
Statistica Sinica 18(2008), 601-615

TESTS FOR INDEPENDENCE IN NONPARAMETRIC

REGRESSION

John H.J. Einmahl and Ingrid Van Keilegom

Tilburg University & Université catholique de Louvain

Abstract: Consider the nonparametric regression model Y = m(X) + ε, where the

function m is smooth, but unknown. We construct tests for the independence of ε

and X, based on n independent copies of (X, Y ). The testing procedures are based

on differences of neighboring Y ’s. We establish asymptotic results for the proposed

tests statistics, investigate their finite sample properties through a simulation study

and present an econometric application to household data. The proofs are based

on delicate empirical process theory.
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1. Introduction

Let (X,Y ) be a bivariate random vector where Y is the variable of interest

and X is a covariate. We assume that X and Y are related via the nonparametric

regression model

Y = m(X) + ε, (1.1)

where m is the unknown regression curve and ε is the error. In order to avoid

identification problems, we define m as follows. Let T be a given location

functional, i.e., for any random variable Z and any a > 0 and b, we have

T (FaZ+b) = aT (FZ) + b, where FaZ+b is the distribution function of aZ + b.

Now we define m(x) = T (F (·|x)), with F (·|x) the conditional distribution func-

tion of Y , given X = x. As a consequence, T (Fε(·|x)) = 0, with Fε(·|x) the

conditional distribution function of ε, given X = x. In particular we can choose

T to be the median (or a quantile), the mode, or the (trimmed) mean. Let

(X1, Y1), . . . , (Xn, Yn), n independent replications of (X,Y ), be our data.

In this paper we consider the problem of constructing omnibus tests for the

submodel where

ε is stochastically independent of X (1.2)

or, in other words, where the conditional distribution of Y −m(X), given X = x,

does not depend on x. We propose procedures for testing the independence
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between ε and X that will detect any deviation from the null hypothesis. Al-

though the nonparametric regression model (1.1) is a standard one, testing of

(1.2) against the general alternative of dependence seems not to have been ad-

dressed in the literature. Model (1.1)−(1.2) is studied extensively in the liter-

ature, see, e.g., Akritas and Van Keilegom (2001), Neumeyer, Dette and Nagel

(2006), and Van Keilegom, González Manteiga and Sánchez Sellero (2007) and

the references therein.

In a number of papers (see, e.g., Lee (1992), Dette and Munk (1998), Liero

(2003) and Cao and Gijbels (2005)) tests for homoscedasticity are developed. In-

stead of looking at the conditional variance only, in this paper we consider the

full conditional distribution of ε given X. The motivation for considering this en-

tire conditional distribution is as follows. Often, much better statistical inference

can be made under (1.2) than when only homoscedasticity is assumed. To begin

with, when estimating the conditional distribution of the error ε, given X = x,

all the data can be used when (1.2) holds, see Akritas and Van Keilegom (2001),

whereas only data with values of X around x can be used under homoscedasticity

only. As a consequence, the same reasoning applies when estimating transforma-

tions of the conditional distribution of the error, such as the quantile function or

the Lorenz curve, or functionals of this distribution, such as centered moments

(skewness and kurtosis) or the extreme value index. When considering function-

als (or transformations) of the conditional distribution of the response Y (instead

of ε), given X = x, that can be written as functionals of the conditional error

distribution (like the skewness), the above obviously remains applicable. When

this is not the case, take e.g., a large quantile of Y , given X = x, we estimate

it by the sum of this estimated quantile of the conditional error distribution and

an estimator of m(x). Now using (1.2) is in general again advantageous in com-

parison with using only homoscedasticity, since the quantile of the conditional

error distribution can be better estimated. When the response Y is subject to

random right censoring − which is beyond the scope of this paper − the use of

(1.2) has even more advantages than in the uncensored case, considered here; see

Van Keilegom and Akritas (1999). On the other hand, we like to emphasize that

our tests detect heteroscedasticity very well.

Apart from being a goodness-of-fit test for the nonparametric model, the

tests proposed in this paper can also serve for other purposes. Suppose e.g.,

that one wishes to know whether a certain random vector (X,Y ) satisfies a

parametric model Y = mβ(X) + ε (where ε is independent of X and mβ is a

parametric regression curve, of which the form is still to be determined). In such

a situation it might be useful to use the nonparametric tests proposed above. If

the tests indicate that the independence between ε and X holds, one can then

start searching for the particular form of the parametric regression curve.
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Since the errors ε1, . . . , εn are not observed, we cannot use them directly. We

consider appropriate differences of Y ’s corresponding to neighboring X-values.

