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Abstract: The recent paper by Ling and Tong (2005) considered a quasi-likelihood

ratio test for the threshold in moving average models with i.i.d. errors. This article

generalizes their results to the case with GARCH errors, and a new quasi-likelihood

ratio test is derived. The generalization is not direct since the techniques developed

for TMA models heavily depend on the property of p-dependence that is no longer

satisfied by the time series models with conditional heteroscedasticity. The new

test statistic is shown to converge weakly to a functional of a centered Gaussian

process under the null hypothesis of no threshold, and it is also proved that the test

has nontrivial asymptotic power under local alternatives. Monte Carlo experiments

demonstrate the necessity of our test when a moving average time series has a time

varying conditional variance. As further support, two data examples are reported.
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1. Introduction

The threshold time series models were first proposed by Tong (1978) and

Tong and Lim (1980) in the form of threshold autoregressive (TAR) models and

have become a standard class of nonlinear time series models, see Tong (1990),

Ling and Tong (2005), and references therein. On the other hand, since Engle

(1982), it has been widely accepted by most economists and statisticians that

many financial and economic time series have a time varying conditional vari-

ance and the generalized autoregressive conditional heteroscedasticity (GARCH)

models proposed by Bollerslev (1986) are usually considered to model this phe-

nomena. Bollerslev, Chou and Kroner (1992) also showed that ignoring the con-

ditional heteroscedastic effect in time series models would lead to inefficient es-

timates and suboptimal statistical inferences. Combining the above two ideas,

a second-generation class of models have been widely discussed recently, e.g.

threshold AR-ARCH models in Li and Lam (1995), double threshold AR-ARCH

models in Liu, Li and Li (1997), double threshold ARMA-GARCH models in

Ling (1999), and others.

In the literature, it is an interesting problem to test whether or not a thresh-

old time series model provides a better fit to the data than a model without



648 GUODONG LI AND WAI KEUNG LI

threshold. For this type of tests, the threshold parameter is usually assumed to

be unknown in the alternative hypothesis and is absent in the null hypothesis.

Under this circumstance, the threshold parameter is a nuisance parameter and

it makes the testing problem nonstandard, see Davies (1977, 1987). Chan (1990,

1991) and Chan and Tong (1990) first considered this problem and suggested a

likelihood ratio test for the threshold in AR models. A Wald test was studied

by Hansen (1996) for TAR models, and was extended to the case with a unit

root by Caner and Hansen (2001). For the extension from common TAR mod-

els to conditional heteroscedastic versions, Wong and Li (1997, 2000) considered

Lagrange multiplier tests for (double) TAR-ARCH models. It is well known that

MA models are as important as AR models in the linear case, and are usually

considered in time series modeling from the point of view of parsimony, see Tsay

(1987). However, until Ling and Tong (2005), the development of the threshold

moving average (TMA) models had been hindered by the unavailability of an

invertibility condition, which is vital for making statistical inferences. For TMA

models, Ling and Tong (2005) derived the condition of invertibility, and investi-

gated the quasi-likelihood ratio test for threshold in MA models. However, it is

still an open problem on how to test for the threshold structure in MA models

when the time series has a time varying conditional variance.

As we know, the quasi-likelihood ratio test will perform best when the true

distribution is the assumed one. However, for most time series in finance and

economics, it is a more reasonable assumption that their conditional distribu-

tions have a time varying variance than that they have a constant variance,

see Engle (1982) and Bollerslev (1986). Hence, we may expect that the test

of Ling and Tong (2005) is too sensitive for TMA models with conditional het-

eroscedasticity, and the simulation results in Section 4 demonstrate that it even

has no reliable sizes when the effect of conditional heteroscedasticity is ignored.

This article generalizes the results of Ling and Tong (2005), and derives a new

quasi-likelihood ratio test statistic for threshold moving average with GARCH

errors. Under the null hypothesis of no threshold, the test statistic is shown to

converge weakly to a functional of a zero-mean Gaussian process, and the test

also has nontrivial asymptotic power under a sequence of local alternatives. The

generalization is not direct since the techniques developed for TMA models heav-

ily depend on an exclusive property of p-dependence that is no longer satisfied for

the MA-GARCH or TMA-GARCH models. Furthermore, as in Ling and Tong

(2005), the techniques in this article do not involve any mixing conditions. For

a general time series model, mixing conditions are difficult to verify though gen-

erally assumed, see Chan (1990) and Wong and Li (1997). Our techniques may

also be useful in constructing tests for the presence of threshold structure in

ARMA models, regarded as a challenging problem by Ling and Tong (2005).
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The organization of this article is as follows. Section 2 derives the quasi-

likelihood ratio test statistic and its asymptotic distribution under the null hy-

pothesis of no threshold. Under local alternatives, Section 3 shows that the test

has nontrivial asymptotic power. Some simulation results are presented in Sec-

tion 4; this section also gives the modeling and testing results for the centered log

return sequences of the S&P 500 weekly closing price and the weekly exchange

rate of Japanese Yen against USA dollars. The proofs of the main theorem,

stated in Section 2, and two important lemmas are delayed to the appendix.

2. Quasi-Likelihood Ratio Test

Let {yt} be a strictly stationary and ergodic time series generated by the

TMA(p, d, q)-GARCH(m, s) model





yt =
∑p

i=1 φiet−i +
∑q

i=1 ψiet−iI(yt−d ≤ r) + et,

et = εth
1

2

t ,

ht = a0 +
∑m

i=1 aie
2
t−i +

∑s
i=1 biht−i,

(2.1)

where {εt} is a sequence of independent and identically distributed (i.i.d.) ran-

dom variables with mean zero, variance one and a finite fourth moment, p, d, q,m, s

are known positive integers with p ≥ q, I is the indicator function, and r ∈ R is

the threshold parameter.

