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Abstract: This paper provides a regression model in which both covariates and re-

sponses are angular variables. The regression curve is expressed as a form of the

Möbius circle transformation. The angular error is assumed to follow a wrapped

Cauchy or, equivalently, circular Cauchy distribution. A bivariate circular distribu-

tion is proposed to model our circular regression. Some properties of the regression,

including estimation and testing procedures, are obtained. The proposed methods

are applied to marine biology and wind direction data.
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1. Introduction

Some regression models in which both covariates and responses take values

on the circle have been proposed in the literature. Rivest (1997) provided a

model for predicting the y-direction using a rotation of the “decentred” x-angle,

which was applied to the prediction of the direction of earthquake displacement

in terms of the direction of steepest descent. Downs and Mardia (2002) proposed

a regression model in which the regression curve is expressed as a form of the

Möbius transformation or tangent function, with application to data on circadian

biological rhythms and wind directions. See Fisher (1993, p.168) for earlier works

on circular–circular regression models.

The Möbius transformation is well known as a mapping which carries the

complex plane onto itself. With some restrictions on the parameters, this map-

ping maps, for example, the unit circle onto itself or the unit circle onto the

real line. One of the earlier works in directional statistics in which the Möbius

transformation appeared was McCullagh (1996). In this paper he discussed the

connection between the real Cauchy distribution and the wrapped or circular

Cauchy distribution via the Möbius transformation. The Möbius transformation

was also used in the link functions of regression models by Downs and Mardia

(2002) and Downs (2003). Minh and Farnum (2003) induced some probabilis-

tic models on the circle by using a bilinear transformation which maps the real

line onto the unit circle and is related to the Möbius transformation in form.
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Jones (2004) proposed the Möbius distribution on the disc which is generated
by applying the Möbius transformation to the symmetric beta or Pearson type
II distribution. McCullagh (1989) and Seshadri (1991) transformed their dis-
tributions via a one-to-one mapping which has the same form as the Möbius
transformation and maps the interval (−1, 1) onto itself.

The wrapped Cauchy distribution was used as a statistical model by Mardia
(1972, p.56) and Mardia and Jupp (2000, p.51). Its distributional properties and
estimation were investigated by Kent and Tyler (1988) and McCullagh (1996).
McCullagh (1996) showed that the wrapped Cauchy distribution is obtained by
applying a bilinear transformation to the Cauchy distribution on the real line
and is closed under the Möbius transformation. It has the additive property
and a central limit theorem holds for this distribution (Kolassa and McCullagh
(1990)).

In this paper we propose a new circular–circular regression model and study
some properties, including estimation and testing procedures, of this model. Its
regression curve is expressed as a form of the Möbius circle transformation, and
the angular error is distributed as a wrapped Cauchy distribution.

In Section 2 some properties of the proposed model, including its regression
curve and the probability distribution of the angular error, are investigated.
In addition, we compare our regression model with some existing models. A
bivariate circular distribution, which could be useful for our regression model,
is presented in Section 3. Next, Section 4 considers parameter estimation, the
Fisher information matrix, and a test of independence for the proposed model.
In Section 5 our model is applied to marine biology and wind direction data.

2. Circular Regression Model

Let responses y1, . . . , yn be independent, and let x1, . . . , xn be nonstochastic
covariates which take values on the unit circle, Ω = {z ∈ C; |z| = 1}, in the
complex plane. In the proposed regression model, the conditional distribution
of yj given x1, . . . , xn has the wrapped Cauchy distribution with mean direction
arg{v(xj)} defined in Section 2.1 and concentration ϕ ∈ [0, 1].

In Section 2.1 we define the regression curve v and investigate its properties.
The wrapped Cauchy distribution for the regression error and some properties
of the regression model are discussed in Section 2.2 and Section 2.3, respectively.
Comparison with existing regression models is given in Section 2.4.

2.1. Regression curve

Suppose β0 and β1 are complex parameters with β0 ∈ Ω and β1 ∈ C. The
regression curve of the proposed regression model is defined by

v = v(x;β0, β1) = β0
x + β1

1 + β1x
, x ∈ Ω, (2.1)
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where the mapping with |β1| 6= 1 is called a Möbius circle transformation, it is a

one-to-one mapping which carries the unit circle onto itself.