Since m is smooth, m almost cancels out in these differences. The main dif-

ficulty is however that these differences are dependent, and hence the classical

tests for independence available in the literature cannot be applied, since most

tests assume that the pairs of observations are i.i.d. In this paper we focus

on three tests, namely the Kolmogorov-Smirnov, the Cramér-von Mises and the

Anderson-Darling test (see, e.g., Shorack and Wellner (1986)). We adapt these

tests to the present setup and derive their asymptotic distributions. Difference-

based procedures are widely used in nonparametric regression, especially for the

estimation of the error variance (see e.g., Dette, Munk and Wagner (1998), Liero

(2003), and Müller, Schick and Wefelmeyer (2003)).

Although the results in this paper will be presented for random design, they

can easily be adapted to fixed design. Note that in that case, interest lies in

whether or not the error terms ε1, . . . , εn are identically distributed.

This paper is organized as follows. In Section 2 we propose the test statistics,

state and prove the main results. In Section 3 we investigate the finite sample

performance of the tests in a simulation study, and in Section 4 we present an

econometric application.

2. Main Results

Consider the model described in (1.1). We write FX for the distribution func-

tion (df) of X and Fε for the (unconditional) df of ε. Let (X1, ε1), . . . , (Xn, εn)

be i.i.d. copies of (X, ε). We want to test

H0 : ε is independent of X

against the alternative of dependence, based on (Xi, Yi), i = 1, . . . , n, with Yi =

m(Xi) + εi. In this section we present certain test statistics and derive their

asymptotic distribution under H0. It should be noted that for the approach

detailed below the actual choice of the location functional T (see Section 1) has,

under H0, no influence on the distribution of the test statistics below. If H0 does

not hold, the influence of the choice of T on the distribution of the test statistics

is typically very minor. The method is rather robust in this sense.

Let X1:n ≤ · · · ≤ Xn:n be the order statistics of the Xi, i = 1, . . . , n, and

denote with Y[1:n], . . . , Y[n:n], the concomitants (or induced order statistics), the

Y -values corresponding to the ordered X-values. Write

Fn(x, y) =
1

n

n∑

j=1

I
(
Xj:n ≤ x, Y[j−1:n] − 2Y[j:n] + Y[j+1:n] ≤ y

)
. (2.1)
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(For notational convenience we relabel the original n by n+2 and take j = i+1 in

order to have all the quantities properly defined; the final sample size is now n.)

So Fn is the bivariate empirical df of the pairs (Xj , Y[j−1:n]−2Y[j:n]+Y[j+1:n]), j =

1, . . . , n, i.e., we take an appropriate difference of three Y -values, corresponding

to neighboring X-values. Set F̂X(x) = Fn(x,∞) and similarly Ĝ(y) = Fn(∞, y).

For our testing problem we consider the following test statistics:

Tn,KS =
√

n sup
x,y∈IR

∣∣∣Fn(x, y) − F̂X(x)Ĝ(y)
∣∣∣, (2.2)

Tn,CM = n

∫∫
(Fn(x, y) − F̂X(x)Ĝ(y))2dF̂X (x)dĜ(y), (2.3)

Tn,AD = n

∫∫
(Fn(x, y) − F̂X(x)Ĝ(y))2

F̂X(x)Ĝ(y)(1 − F̂X−(x))(1 − Ĝ−(y))
dF̂X(x)dĜ(y). (2.4)

(For a distribution function F , we denote by F− its left-continuous version.) For

bivariate i.i.d. random vectors, the first two statistics and the underlying process

were introduced in Blum, Kiefer and Rosenblatt (1961); a statistic asymptoti-

cally equivalent to Tn,CM dates back to Hoeffding (1948).

Remark 2.1. The choice of Fn in (2.1) needs explanation. Assume the third

moment of the conditional error distribution is finite and, for convenience, let

m be the conditional mean. Since we want m to vanish by using differences of

Y ’s, taking the naive difference Y[j−1:n] −Y[j:n] seems appropriate. Note however

that we want our tests to improve on nonparametric tests for homoscedasticity.

We want to detect conditional error distributions with equal variances, but with

varying higher moments, in particular the third moment. The naive difference

Y[j−1:n] − Y[j:n] leads typically to the difference of two almost i.i.d. ε’s, obviously

has a third moment close to zero, and hence is useless for detecting a varying

third moment. So next we take a linear combination of three Y -values: aY[j−1:n]+

bY[j:n] + cY[j+1:n] (a+ b+ c = 0), where we choose the coefficients a, b, c such that

the absolute value of the third moment of the corresponding linear combination

of i.i.d. ε’s is maximal, for fixed variance. This leads essentially to a = c = 1,

b = −2, the coefficients used in (2.1). In this way we can detect a varying third

moment easily. But this choice of coefficients has additional desirable properties,

which the above naive difference lacks. If the class of distributions is such that

all the moments exist and determine the distribution it can be readily shown, by

an induction argument based on moments, that the distribution of εl − 2εc + εr

(εl, εc, εr i.i.d) determines the distribution of εc. Therefore, when the conditional

error distributions are in such a class of distributions, we can show consistency of

our empirical process based tests (where m need not necessarily be the conditional

mean). It is not clear if the df of εl − 2εc + εr determines the df of εc in general,

but we will see below that the tests perform well for various other alternatives.
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All three test statistics are based on the process

√
n
(
Fn(x, y) − F̂X(x)Ĝ(y)

)
, x, y ∈ IR,

which we study first. In the remainder of this section we assume H0 holds true.