Denote the parameter space by Θ = Θα × Θβ × Θφ × Θψ, where Θα, Θβ,

Θφ and Θψ are compact subsets of Rm+1, Rs, Rp and Rq, respectively. Let

α = (a0, a1, . . . , am)′, β = (b1, . . . , bs)
′, φ = (φ1, . . . , φp)

′, ψ = (ψ1, . . . , ψq)
′,

γ = (α′, β′, φ′)′ and λ = (γ′, ψ′)′, where λ is termed the parameter vector of model

(2.1). Denote the true parameter vector by λ0 = (γ′0, ψ
′
0)

′ = (α′
0, β

′
0, φ

′
0, ψ

′
0)

′ and

assume it to be an interior point of the parameter space Θ. Some assumptions

on the parameter space are considered to make sure that model (2.1) has some

necessary properties in constructing the quai-likelihood ratio test. We first state

some restrictions on the parameters in the GARCH part of model (2.1).

Assumption 2.1. ai > 0, i = 0, 1, . . . ,m, bj > 0, j = 1, . . . , s, the polynomials

a1x + a2x
2 + · · · + amx

m and 1 − b1x − b2x
2 − · · · − bsx

s are coprime, and the

sequence {et} is strictly stationary and ergodic with a finite fourth moment.

The positivity of the ai’s and bj ’s is a general restriction in estimating the

parameters of GARCH models, see Peng and Yao (2003), Berkes and Horvath

(2004), and can be replaced by the existence of higher order moments of et in

the process of our proof. The coprime nature of the two polynomials is necessary

to uniquely identify the parameters of GARCH models, i.e., it is indispensable
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in making the Hessian matrix Ωr in Lemma 2.1 and Theorem 2.1 positive def-
inite, see Berkes, Horvath and Kokoszka (2003). The conditions of ergodicity,
stationarity and finite fourth moment are common assumptions in deriving the
asymptotic behavior of tests for the threshold, see Chan (1990), Wong and Li
(2000) and Ling and Tong (2005). For details of these probabilistic properties,
please refer to Ling (1999).

Given the time series {yt} from model (2.1) with Assumption 2.1, we consider

H0 : ψ0 = 0 versus H1 : ψ0 6= 0 for some r ∈ R.

Under H0, (2.1) reduces to a usual MA-GARCH model and the time series {yt}
is always stationary and ergodic. Note that the threshold parameter r is absent
in this case. Under H1, without any further assumptions on the parameter space,
Ling (1999) showed that there always exists a strictly stationary solution to (2.1).

For (2.1) (i.e., under H1), we define the functions et(λ, r) and ht(λ, r) in
terms of the following iterative equations,

et(λ, r) = yt −
p∑

i=1

φiet−i(λ, r) −
q∑

i=1

ψiet−i(λ, r)I(yt−d ≤ r),

ht(λ, r) = a0 +

m∑

i=1

aie
2
t−i(λ, r) +

s∑

i=1

biht−i(λ, r).

However, under H0, the varying parameters ψ and r disappear from the above
two functions. For simplicity, we denote them respectively by et(γ) and ht(γ),
i.e., et(γ) = et(λ,−∞) and ht(γ) = ht(λ,−∞). Furthermore, for the functions
et(λ, r) and et(γ) to be meaningful, it is important to consider the invertibility
condition of yt. Ling and Tong (2005) investigated this property for a general
TMA model and their results can be extended to our case. We now state the
condition of invertibility as Assumption 2.2 below.

Assumption 2.2.
∑p

i=1 |φi| < 1 and
∑p

i=1 |φi+ψi| < 1, where ψi = 0 for i > q.

The above assumption is the same as Assumption 2.1 in Ling and Tong
(2005), and is also similar to the conditions for the ergodicity of TAR models in
Chan and Tong (1985).

Under H0 and H1, omitting a negative constant, the quasi-log likelihood
functions conditional on {y0, y−1, . . .} are, respectively,

L0n(γ) =

n∑

t=1

lt(γ) and L1n(λ, r) =

n∑

t=1

lt(λ, r),

where lt(γ) = lt(λ,−∞), and

lt(λ, r) =
e2t (λ, r)

ht(λ, r)
+ log ht(λ, r).
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For a time series, there are only n values available in practice but the quasi-log

likelihood functions are all dependent on past observations infinitely far away.

Hence, initial values for {y0, y−1, . . .} are needed. For simplicity, we assume that

yi = 0, i ≤ 0 and these functions evaluated at these initial values can be denoted

respectively by ẽt(γ), ẽt(λ, r), h̃t(γ), h̃t(λ, r), l̃t(γ), l̃t(λ, r), L̃0n(γ) and L̃1n(λ, r).

By a method similar to that of Lemma 6.6 in Ling and Tong (2005), we can show

that the effect of these initial values is asymptotically ignorable.

Let

γ̃n = argmin
γ∈Θα×Θβ×Θφ

L̃0n(γ) and λ̃n(r) = argmin
λ∈Θ

L̃1n(λ, r).

We call γ̃n and λ̃n(r) the quasi-maximum likelihood estimators for the MA-

GARCH model and the TMA-GARCH model, respectively. For a given r, it

is well known that the likelihood ratio test statistics for H0 against H1 can be

defined as

L̃Rn(r) = −[L̃1n(λ̃n(r), r) − L̃0n(γ̃n)].