The Möbius circle transformation is obtained by a composition of transfor-

mations of the following four types:

(1) Translations: z → z + b,

(2) Rotations: z → az, a ∈ Ω,

(3) Homotheties: z → rz, r > 0,

(4) Inversion: z → 1/z.

Note that these transformations exhibit the action of the group on the complex

plane, not on the circle. For β1 6= 0, v can be expressed as

v = β0

( 1

β1

+
λ

β1x + 1

)

, λ = β1 −
1

β1

.

In (2.1), β0 is evidently a rotation parameter, but the interpretation of β1 is

more complicated. However, the function of β1 in (2.1) for |β1| < 1 is revealed as

follows. Assume, without loss of generality, that β0 = 1. Then, for any β1 ∈ C

and any x ∈ Ω, (2.1) implies that β1 is the projection point for the straight line

projection of −x on the unit circle to the point v on the unit circle. From this fact,

β1 can be intuitively interpreted as the parameter that attracts the points on the

circle toward β1/|β1|, with the concentration of points about β1/|β1| increasing

as |β1| increases. An exception is the point x = −β1/|β1|, which is invariant

under the Möbius circle transformation for any |β1| < 1.

Figure 1(a) exhibits the behaviour of (2.1) for some specified values of β1

for |β1| < 1. Figure 1(a) explicitly shows that as |β1| approaches 1, v(x 6=

− exp(πi/12)) converges to a point β1/|β1| = exp(πi/12). It is also clear from

the figure that as |β1| tends to 0, v approaches the identity mapping. When

|β1| = 1, the mapping (2.1) maps the unit circle onto the point β1, i.e., v = β1

for any x. For the case of |β1| > 1, (2.1) can be expressed as

v = β0
x + β1

1 + β1x
= β0

x̃ + β̃1

1 + β̃1x̃
, (2.2)

where x̃ = (β1/|β1|)(β1x/|β1|) and β̃1 = 1/β1. The expression (2.2) shows that

the Möbius circle transformation with |β1| > 1 consists of two types of transfor-

mations, namely, reflection and the Möbius circle transformation with |β̃1| < 1,

i.e.,

x 7−→
( β1

|β1|

)(β1x

|β1|

)

and x 7−→ β0
x + β̃1

1 + β̃1x
.
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Figure 1. (a) plot of v(x; β0, β1) for regression curve (2.1) for x = exp(−πi/4)

with β0 = 1, arg(β1) = π/6 and: |β1| = 0.3; |β1| = 0.6; |β1| = 0.9. Points

on the plot are defined by vj = v(x; 1, bj), bj = 0.3j exp(πi/6), j = 1, 2, 3.

(b) plot of v, x, x̃, β1, β̃1 for equation (2.2) for β0 = 1, x = exp(−πi/6),

β1 = 5 exp(πi/6)/3. Parameters β1 and β̃1 are expressed as b and b̃ on the
plot, respectively.

Figure 1(b) displays an example in which (2.2) holds for selected values of β0, β1

and x. The figure clearly shows the fact that the Möbius circle transformation,
with |β1| > 1, is made up of the two transformations mentioned above.

2.2. Distribution for angular error

In this subsection we introduce a probability model for the angular error and
give some known properties of the distribution.

Let y be a random variable on the unit circle in the complex plane. Then y
has the wrapped Cauchy distribution or circular Cauchy distribution when the
density for y is

f(y) =
1

2π

|1 − |φ|2|

|y − φ|2
, y ∈ Ω, (2.3)

where |φ| 6= 1. In this paper we extend the domain of φ and define y = φ for
φ ∈ Ω. In the same way as McCullagh (1996), we denote the wrapped Cauchy
distribution in (2.3) by y ∼ C∗(φ).

By transforming y and φ into polar co-ordinates y = exp(iθ), φ = ρ exp(iµ),
0 ≤ θ, µ < 2π, we obtain the density of θ, which is given by

f(θ) =
1

2π

1 − ρ2

1 − 2ρ cos(θ − µ) + ρ2
, 0 ≤ θ < 2π,
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where

ρ =







|φ|, |φ| < 1,

1

|φ|
, |φ| > 1.

