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same conclusions held as in Case (i), though all the methods performed worse

than they did in Case (i). In particular, the joint analysis still performed best.

As Newton et al. (2004) pointed out, the FDR estimation depends on the

adequacy of the fitted model. For example, using expression data alone, the pos-

terior probabilities are for detecting DE genes, not for binding targets, thus the

estimated FDRs are for detecting DE genes, not for binding targets; for this rea-

son, the FDR estimates from the intersection and Fisher’s methods were biased

and are not plotted in Figure 1. For the other two methods, the FDR estimates

were almost unbiased in Cases (i) and (ii); however, when the arrays were cor-

related as in Case (iii), the FDR estimates were under-biased: the two means

of the FDR estimates for the two methods were smaller than their counterparts

from the realized FDRs, see the two panels of Figure 1. A use of FDR estimates

is to aid in choosing between two competing methods (Xie et al. (2004); for this

purpose, albeit biased, the FDR estimates still gave the correct choice between

the joint analysis and analyzing the binding data.

Table 2. Means and standard errors (SEs) of the mixing probability esti-

mates from 100 simulations.

Case (i) Case (ii) Case (iii)

π πe p1 p0 π πe p1 p0 π πe p1 p0

true 0.093 0.265 0.900 0.200 0.093 0.200 0.200 0.200 0.093 0.265 0.900 0.200

mean 0.096 0.260 0.775 0.186 0.093 0.202 0.239 0.193 0.277 0.422 0.609 0.338
SE 0.003 0.003 0.005 0.002 0.003 0.003 0.004 0.002 0.003 0.002 0.004 0.002

The mean estimates of the four mixing parameters were given in Table 2; we

used A = [−0.05, 0.05] in (5) for both π and πe. For Case (i) or (ii), π and πe

were estimated surprisingly well, though theoretically they were not identifiable;

the estimate for p0 was almost unbiased, while that for p1 was biased, for which

we have no explanation. For Case (iii), because the independence assumption

was violated, as expected, the permutation method being used under-estimated

f0 and g0 (Efron (2004)), leading to the over-biased estimates of π and πe; these

biased estimates in turn introduced biases for the estimates of p1 and p0.

5. Application to Lrp Data

We analyzed the Lrp data to identify the binding targets of Lrp. The binding

data were generated in house from a ChIP microarray experiment. Briefly, DNA

samples from wild type Escherichia coli were labelled with red (Cy5) fluorophore

after crosslinks, immunoprecipitation and amplification, whereas genomic DNA

samples were prepared and labelled with green (Cy3) fluorophore to serve as
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controls. It was intended to identify the binding locations of Lrp by compara-

tive hybridization of the two samples to a DNA microarray. The Cy5 and Cy3

intensities at each spot on the array measured the relative abundances of the

DNA subsequences bound by Lrp in the two samples, respectively. Hence the

log-ratio of Cy5 to Cy3 intensities at each spot provided a measure of the extent

of binding of Lrp to the corresponding genomic locus.

Tani et al. (2002) published a study using cDNA microarrays to survey gene

expression changes between the cell of the wild type and that of a mutant with

the gene encoding Lrp knocked out. Due to the obvious connection of this study

with our Lrp binding experiment, we aim to borrow information from this gene

expression dataset to help identify the binding targets of Lrp.

After combining the two datasets, we had in total 4,281 genes (ORFs). There

were five replicates/arrays for the binding data, and six replicates for the gene

expression data. Because of the use of genomic DNA as control samples in the

ChIP experiment, we used a global normalization method; that is, we centered the

log-ratios on each array at median 0 and scaled them by the inter-quartile range

on the array. For the expression data, we took the standard local normalization

using the loess smoother (Yang, Dudoit, Luu and Speed (2002)).

Figure 2 (top panel) gives the scatter plot of the test statistics of the binding

data versus that of the expression data. There seems to be little marginal corre-

lation between the two sets of the statistics; this could be due to the high noise

level in either data source, or to the fact that there were many downstream genes

indirectly regulated by Lrp. This attested to the challenge that this particular

problem brought with only a limited amount of binding information contained

in the expression data. Based on the performance of the methods in simulations,

we only considered analyzing the binding data alone and the joint analysis.