In the literature, the threshold parameter r is generally assumed to be un-

known and it is natural to consider the supremum on r. However, the quantity

supr∈R L̃Rn(r) will diverge to infinity in probability, see Andrews (1993). In

this article, as in Andrews (1993) and Ling and Tong (2005), the supremum of

L̃Rn(r) on a finite interval [a, b] is considered and the quasi-likelihood ratio test

statistic is defined to be

LRn = sup
r∈[a,b]

L̃Rn(r).

To investigate the asymptotic distribution of LRn, we need another assump-

tion, it is a mild technical condition and includes most continuous distributions.

Assumption 2.3. εt has a continuous and positive density function f(·) on R,

and supx∈R x
4f(x) <∞.

To present the asymptotic results of the test statistic LRn, we need some

more notations in terms of matrices, as follows. For r, l ∈ R:

Γ
(hh)
rl = E{ 1

h2
t

∂ht(λ0, r)

∂λ

∂ht(λ0, l)

∂λ′
}; Γ

(eh)
rl = E{ 1

h
3

2

t

∂et(λ0, r)

∂λ

∂ht(λ0, l)

∂λ′
};

Σ = E{ 2

ht

∂et(γ0)

∂γ

∂et(γ0)

∂γ′
+

1

h2
t

∂ht(γ0)

∂γ

∂ht(γ0)

∂γ′
};

Σ1r = E{ 2

ht

∂et(γ0)

∂γ

∂et(λ0, r)

∂ψ′ +
1

h2
t

∂ht(γ0)

∂γ

∂ht(λ0, r)

∂ψ′ };
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Σrl = E{ 2

ht

∂et(λ0, r)

∂ψ

∂et(λ0, l)

∂ψ′ +
1

h2
t

∂ht(λ0, r)

∂ψ

∂ht(λ0, l)

∂ψ′ };

Ωr = E{ 2

ht

∂et(λ0, r)

∂λ

∂et(λ0, r)

∂λ′
+

1

h2
t

∂ht(λ0, r)

∂λ

∂ht(λ0, r)

∂λ′
}.

Note that the matrix Ωr has the form,

Ωr = E{∂
2lt(λ0, r)

∂λ∂λ′
} =

(
Σ Σ1r

Σ′
1r Σrr

)
,

and it is not difficult to show that Ωr is positive definite for each r ∈ R.

With this notation, we first state a basic lemma on the uniform expansion

of L̃Rn(r) on [a, b]. Here, and in the sequel, op(1) denotes convergence to zero in

probability as n→ ∞, ‖ · ‖ denotes Euclidean norm.

Lemma 2.1. If Assumptions 2.1−2.3 hold, then under H0, it follows that

(a) sup
r∈[a,b]

‖λ̃n(r) − λ0‖ = op(1),

(b) sup
r∈[a,b]

‖
√
n[λ̃n(r) − λ0] +

Ω−1
r√
n

n∑

t=1

∂lt(λ0, r)

∂λ
‖ = op(1),

(c) sup
r∈[a,b]

‖L̃Rn(r) −
1

2
T ′
n(r)(Σrr − Σ′

1rΣ
−1Σ1r)

−1Tn(r)‖ = op(1),

where

Tn(r) =
1√
n

n∑

t=1

∂lt(λ0, r)

∂ψ
− Σ′

1rΣ
−1

√
n

n∑

t=1

∂lt(γ0)

∂γ
.

It is not difficult to show this lemma by a method similar to that used in

Section 6 of Ling and Tong (2005). The proof is omitted. Note that {Tn(r), r ∈
R} is the unique stochastic term in the expansion of L̃Rn(r), and hence will play

an important role.

Let Rν = [−ν, ν] and Dq[Rν ] = D[Rν ] × · · · × D[Rν ] (q factors) equipped

with the corresponding product Skorohod topology. Weak convergence on Dq[R]

is defined as that on Dq[Rν ] for each ν ∈ (0,∞) as n → ∞, and is denoted by

⇒. Let Krl = Σrl − Σ′
1rΣ

−1Σ1l, ∆r = (−Σ′
1rΣ

−1, Iq×q) and Γrl = 0.5κ4Γ
(hh)
rl −

κ3(Γ
(eh)
rl + [Γ

(eh)
lr ]′), where κ3 = Eε3t and κ4 = Eε4t − 3.

Theorem 2.1. Under Assumptions 2.1−2.3 and H0, with Eε8t < ∞, Tn(r) ⇒√
2Gq(r) in Dq[R], where {Gq(r), r ∈ R} is a q× 1 vector Gaussian process with

mean zero and covariance kernel K∗
rl = Krl + ∆rΓrl∆

′
l; almost all its paths are

continuous.
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When εt in model (2.1) is symmetrically distributed, E[∂2lt(λ0, r)/∂τ∂ω] = 0

and κ3 = 0, where τ = (α′, β′)′ and ω = (φ′, ψ′)′. Hence we have that Krl =

Σrl − (Σ∗
1r)

′(Σ∗)−1(Σ∗
1l), where

Σ∗ = E
{ 2

ht

∂et(γ0)

∂φ

∂et(γ0)

∂φ′
+

1

h2
t

∂ht(γ0)

∂φ

∂ht(γ0)

∂φ′

}
,

Σ∗
1r = E

{ 2

ht

∂et(γ0)

∂φ

∂et(λ0, r)

∂ψ′ +
1

h2
t

∂ht(γ0)

∂φ

∂ht(λ0, r)

∂ψ′

}
,

and the derivative functions to τ have disappeared fromKrl. If we further assume

that εt has the same fourth moment as the standard normal distribution, then

κ4 = 0 and Krl is just the covariance kernel.