It is clear that µ = arg(φ) for φ ∈ Ω. Here µ is a mean direction and ρ a

concentration of y or θ. The distribution is unimodal and symmetric about µ.

When ρ is equal to 0, the distribution is the uniform distribution on the circle.

As ρ tends to 1, the distribution approaches a point distribution with singularity

at y = φ or θ = µ.

The properties of the wrapped Cauchy distribution have been investigated,

for example, by Mardia (1972) and McCullagh (1996). The following hold for

the wrapped Cauchy distribution:

(i) y ∼ C∗(φ) =⇒ β0y ∼ C∗(β0φ), β0 ∈ Ω,

(ii) y1 ∼ C∗(φ1), y2 ∼ C∗(φ2), y1⊥y2, |φ1|, |φ2| ≤ 1 =⇒ y1y2 ∼ C∗(φ1φ2),

(iii) y ∼ C∗(φ) =⇒
y + β1

1 + β1y
∼ C∗

( φ + β1

1 + β1φ

)

, β1 ∈ C,

(iv) y ∼ C∗(φ) =⇒ y ∼ C∗(1/φ).

The properties (i) and (iii) show that if y is distributed as a uniform distribution

C∗(0), then the Möbius circle transformation of y generates the wrapped Cauchy

distribution; i.e., β0(y + β1)/(1 + β1y) ∼ C∗(β0β1), where β0 ∈ Ω and β1 ∈ C.

Note that (ii)−(iv) do not hold for the von Mises distribution.

2.3. Some properties of the proposed regression model

This subsection discusses some properties of the proposed regression model.

For simplicity of expression, we consider a case in which a single pair of a covariate

and a response is observed.

Let x be a covariate which takes values on the unit circle in the complex

plane, and let y be a response. The complex parameters are β0 ∈ Ω and β1 ∈ C.

The proposed regression model is given by

y = β0
x + β1

1 + β1x
ε, x ∈ Ω, (2.4)

where ε ∼ C∗(ϕ), 0 ≤ ϕ ≤ 1. Here the restriction on the domain of ϕ is

valid because the mean direction of the angular error should be 0, and C∗(ϕ) =

C∗(1/ϕ) holds for any ϕ ∈ C. We have already discussed the interpretation of

β0 and β1 in Section 2.1. The parameter ϕ is the concentration or precision

parameter. If ϕ = 1, then covariates and responses are correlated without error.

The smaller the value of ϕ, the less concentrated the error variables. When

ϕ = 0, the variable ε has a uniform distribution on the circle.
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The conditional distribution of y given x is

y|x∼C∗(φy|x) where φy|x = exp(iµy.x)ϕ and µy.x =arg
(

β0
x + β1

1 + β1x

)

. (2.5)

The following theorem holds for our regression model by applying well-known

result in complex analysis. See Rudin (1987, Thm. 11.9) for the proof.

Theorem 1. If y ∼ C∗(φ) where |φ| ≤ 1, then E{g(y)} = g(φ) for any mapping

g on the closed unit disc which is continuous on the closed unit disc and analytic

on the open unit disc.

Using the result we obtain the mean direction and the concentration of y|x,

arg{E(y|x)} = µy.x = arg(β0x) − 2 arg(1 + β1x), |E(y|x)| = ϕ.

More generally, the kth trigonometric moment of y|x is

E(yk|x) = φk
y|x. (2.6)

Since the wrapped Cauchy distribution is closed under rotation and the Möbius

circle transformation (see properties (i) and (iii) in Section 2.2), we obtain

γ0
y + γ1

1 + γ1y

∣

∣

∣

∣

x ∼ C∗
(

γ0

φy|x + γ1

1 + γ1φy|x

)

, (2.7)

where γ0 ∈ Ω, γ1 ∈ C. Because of the fact that the linear fractional transfor-

mations form a group under composition, the parameter of the wrapped Cauchy

(2.7) can also be expressed as the linear fractional transformation

γ0

φy|x + γ1

1 + γ1φy|x
=

a00x + a01

a10x + a11
,

where a00 = γ0(β0ϕ + γ1β1), a01 = γ0(γ1 + β0β1ϕ), a10 = β1 + γ1β0ϕ, a11 =

1 + γ1β0β1ϕ.