Using the binding data alone, the posterior probability is a function of the

binding test statistic (bottom panel, Figure 2). However, the posterior proba-

bility in the joint analysis is a function of both the binding test statistic and

the expression statistic. For example, when the binding statistic is about 0.5,

using the binding data alone gives a posterior probability around 0.6; however,

depending on the expression statistic, the posterior probability from the joint

modeling ranges from 0.4 to 0.7; as to be discussed next, this difference could

lead to the joint analysis’s identifying a known target (Lrp gene) that using the

binding data alone missed.

Some parameter estimates were π̂ = 0.185, p̂1 = 0.83 and p̂0 = 0.67. Again

the relatively small ratio between p̂1 and p̂0 suggested little information contained

in the expression data. Nevertheless, based on the estimated FDR curves, it

appears that the joint modeling reduced the FDR when compared with analyzing

the binding data alone; see the Supplement.
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Figure 2. The scatterplot of the test statistics of the binding data vs. that

of the expression data (top panel), and the estimated posterior probabilities

using the binding data alone (solid line) and using the joint analysis (circles)

(bottom panel) for the Lrp data.

We also conducted a biological evaluation based on a comprehensive liter-

ature search. Table 3 lists the genes/operons known to be bound by Lrp as

discussed in the literature, their estimated posterior probabilities of being bound

by Lrp, and the ranks of their posterior probabilities among all the genes, given

by the analysis using the binding data alone and the joint analysis. For an operon

containing more than one gene, for each method, we gave the maximum of the
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posterior probabilities (and thus the minimum of the ranks) among the genes in
the operon. It can be seen that, for most of the genes/operons, the joint analysis
gave higher posterior probabilities and higher ranks than did the analysis using
the binding data alone. There were three exceptions: for operon dadAX, the
joint analysis gave a slightly lower probability and a lower rank, largely due to
the lack of evidence to support that either of the two genes, dadA and dadX, had
altered expression: their estimated posterior probabilities of expression changes
were ranked 2,789 and 3,487 respectively, while those of most other genes in Ta-
ble 1 were ranked much higher; for genes clpB and aidB, both methods gave an
estimated posterior probability of about 0. Hence, evidently, the joint model had
an efficiency-gain over using the binding data alone: for example, if we used the
usual cut-off at c = 0.5 (with estimated FDR about 0.35, see Figure 2 in the
Supplement), the joint analysis was able to correctly identify gene lrp as a target
(Wang et al. (1994) and Oshima et al. (1995)), whereas using the binding data
alone would miss it.

Table 3. Genes known to be bound by Lrp as discussed in the literature, their

posterior probabilities and ranks as being bound by Lrp using the binding

data alone, and the joint analysis of the binding data and expression data.

binding joint
Gene Prob Rank Prob Rank

serA 0.772 79 0.808 68

osmY 0.749 98 0.787 83

fimBE 0.674 140 0.719 117

ilvGMEDA 0.524 342 0.575 268

lrp 0.449 543 0.502 419
atpAD 0.430 597 0.483 473

gltBDF 0.399 697 0.451 558

dadAX 0.386 738 0.380 751

ilvIH 0.265 1194 0.309 1001
lysU 0.148 1902 0.177 1679

csiD 0.132 2012 0.158 1798

gcvTHP 0.130 2023 0.156 1812

osmC 0.030 3018 0.037 2894

ompC 0.019 3155 0.023 3061
tdh 0.006 3364 0.008 3318

clpB 0.000 - 0.000 -

aidB 0.000 - 0.000 -

6. Discussion

With the rapid accumulation of various high-throughput genomic and pro-
teomic data, there is an increasing interest to develop new statistical methods
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that can take advantage of the existence of multiple types and sources of data.
However, we are not aware of any other existing work aiming to jointly model
DNA-protein binding data and expression data in spite of the significant use
of the two types of data in wide-ranging applications, and our proposal can be
also applied to other and more than two sources of genomic data. Among the
existing approaches, the closest to ours was proposed by Wang et al. (2005), in
which a similar joint model was used for DNA sequence data and either gene
expression data or binding data; however, in addition to different data sources,
a key difference is that they used a parametric model. Bar-Joseph et al. (2003)
also considered combining information from binding and expression data to infer
a common set of target genes for a group of TFs: first, they used the binding
data with a stringent cutoff to obtain an initial list L1 of the target genes for
a group T of TFs; second, they used the expression profiles across multiple ex-
perimental conditions to obtain another set L2 of the genes that were strongly
co-expressed with the genes in L1; third, they used the binding data with a less
stringent cutoff to add a possible subset of L2 into L1, which was taken as the
output. In particular, Fisher’s method was used in the last step to combine the
p-values for a gene in L2 to be bound by the TFs in T ; each p-value was ob-
tained from the binding data alone. Hence, their method was more of a sequential
strategy for using expression data to generate priors for analyzing binding data
(thus relaxing the cutoff to identify targets based on the binding data), as in
Xie, Pan, Jeong and Khodursky (2007).