As mentioned by Ling and Tong (2005), the stochastic process {Tn(r), r ∈
R} in Theorem 2.1 is a new marked empirical process and our weak convergence

result excludes the two points ±∞. By Lemma 2.1, Theorem 2.1 and the Con-

tinuous Mapping Theorem, we can now state the asymptotic distribution of the

test statistic LRn as follows.

Theorem 2.2. Under the assumptions of Theorem 2.1, it follows that

LRn →L sup
r∈[a,b]

{G′
q(r)K

−1
rr Gq(r)},

as n → ∞, where →L denotes convergence in distribution, the matrix Krr and

the Gaussian process {Gq(r), r ∈ R} are defined as in Theorem 2.1.

For the case p = q = 1 < d, if κ4 = 0 and f(·) is symmetric, it holds

that Σrl = Σ∗
1min{r,l}. Denote the function (Σ∗)−1Σ∗

1l by g(l). Note that the

Gaussian process {(Σ∗)−1/2Gq(r), r ∈ R} has mean zero and covariance kernel

g(min(r, l)) − g(r)g(l) with g a monotonic increasing function, g(−∞) = 0 and

g(∞) = 1. As in Chan (1990), the supremum in Theorem 2.2 has the same

distribution as

sup
π1≤r≤π2

B2
r

r − r2
,

where π1 = g(a), π2 = g(b), and Br is just a Brownian bridge. This distribution

is the same as that of test statistics for change points in Andrews (1993), and

critical values can be found in Andrews (1993) or Chan (1991). In practice, we

can select the values for (π1, π2), e.g., π1 = 0.05 and π2 = 0.95, and compute

LRn with a = g−1(π1) and b = g−1(π2), where g−1(·) is the inverse function of g.

Some guidelines on this can be found in Chan (1990). For other cases, the critical

values of LRn can be obtained via a simulation method and the first experiment

in Section 4 provides an overview of this.
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3. Asymptotic Power under Local Alternatives

To investigate the asymptotic power of the test proposed in the previous

section, we consider the asymptotic behavior of LRn under

H1n : ψ0 =
h√
n

for a constant vector h ∈ Rq and r = r0 ∈ R,

where r0 is a fixed value.

We first introduce some notation. Let FZ be the Borel σ-field on RZ with

Z = {0,±1,±2, . . .}, P be a probability measure on (FZ ,RZ) and Pnλ be the

restriction of P on Fn, where Fn is the σ-field generated by {yn, . . . , y1, Y0}
and Y0 = {y0, y−1, . . .} is the initial vector. Denote the error functions of

model (2.1) by εt(λ, r) = et(λ, r)/
√
ht(λ, r), where the functions et(λ, r) and

ht(λ, r) are defined in the previous section. Suppose that the error functions

{ε1(λ, r0), . . . , εt(λ, r0)} are identically independently distributed with density

function f(·) under Pnλ , and are independent of Y0. From model (2.1), the initial

vector Y0 has the same distribution under Pnλ and Pnλ0
. Hence the log-likelihood

ratio Λn(λ1, λ2) of Pnλ2
to Pnλ1

is

Λn(λ1, λ2) = 2

n∑

t=1

[log gt(λ2) − log gt(λ1)],

where gt(λ) =
√
f(εt(λ, r0))/

4
√
ht(λ, r0), see Ling and McAleer (2003).

To find the asymptotic distribution of LRn under H1n, we need the LAN

property of Λn(λ0, λ0 + vn/
√
n) and the contiguity of Pnλ0

and Pn
λ0+vn/

√
n
, where

vn is a bounded constant sequence in Rp+q+r+s+1.

Assumption 3.1. The density f of εt is absolutely continuous with a.e.-derivative

f ′ and

I1(f) =

∫
ξ21(x)f(x)dx <∞, I2(f) =

∫
ξ22(x)f(x)dx <∞,

where ξ1(x) = f ′(x)/f(x) and ξ2 = 1 + xξ1(x).

Denote ζ1t = ξ1(εt), ζ2t = ξ2(εt), I3(f) = E(ζ1tζ2t), I4(f) = I2(f) − 2I1(f),

and Γ∗
rl = 0.5I4(f)Γ

(hh)
rl − I3(f)(Γ

(eh)
rl + [Γ

(eh)
lr ]′), where r, l ∈ R. Applying The-

orem 2.1 and Remark 2.1 in Ling and McAleer (2003), we have the following

theorem.

Theorem 3.1. If Assumptions 2.1−2.3 and 3.1 hold and λ0 = (γ′0, 0)
′, then

(a) Λn(λ0, λ0 +
vn√
n

) =
v′n√
n

n∑

t=1

[
ζ1t√
ht

∂et(λ0, r0)

∂λ
− ζ2t

2ht

∂ht(λ0, r0)

∂λ
]
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− v′n
4

[I1(f)Ωr0 + Γ∗
r0r0]vn under Pnλ0

,

(b) Pnλ0
and Pnλ0+vn/

√
n are contiguous,

where the matrix Ωr is defined as in the previous section.

Furthermore, we can show the following theorem by the Central Limit The-

orem, the Continuous Mapping Theorem, Theorems 2.1 and 3.1.