Although property (2.7) is mathematically attractive, it is remarked here

that the absolute values of the parameters in (2.7) depend on x and therefore

homoscedasticity no longer holds. This formulation should be avoided unless

heteroscedasticity is desired. To avoid this heteroscedasticity, one can transform

y to w = γ0{(y+γ1)/(1+γ1y)} and then use the model set up by (2.4) and (2.5) for

w|x. Similarly, the following property holds for the Möbius circle transformation

of the covariate:

y

∣

∣

∣

∣

γ0
x + γ1

1 + γ1x
∼ C∗

(b00x + b01

b10x + b11

)

, (2.8)

where γ0 ∈ Ω, γ1 ∈ C, b00 = β0(1 + γ1β1)ϕ, b01 = β0(γ1 + β1)ϕ, b10 = γ1 + β1,

b11 = 1 + γ1β1.
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If we assume that x is a random variable which has the wrapped Cauchy

distribution C∗(φ) and is independent of ε in (2.4), then the distribution of y is

given by

y ∼ C∗
(

β0
φ + β1

1 + β1φ
ϕ
)

. (2.9)

The above is obvious from properties (i), (ii) and (iii) in Section 2.2.

2.4. Comparison with existing regression models

McCullagh (1996, Equation 28) proposed a regression model in which the

error is assumed to follow a Cauchy distribution on the real line. Although

his model looks similar to ours at first glance, his model and ours are differ-

ent. His model is not circular–circular, but planar–linear regression model. In

addition, our model is obtained neither by wrapping y|z nor by transforming

y′ = (1 + iy)/(1 − iy), which are the transformations to generate a wrapped

Cauchy distribution from a Cauchy distribution on the real line.

Our proposed regression model also has some relationship with the models

of Fisher and Lee (1992) and Downs and Mardia (2002). Fisher and Lee (1992)

proposed a linear–circular regression model in which the link function is expressed

as a form of tangent function. The tangent function is also used as the link

function of the circular–circular regression model of Downs and Mardia (2002).

After some algebra, it is shown that our regression curve corresponds to their link

function. However our model is different from theirs. The major distinction is the

distribution for the angular error. In their model the angular error assumes the

von Mises distribution, whereas in our model we assume that the angular error

is distributed as the wrapped Cauchy. Our model has some desirable properties

that their model does not have, such as Theorem 1 and properties (2.6)−(2.9).

3. Related Bivariate Circular Distribution

To our knowledge, no bivariate angular distribution has been used to model

circular–circular regression. We now provide a bivariate circular distribution

which could be helpful in modelling our circular–circular regression. It has the

density

f(x, y) =
1

(2π)2
|1 − ϕ2|

|y − φy|x|2
|1 − |δ|2|

|x − δ|2
, x, y ∈ Ω, (3.1)

where |δ| 6= 1 and the other parameters are defined as in (2.4) and (2.5). The

following properties hold for this distribution:

(1) y|x ∼ C∗(φy|x),

(2) y ∼ C∗
(

β0
δ + β1

1 + β1δ
ϕ
)

,



640 SHOGO KATO, KUNIO SHIMIZU AND GRACE S. SHIEH

(3) x ∼ C∗(δ).

Hence, the marginals and the conditional of y given x are wrapped Cauchy dis-
tributions. The distribution (3.1) takes maximum (minimum) value for each x
at y = exp(iµy.x)(exp(−iµy.x)). For β1 ∈ Ω, x and y are independently dis-
tributed as C∗(δ) and C∗(β0β1ϕ), respectively. The closer |β1| gets to 0, the
closer exp(iµy.x) is to being a pure rotation of x. For ϕ = 0, x and y are in-
dependently distributed as C∗(δ) and the circular uniform distribution C∗(0),
respectively. The larger the value of ϕ, the greater the correlation between x and
y. See Fisher and Lee (1983) for a definition of circular correlation.

4. Estimation and Test

4.1. Parameter estimation

Maximum likelihood estimation for the wrapped Cauchy distribution was
investigated by Kent and Tyler (1988). However we cannot apply these results
to the conditional distribution y|x directly, since the mean direction is a function
of the covariate x. Therefore we need to obtain the maximum likelihood estimates
of the wrapped Cauchy distribution in a different manner.