Here we have proposed a novel joint model to nonparametrically analyze
the two types of data simultaneously to identify binding targets of a TF. The
basic idea is to exploit the correlation between the TF binding and expression
change of a gene, thus enabling borrowing information from expression data to
detect binding targets. We have demonstrated the feasibility as well as possible
efficiency gain of the joint modeling over several existing methods. In our moti-
vating example, as a broad transcription regulator, Lrp binds to relatively a large
number of genes, some of which further regulate many other genes’ expression;
in other words, there are probably many downstream genes that are indirectly
regulated by Lrp. Therefore, there is only a limited information content on bind-
ing contained in the expression data, leading to only moderate improvement of
the results in the joint analysis. Nevertheless, because of the prior existence
of the expression data, it is still desirable to have a joint analysis: at no extra
experimental cost, it resulted in more biologically confirmed binding targets as
demonstrated in our example. Furthermore, it is conceivable that for other less
general TFs with less downstream genes indirectly regulated, the joint analysis
will result in a larger efficiency gain. Finally, a nice property of the joint model is
its robustness: if there is indeed no binding information contained in the expres-
sion or other secondary data, the joint model reduces to analyzing the binding
data alone.
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In summary, a main message of this study is that the joint analysis improves

over analyzing a single data source and other ad hoc methods of combining two

separate analyses, even when the secondary data may contain only a limited

amount of information. Presumably, incorporation of other sources of data, such

as DNA sequence data, into the above joint modeling framework will further

improve efficiency gain. This is currently under investigation.

We comment on two issues related to biology. First, there is a recent techno-

logical innovation in using tiling arrays to map DNA-protein binding locations.

A feature is that there are several probes (i.e., DNA subsequences) corresponding

to each gene on an array. A common theme of existing approaches to analyzing

tiling arrays is to smooth the signals of neighboring probes with a sliding window

on a chromosome, and then to identify a signal peak for each gene, resulting in

a summary expression or binding statistic for each gene (Buck, Nobel and Lieb

(2005) and Ji and Wong (2005)). In this way, with a summary statistic for each

gene, our joint model can be directly applied. Second, in the present study, the

expression experiment surveyed the expression difference between the wild type

and a strain with the gene encoding a TF knocked out. There might be a concern

on the availability of such deletion experiments, but they are not necessary; for

example, it is appropriate to use any data with a partial or full loss of the TF

function, including deletions, conditional mutations and data obtained by RNA

interference (RNAi).

In this work, we have used a model-based FDR estimation procedure pro-

posed by Newton et al. (2004) and found that it worked better than permutation-

based methods, in agreement with the conclusion found there. In particular, the

flexibility of the joint model enables the use of model-based FDR estimation, in

contrast to the problems associated with other ad hoc methods, such as the inter-

section method, due to their questionable modeling assumptions. Although it is

conceptually possible to use other estimation methods, we have adopted a non-

parametric EB approach of analyzing gene expression data (Efron et al. (2001))

to the current context for statistical inference. The nonparametric EB approach is

particularly attractive with regard to its flexibility and simplicity. However, there

is room for improvement. First, the prior probability in the nonparametric mix-

ture model for the primary data is not identifiable (Efron et al. (2001)); we used

a simple estimate of Efron et al. (2001), and other more sophisticated estimators

may be also used (e.g., Storey and Tibshirani (2003), Pounds and Cheng (2004)

and Dalmasso, Broet and Moreau (2005)). Second, there may be problems with

permutation-based methods to estimate the null distribution (i.e., f0 or g0) (Pan

(2003) and Efron (2004)); other empirical estimates may be applied (Efron (2004)

and McLachlan, Bean and Jones (2006)). Alternatively, one may try paramet-

ric EB (Newton et al. (2001) and Kendziorski et al. (2003)), semi-parametric EB
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(Newton et al. (2004)) or fully Bayesian approaches (Do, Muller and Tang (2005)

and Lewin et al. (2006)). These are currently under investigation.
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