Theorem 3.2. If Assumption 3.1 and the assumptions of Theorem 2.1 hold,

then under H1n,

(a) Tn(r) ⇒ µ(r) +
√

2Gq(r) in Dq[R],

(b) LRn →L
1

2
sup
r∈[a,b]

{[µ(r) +
√

2Gq(r)]
′K−1

rr [µ(r) +
√

2Gq(r)]},

where µ(r) = K∗
rr0h and Gq(r) is a Gaussian process defined in Theorem 2.1.

The above theorem shows that the likelihood ratio test LRn has non-trivial

asymptotic power under local alternatives H1n.

4. Simulation and Empirical Results

4.1. Two simulation experiments

We first performed two simulation experiments to demonstrate the usefulness

of the test in Section 2. The first experiment is used to demonstrate the sample

sizes and replications needed when simulation experiments were used to find out

critical values of test LRn. The following generating process was involved,

yt = 0.5et−1 + et, et = εth
1

2

t and ht = 1.0 + 0.3e2t−1 + 0.3ht−1,

where {εt} is i.i.d. with the standard normal distribution N(0, 1). The sample

size n was set to be 200, 500 or 5, 000, and there were 10,000 replications for each

sample size. For the parameters in the alternative hypothesis, we let q = d = 1,

a = −1.28
√

var(yt) and b = 1.28
√

var(yt), where 1.28 is the 0.9-quantile of

the standard normal distribution. The Newton-Raphson algorithm was used

to search for the quasi-maximum likelihood estimators for MA(1)-GARCH(1,1)

and TMA(1,1,1)-GARCH(1,1) models and this algorithm was also used in the

second experiment and the two data examples below. Figure 4.1 displays the

tail behaviors of empirical distributions of the statistic LRn for three different

sample sizes. We may take the empirical distribution for sample size 5,000 to

be the ’true’ distribution. It can be seen that the empirical distribution matches

the ’true’ one satisfactorily for n as small as 200 and rather well for n = 500.
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Figure 4.1. The simulated empirical distributions of the statistic LRn with

n = 200, 500 and 5,000, based on 10,000 replications for each sample size.

The second experiment was performed to illustrate that ignoring the effect

of conditional heteroscedasticity could lead to misleading conclusions. In this

experiment, we considered the generating process

yt = 0.5et−1 + et, et = εth
1

2

t and ht = 1.0 + 0.5e2t−1,

where {εt} is i.i.d. with N(0, 1), and the test of Ling and Tong (2005) was used to

check whether or not there exists a threshold structure in the generated sequence.

We tried three different models with (p, q, d) = (1, 1, 2), (1, 1, 3) or (2, 2, 3) and

the sample size was set to be 400. There were 1,000 replications for each model

and the quantities a and b were respectively selected to be 0.1- and 0.9-quantiles

of the empirical distribution based on the sample {y1, . . . , y400}. The empirical

sizes for some upper percentage points are presented in Table 4.1, where the

respective critical values are given by Andrews (1993). The empirical sizes in

Table 4.1 are much greater than the nominal values. Hence, the test for thresh-

old moving average with i.i.d. errors is sensitive to the presence of conditional

heteroscedasticity.

4.2. Two data examples

We first consider the weekly closing price of S&P 500. The time range is from

Jan.1, 1996 to Dec.31, 2005 and there are 521 observations in total. The mod-

eling results for its centered log return sequence (as percentage) are summarized

in Table 4.2, and eight models, MA(p), TMA(p,d,p), MA(p)-GARCH(1,1) and
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Table 4.1. Empirical sizes for the theoretical upper percentage points using
the quasi-likelihood ratio test in Ling and Tong (2005) for time series with

conditional heteroscedasticity.

Models Empirical sizes Critical values

p or q d 10% 5% 1% 10% 5% 1%
1 2 37.8 29.2 16.9 7.63 9.31 12.69

1 3 44.3 31.3 17.7 7.63 9.31 12.69

2 3 41.9 32.2 16.5 10.50 12.27 16.04

TMA(p,d,p)-GARCH(1,1) with p = 1 and 2, are involved. The quasi-maximum

likelihood method is employed and the delay parameter d and the threshold pa-

rameter r are estimated by

(d0, r0) = argmin
r∈[a,b],1≤d≤16

L̃1n(λ̃(r), r),

where (a, b) = (−1.1892, 1.2442) are, respectively, the empirical 0.1- and 0.9-

quantiles of the centered log return sequence. In Table 2, the BICs of models

with GARCH(1,1) errors are less than those of models with i.i.d. errors and

the estimated values of a1 and b1 are all significant. We may claim that there

exists the phenomenon of time-varying conditional variance in this time series.

Furthermore, the BICs of threshold models are all greater than those of the cor-

responding models with no threshold and this can be considered as evidence of

no threshold in the centered log return sequence of S&P 500 weekly closing price.

To draw a conclusion formally, Ling and Tong’s test (LRLTn ) and the test in this

article (LRLLn ) are considered. The results are presented in Table 4.3, and the

critical values for the test, MA versus TMA, are from Andrews (1993). The

critical values for the test, MA-GARCH(1,1) versus TMA-GARCH(1,1), are ob-

tained via simulation. In the simulation experiments, the sample sizes are set to

be 1,000 and the obtained critical values are based on 10,000 replications. The

test LRLLn suggests that there is no threshold in the sequence at all three signif-

icance levels. Note that the test LRLTn rejects the hypothesis of no threshold at

the significance level of 0.05 and this may be because of the presence of condi-

tional heteroscedasticity as in the second simulation experiment in the previous

subsection.