Let yj|xj (j = 1, . . . , n) be a set of random samples from the wrapped Cauchy
distribution C∗(φyj |xj

). The log-likelihood function for these samples is

log L = C +
n

∑

j=1

{

log |1 − ϕ2| − 2 log
∣

∣

∣
yj −

β0(xj + β1)ϕ

(1 + β1xj)

∣

∣

∣

}

.

Transform the covariates and responses by taking (xj , yj) = (eiθxj , eiθyj ) and, for
convenience, reparametrize (β0, β1) as (eiθ0 , reiθ1), where r > 0, 0 ≤ θ0, θ1 < 2π.
Then the log-likelihood function can be expressed as

log L = C + n log(1 − ϕ2) −
n

∑

j=1

log
{

1 − 2ϕ cos(θyj
− µyj |xj

) + ϕ2
}

, (4.1)

where µyj |xj
= θ0 + θxj

− 2 arg{1 + rei(θxj
−θ1)}.

If β1 is known, the maximum likelihood estimates of θ0 and ϕ are obtained
by the recursive algorithm by Kent and Tyler (1988). The method of moments
gives the estimators of θ0 and ϕ as follows:

θ̂0 = arg(Cn + iSn) and ϕ̂ =
1

n
|Cn + iSn|,

where Cn =
∑n

j=1 cos[θyj
− θxj

+ 2arg{1 + rei(θxj
−θ1)}] and Sn =

∑n
j=1 sin[θyj

−

θxj
+ 2arg{1 + rei(θxj

−θ1)}].

4.2. Fisher information matrix
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Using the log-likelihood for (θ0, r, θ1, ϕ) given by (4.1), we find that

−E
( ∂2

∂θ0∂ϕ
log L

)

= −E
( ∂2

∂r∂ϕ
log L

)

= −E
( ∂2

∂θ1∂ϕ
log L

)

= 0.

Hence, ϕ and (θ0, r, θ1) are orthogonal. The other elements of the Fisher infor-
mation matrix are calculated as

E

{

( ∂

∂θ0
log L

)2
}

=
2nϕ2

(1 − ϕ2)2
,

E

{

( ∂

∂r
log L

)2
}

=
2ϕ2

(1 − ϕ2)2

n
∑

j=1

(∂µyj |xj

∂r

)2
,

E

{

( ∂

∂θ1
log L

)2
}

=
2ϕ2

(1 − ϕ2)2

n
∑

j=1

(∂µyj |xj

∂θ1

)2
,

E

{

( ∂

∂ϕ
log L

)2
}

=
2n

(1 − ϕ2)2
,

E

{

( ∂

∂θ0
log L

)( ∂

∂r
log L

)

}

=
2ϕ2

(1 − ϕ2)2

n
∑

j=1

∂µyj |xj

∂r
,

E

{

( ∂

∂θ0
log L

)( ∂

∂θ1
log L

)

}

=
2ϕ2

(1 − ϕ2)2

n
∑

j=1

∂µyj |xj

∂θ1
,

E

{

( ∂

∂r
log L

)( ∂

∂θ1
log L

)

}

=
2ϕ2

(1 − ϕ2)2

n
∑

j=1

∂µyj |xj

∂r

∂µyj |xj

∂θ1
,

where

∂µyj |xj

∂r
=

−2 sin(θxj
− θ1)

1 + 2r cos(θxj
− θ1) + r2

,
∂µyj |xj

∂θ1
=

2r{r + cos(θxj
− θ1)}

1 + 2r cos(θxj
− θ1) + r2

.

4.3. A test of independence

To investigate if the model (2.4) provides a better fit than the indepen-
dence model, we test H0 : r = 1 against H1 : r 6= 1. The likelihood ratio
test gives the test statistic as T = −2 log(maxL0/max L1), where max L0 =
maxθ0,ϕ L(θ0, ϕ, r = 1, θ1 = 0), and max L1 = maxθ0,r,θ1,ϕ L(θ0, r, θ1, ϕ). Under
the null hypothesis, T is asymptotically distributed as a chi-square distribution
with two degrees of freedom. Here max L0 is easily obtained using the algorithm
of Kent and Tyler (1988). We reject the null hypothesis when T is large.

Other large sample theories, such as Wald test and score test, could also be
used for inference for the proposed model.