We next consider the centered log return (as percentage) of weekly exchange

rate of Japanese Yen against USA dollar from Jan. 1, 1994 to Dec. 31, 2003 with

521 observations. The same modeling process as the above example is considered

again with (a, b) = (−0.6992, 0.6049) the 0.1- and 0.9-quantiles of the empirical

distribution. For the parameters in the GARCH part, we considered the sparse

model, ht = a0 +a5e
2
t−5 + b1ht−1, instead of the full model, ht = a0 +

∑5
i=1 aie

2
t−i
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Table 4.2. Modeling results for the centered log return of S&P 500 weekly

closing price(1996-2005).

Models ψ1 ψ2 φ1 φ2 r0 a0 a1 b1 BIC

Models with i.i.d. errors

MA(1) -0.0657 528.98
TMA(1,4,1) 0.3181 -0.1680 -0.7488 537.11

MA(2) -0.0642 0.0476 531.69

TMA(2,6,2) 0.3862 -0.3282 -0.1552 0.1283 -1.0672 542.54

Models with GARCH(1,1) errors

MA(1) -0.0820 0.2113 0.1826 0.6313 526.54

TMA(1,9,1) -0.2929 -0.0072 -0.5838 0.2106 0.1802 0.6303 528.26

MA(2) -0.0778 0.0624 0.2156 0.1798 0.6285 527.94
TMA(2,7,2) 0.3096 -0.0586 -0.1963 0.1200 -0.2318 0.2121 0.1725 0.6335 529.50

Table 4.3. Testing results for the centered log return of S&P 500 weekly

closing price(1996-2005).

The test statistics Critical values

LRLT

n LRLL

n 10% 5% 1%

MA versus TMA
p = q = 1, d = 4 12.4992 7.63 9.31 12.69

p = q = 2, d = 6 18.9044 10.50 12.27 16.04

MA-GARCH(1,1) versus TMA-GARCH(1,1)

p = q = 1, d = 9 6.4307 7.03 8.54 12.07

p = q = 2, d = 7 9.3016 10.02 11.72 14.43

Table 4.4. Modeling and testing results for the centered log return of weekly

exchange rate of Japanese Yen against USA dollar (1994-2003).

Models ψ1 φ1 r0 a0 a5 b1 BIC LRLT
n LRLL

n

Models with i.i.d. errors

MA(1) 0.263 676.22

TMA(1,10,1) -0.367 0.373 -0.108 676.08 18.74

Models with GARCH(5,1) errors

MA(1) 0.258 0.157 0.231 0.237 282.40
TMA(1,10,1) -0.282 0.338 -0.097 0.174 0.219 0.179 277.72 12.82

Critical values at the upper 5% for LRLT

n and LRLL

n are, respectively, 9.31 and 8.69.

+b1ht−1, as the fitted parameters âi, i = 1, . . . , 4 are insignificant in the pro-

cess of estimation. Hence, in this example, we consider four models, MA(1),

TMA(1,d,1), MA(1)-GARCH(5,1) and TMA(1,d,1)-GARCH(5,1), and the mod-
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eling results are presented in Table 4.4. Here the BICs strongly prefer the con-

ditional heteroscedastic models and also suggest the existence of the threshold

structure in the time series. Our test LRLLn rejects the null hypothesis of no

threshold in the centered log return sequence at the significance level of 0.05

and so does the test LRLTn . Furthermore, these two threshold models share the

same value of d and the estimated threshold parameters are approximately the

same. Therefore, it seems that the threshold MA structure with time varying

conditional variance really exists in this time series.
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Appendix: Proof of Theorem 2.1

We state the proofs of Theorem 2.1 and two key lemmas in this appendix. For

convenience, all parameters here are evaluated at the true ones unless otherwise

specified.

Let

T0n(r) =
1√
n

n∑

t=1

εt√
ht

[ ∞∑

i=0

u′pΦ
iupZt−1−iI(yt−d−i ≤ r)

]
,

Tjn(r) =
1√
n

n∑

t=1

(1−ε2t )
ht

×
{ ∞∑

i=0

u′sB
iuset−i−j

[ ∞∑

l=0

u′pΦ
lupZt−1−i−j−lI(yt−d−i−j−l≤r)

]}
,

where j = 1, . . . ,m, Zt = (et, . . . , et−q+1)
′, up = (1, 0, . . . , 0)′1×p, us = (1, 0, . . .,

0)′1×s, matrices Φ and B are defined as in Lemma A.1 and evaluated at the true

parameter vector λ0. Following Stute (1997) and Ling and Tong (2005), we call

{Tjn(r), r ∈ R}, j = 0, 1, . . . ,m the marked empirical processes. It can be verified

that

Tn(r) =
∆r√
n

n∑

t=1

∂lt(λ0, r)

∂λ
= −Σ′

1rΣ
−1

√
n

n∑

t=1

∂lt(γ0)

∂γ
+

1√
n

n∑

t=1

∂lt(λ0, r)

∂ψ
,

where the first item at the right hand side of Tn(r) is independent of the threshold

parameter r, and the second item can be rewritten as,

1√
n

n∑

t=1

∂lt(λ0, r)

∂ψ
= −2[T0n(r) +

m∑

j=1

Tjn(r)].
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Hence, it is sufficient to show the tightness of the marked empirical processes

{Tjn(r), r ∈ Rγ}, j = 0, 1, . . . ,m.

The tightness of T0n(r). Note that, for any κ > 0,

T0n(r
′ + κ) − T0n(r

′)

=
1√
n

n∑

t=1

εt√
ht

[ ∞∑

i=0

u′pΦ
iupZt−1−iI(r

′ < yt−d−i ≤ r′ + κ)
]
,

sup
r′<r≤r′+κ

‖T0n(r) − T0n(r
′)‖

≤ 1

a0
√
n

n∑

t=1

|εt|
[ ∞∑

i=0

‖Φi‖‖Zt−1−i‖I(r′ < yt−d−i ≤ r′ + κ)
]
.

Hence, by Burkholder’s inequality (Hall and Heyde (1980, p.23)), Holder’s in-

equality, Minkowskii’s inequality, Lemmas A.1 and A.2, it can be shown that

E‖T0n(r
′ + κ) − T0n(r

′)‖4 ≤ C[
κ

n
+ κ2], (A.1)

E{ sup
r′<r≤r′+κ

‖T0n(r) − T0n(r
′)‖}4 ≤ C[

κ

n
+ κ2 + nκ3 + n2κ4], (A.2)

where C is a constant independent of r′.
For any δ < 1, we choose n such that n−1 ≤ δ, and then select an integer K

such that δn/2 ≤ K ≤ nδ. Let rk+1 = rk+δ/K, where r1 = r′ and k = 1, . . . ,K.

Thus

sup
r′<r≤r′+δ

‖T0n(r) − T0n(r
′)‖

≤ max
1≤k≤K

‖T0n(rk)−T0n(r
′)‖+ max

1≤k≤K
sup

rk<r≤rk+ δ
K

‖T0n(r)−T0n(rk)‖. (A.3)

Note that T0n(ri) − T0n(rj) =
∑j

k=i+1[T0n(rk) − T0n(rk−1)] and n−1 ≤ δ/K.

Then, by (A.1), it follows that

E‖T0n(ri) − T0n(rj)‖4 ≤ C
{(j − i)δ

nK
+

[(j − i)δ

K

]2}
≤ C

( j∑

k=i+1

δ

K

)2

for any 1 ≤ i < j ≤ K. Hence, by Theorem 12.2 in Billingsley (1968, p.94) there

exists a constant C11 independent of K, δ, r′ and n such that

P
(

max
1≤k≤K

‖T0n(rk) − T0n(r
′)‖ > η

2

)
≤ C11C

η4

( K∑

k=1

δ

K

)2
=
C11C

η4
δ2. (A.4)
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Furthermore, by (A.2), we can show that

P
(

max
1≤k≤K

sup
rk<r≤rk+δ/K

‖T0n(r) − T0n(rk)‖ >
η

2

)
≤ 32C

η4
δ2. (A.5)

Given ε > 0 and η > 0, let δ = min{εη4/(CC11 + 32C), 0.5}. We select N

to be [δ−1], the largest integer less than δ−1. Thus, by (A.3)-(A.5),

P
(

sup
r′<r≤r′+δ

‖T0n(r) − T0n(r
′)‖ > η

)
≤ C(C11 + 32)

η4
δ2 ≤ δε

for any r′ ∈ Rγ and n > N . By Theorem 15.5 in Billingsley (1968) and the proof

of his Theorem 16.1, it can be shown that {T0n(r), r ∈ Rγ} is tight.

The tightness of Tjn(r) with j = 1, . . . ,m. For Tjn(r), j = 1, . . . ,m, it holds

that √
u′sBius ≤M1ρ

i
2 and

√
u′sBiuset−i−j

ht
≤M3 a.s.,

where us = (1, 0, . . . , 0)′1×s, i ≥ 0, j = 1, . . . ,m, ρ is defined in Lemma A.1, and

M1 and M3 are constants. Then, by arguments similar used for {T0n(r), r ∈ Rγ},
we can claim that {Tjn(r), r ∈ Rγ}, j = 1, . . . ,m are tight under the finite eighth

moment of εt.

Lemma A.1. If Assumptions 2.1 and 2.2 hold, then it holds that

(a) sup
λ∈Θ

sup
r∈[a,b]

∥∥∥
j∏

i=1

[Φ + ΨI(yt−i ≤ r)]
∥∥∥ = O(ρj)

(b) sup
λ∈Θ

‖Bj‖ = O(ρj),

where 0 < ρ < 1,

Φ =

(
−φ1 · · · −φp

Ip−1 0(p−1)×1

)
,Ψ =

(
−ψ1 · · · −ψp

0(p−1)×p

)
,

B =

(
b1 · · · bs

Is−1 0(s−1)×1

)
,

with Ik being the k × k identity matrix and 0k×l the k × l zero matrix.

Proof. In fact, (a) is just Theorem A.1 of Ling and Tong (2005). By a similar

method, we can show that (b) also holds.

Lemma A.2. If Assumptions 2.1 and 2.3 hold then, under H0, it follows that

(a) E{|et−j |kI(r′ < yt−d ≤ r)} ≤ C(r − r′), as k = 0, 2, 4,
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(b) E{‖Zt−1‖kI(r′ < yt−d ≤ r) ≤ C(r − r′), as k = 2, 4,

(c) E{|et−j |4I(r′ < yt−d ≤ r)
l∏

i=1

I(r′ < yti−d ≤ r)} ≤ C(r − r′)l+1,

(d) E{‖Zt−1‖4I(r′ < yt−d ≤ r)

l∏

i=1

I(r′ < yti−d ≤ r)} ≤ C(r − r′)l+1,

where Zt = (et, . . . , et−q+1)
′, l = 1, 2, 3, j ≥ 1, t, t1, t2, t3 are different from each

other, r′ < r, r, r′ ∈ Rγ, Rγ is defined as before and C is a constant independent

of r and r′.