5. Examples
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Figure 2. planar plot of the spawning time of certain fish and the time of
low tide. Both times are converted into angles [0, 2π).

Example 1. In a marine biology study by Dr. Robert R. Warner at University

of California, Santa Barbara (Lund (1999)), whether the spawning time of a

particular fish (TS) depends on the time of the low tide (TLT ) is of interest. The

data were gathered in St. Croix, the U.S. Virgin Islands. To study the dependence

of TS on TLT , we converted the period 0 to 24 hours of TS and TLT to [0, 2π).

Paired TS and TLT are thus bivariate circular data, and they are plotted as circles

in Figure 2. In the following, we apply model (2.4) to investigate whether and

how TS depends on TLT .

The maximum likelihood estimates of the parameters are θ̂0 = 0.47, r̂ = 0.95,

θ̂1 = 3.06 and ϕ̂ = 0.87. The maximum log-likelihood and AIC of the model are

equal to −11.28 and 30.56, respectively. Approximate 90% confidence intervals

for θ0, r, θ1 and ϕ are (−0.11, 1.05), (0.89, 1.00), (2.46, 3.66), and (0.84, 0.90), by

the Fisher information matrix in Section 4.2. The test of independence for model

(2.4) yields the test statistic T = −2{(−14.81) − (−11.28)} = 7.06. This test

is highly significant and the assumption of independence is rejected. Circular

distances of all observations lie in [0, 0.25]. Here the circular distance is defined

by d(y, ŷ) = 1− cos(y − ŷ), where y is a response and ŷ is a predictor in radians

given by ŷ = θ̂0 + x − 2 arg{1 + rei(x−θ̂1)}.

Example 2. The wind direction at 6 a.m. and 12 noon was measured each day

at a weather station in Milwaukee for 21 consecutive days. (Johnson and Wehrly

(1977, Table 2)). We use (2.4) for regressing the wind direction at 12 noon on

that at 6 a.m.
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Figure 3. (a) plot of circular distance, and (b) plot of predictors and covari-

ates, in which the predictors are plotted on the smaller circle whereas the

responses are marked on the larger one.

The maximum likelihood estimates of the parameters are θ̂0 = 1.27, r̂ = 0.53,

θ̂1 = 2.59, and ϕ̂ = 0.55. The maximum log-likelihood and AIC of the model are

−32.26 and 72.52, respectively. Approximate 90% confidence intervals for θ0, r,

θ1 and ϕ are (0.91, 1.63), (0.31, 0.74), (2.31, 2.87), and (0.37, 0.73). Judging from

the AIC, model (2.4) provides a better fit than the Downs and Mardia model,

whose AIC is 74.56. The test of independence for (2.4) in Section 4.3 yields

the test statistic T = −2{(−38.48) − (−32.26)} = 12.44. This test is highly

significant and the assumption of independence is rejected.

The plot of circular distances is given in Figure 3(a). The observed numbers

of outliers are marked on the plot. Apart from five outliers, model (2.4) seems

to provide a satisfactory fit to the data. Finally, the predictors and responses,

except for the outliers, are plotted by observed numbers in Figure 3(b). The

plots on the larger circle refer to the responses, while those on the smaller one

are the predictors from (2.4). A short line between the predictor and response

means a good fit of the model to the observation. Judging from Figure 3(b),

our model seems to provide satisfactory fit to the data. For the interpretation

of how the responses are transformed through the Möbius circle transformation,

see Section 2.1.

6. Discussion

Circular–circular regression is useful for analyzing bivariate circular data.
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Among existing regression models, the raison d’être of our model is its tractability

and expandability. The tractability derives from the theory of the Möbius circle

transformation and the wrapped Cauchy distribution. As discussed in Section

2.2, the wrapped Cauchy is related to the Möbius circle transformation and thus

enables us to obtain a number of desirable properties for our model. As for

extensions, our regression model could provide some topics to related fields. For

example, the related bivariate circular distribution, which is briefly discussed in

Section 3, could be a possible field for further research. It could be also interesting

to investigate the properties of the regression model which has the angular error

proposed by Jones and Pewsey (2005) instead of the wrapped Cauchy in (2.4).

Their model includes the wrapped Cauchy and von Mises as special cases, and

might be used to discriminate in applications between these two distributions.
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