Proof. Under Assumption 2.3, it holds that supx∈R |x|kf(x) ≤ M for k = 0, 2

and 4, where M is a constant. Let gt =
∑p

i=1 φiet−i and find that

E{|et|kI(r′ < yt ≤ r)|Ft−1} = E{|εt|kh
k
2

t I(r
′ < εth

1

2

t + gt ≤ r)|Ft−1}

= h
k
2

t

∫ h
−

1
2

t (r−gt)

h
−

1
2

t (r′−gt)
|x|kf(x)dx

≤Mh
k−1

2

t (r − r′)

≤ C1h
k
2

t (r − r′) a.s., (A.6)

where k = 0, 2, 4 and C1 = M/
√
a0. Note that E[I(r′ < yt ≤ r)|Ft−1] ≤ C1(r−r′)

a.s.. Hence, it can be shown that (a) holds for the case t− j ≤ t− d.

We now consider the case t − j > t − d for (a). Without loss of generality,

the notations t − j and t − d can be replaced respectively by t + L and t with

L > 0. Let

Ht = (e2t , . . . , e
2
t−m+1, ht, . . . , ht−s+1)

′
1×(m+s), u = (1, 0, . . . , 0)′1×(m+s),

πt = (a0ε
2
t , 0, . . . , 0, a0, 0, . . . , 0)

′
1×(m+s),

At =




a1ε
2
t · · · amε

2
t b1ε

2
t · · · bsε

2
t

Im−1 0(m−1)×1 0(m−1)×s
a1 · · · am b1 · · · bs

0(s−1)×m Is−1 0(s−1)×1




(m+s)×(m+s)

,

where Im is the m×m identity matrix and 0m×s is the m× s zero matrix. From

(2.1), we can rewrite e2t+L as

e2t+L = a0ε
2
t+L +

L−2∑

j=0

u′
j∏

i=0

At+L−iπt+L−j−1 + u′
L−1∏

j=0

At+L−jHt
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= Ã
(1)
t+1,t+L + Ã

(2)
t+1,t+LHt a.s..,

where Ã
(1)
t+1,t+L=a0ε

2
t+L+

∑L−2
j=0 u

′ ∏j
i=0At+L−iπt+L−j−1 and Ã

(2)
t+1,t+L=u′

∏L−1
j=0

At+L−j are functions of {ε2t+1, . . . , ε
2
t+L}, hence independent of the σ-field Ft.

Note that Ã
(1)
t+1,t+L is a random variable, Ã

(2)
t+1,t+L is a random vector and

E[HtI(r
′ < yt ≤ r)|Ft−1] ≤ C1(r − r′)H̃t = C1(r − r′)E[Ht|Ft−1] a.s.,

where H̃t = (ht, e
2
t−1..., e

2
t−m+1, ht, . . . , ht−s+1)

′ is just the vector Ht with the first

element replaced by ht. Hence,

E{e2t+LI(r′ < yt ≤ r)|Ft−1}
= E(Ã

(1)
t+1,t+L)E[I(r′<yt≤r)|Ft−1]+E(Ã

(2)
t+1,t+L)E[HtI(r

′<yt≤r)|Ft−1]

≤ C1(r − r′)E(Ã
(1)
t+1,t+L) + C1(r − r′)E(Ã

(2)
t+1,t+L)E[Ht|Ft−1]

= C1(r − r′)E(e2t+L|Ft−1) a.s., (A.7)

where C1 is the same as (A.6). Denote Ã
(2)
t+1,t+L by c = (c1, . . . , cm+s)

′, and then

E[(c′Ht)
2I(r′ < yt ≤ r)|Ft−1]

≤ (m+ s)E[(
m∑

i=1

c2i e
4
t+1−i +

s∑

i=1

c2m+ih
2
t+1−i)I(r

′ < yt ≤ r)|Ft−1]

≤ (m+ s)C1(r − r′)(E[c21]h
2
t +

m∑

i=2

E[c2i ]e
4
t+1−i +

s∑

i=1

E[c2m+i]h
2
t+1−i)

≤ (m+ s)C1C2(r − r′)[E[c21](Eε
4
t )h

2
t +

m∑

i=2

E[c2i ]e
4
t+1−i+

s∑

i=1

E[c2m+i]h
2
t+1−i]

= C3(r − r′)E[
m∑

i=1

c2i e
4
t+1−i +

s∑

i=1

c2m+ih
2
t+1−i|Ft−1]

≤ C3(r − r′)E[(c′Ht)
2|Ft−1] a.s.,

where C3 = (m+ s)C1C2, C2 = max{(Eε4t )−1, 1}. Thus

E{e4t+LI(r′ < yt ≤ r)|Ft−1}
≤ 2E[Ã

(1)
t+1,t+L]2E[I(r′ < yt ≤ r)|Ft−1]

+2E{[Ã(2)
t+1,t+LHt]

2I(r′ < yt ≤ r)|Ft−1}

≤ 2C1(r − r′)E[Ã
(1)
t+1,t+L]2 + 2C3(r − r′)E{[Ã(2)

t+1,t+LHt]
2|Ft−1}

≤ C4(r − r′)E{[Ã(1)
t+1,t+L]2 + [Ã

(2)
t+1,t+LHt]

2|Ft−1}
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≤ C4(r − r′)E(e4t+L|Ft−1) a.s., (A.8)

where C4 = 2max{C1, C3}. Following (A.7) and (A.8), we can show that (a)

also holds for the case t− j > t− d.

Applying (A.6) and (A.8) repeatedly, it is readily verified that (c) holds.

From (a) and (c), we get (b) and (d) immediately.
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