Let V0 be a centered, bivariate Gaussian process with covariance structure

E(V0(x1, y1)V0(x2, y2))

= (FX(x1 ∧ x2) − FX(x1)FX(x2))(G(y1 ∧ y2) + 2H1(y1, y2) + 2H2(y1, y2)

−5G(y1)G(y2)), x1, x2, y1, y2 ∈ IR,

where

G(y) = P (ε1 − 2ε2 + ε3 ≤ y),

H1(y1, y2) = P (ε1 − 2ε2 + ε3 ≤ y1, ε2 − 2ε3 + ε4 ≤ y2) (= H1(y2, y1)),

H2(y1, y2) = P (ε1 − 2ε2 + ε3 ≤ y1, ε3 − 2ε4 + ε5 ≤ y2) (= H2(y2, y1)).

We have

G(y) =

∫ ∞

−∞

∫ ∞

−∞

(
1 − Fε

(u + v − y

2

))
dFε(u)dFε(v) (2.5)

and, with g the density corresponding to G and fε the density of ε,

g(y) =

∫ ∞

−∞

∫ ∞

−∞

1

2
fε

(u + v − y

2

)
fε(u)fε(v)dudv. (2.6)

Observe that V0 is tied-down on all four sides, i.e., V0(x, y) = 0 a.s. if x = −∞
or x = ∞ or y = −∞ or y = ∞. We now show that V0 is the weak limit of√

n(Fn − F̂XĜ). Denote by DX the support of X and by fX its density. We

assume that

DX is a bounded interval and inf
x∈DX

fX(x) > 0. (2.7)

We also assume that m is differentiable, and that

sup
x∈DX

|m′(x)| < ∞, (2.8)

sup
y∈IR

fε(y) =: C < ∞. (2.9)

We consider weak convergence on D(DX ×IR̄) endowed with the supremum norm

metric and the σ-field generated by the open balls in D(DX × IR̄).

Proposition 2.1. Under H0 and (2.7), (2.8) and (2.9),

√
n(Fn(x, y) − F̂X(x)Ĝ(y)), x ∈ DX , y ∈ IR,
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converges weakly to V0(x, y), x ∈ DX , y ∈ IR.

Clearly, by the Continuous Mapping Theorem, Proposition 2.1 provides the

weak convergence under H0 of a myriad of possible test statistics. In Theorem

2.2 we deal with weak convergence of the test statistics in (2.2)−(2.4), using

Proposition 2.1.

Proof of Proposition 2.1. X1, . . . ,Xn and ε1, . . . , εn are two independent

i.i.d. samples. Denote by R1, . . . , Rn the ranks of X1, . . . ,Xn. Observe that

X1, . . . ,Xn and εR1
, . . . , εRn are also two independent i.i.d. samples. We con-

sider (X1, εR1
), . . . , (Xn, εRn). (Recall that n is actually n + 2 here.) These are

i.i.d. random vectors with independent components; clearly εRi has df Fε. Now

we redefine our Yi through Yi = m(Xi) + εRi . Obviously the new data have the

same probability distribution as the original ones, so

Fn(x, y) =
1

n

n∑

j=1

I
(
Xj:n ≤ x,m(Xj−1:n) − 2m(Xj:n) + m(Xj+1:n)

+εj−1 − 2εj + εj+1 ≤ y
)
.

First we show that Fn(x, y) can be approximated by

F̃n(x, y) =
1

n

n∑

j=1

I(Xj:n ≤ x, εj−1 − 2εj + εj+1 ≤ y)

=
1

n

n∑

i=1

I(Xi ≤ x, εRi−1 − 2εRi + εRi+1 ≤ y).

Using (2.7) we obtain max0≤j≤n(Xj+1:n − Xj:n) = OP (log n/n). This in combi-

nation with (2.8) yields

max
0≤j≤n

|m(Xj+1:n) − m(Xj:n)|

= sup
x∈DX

|m′(x)|OP

( log n

n

)
= OP

( log n

n

)
= oP

( log2 n

n

)
.

So with arbitrarily high probability for large n

Fn(x, y) ≤ F̃n

(
x, y +

log2 n

n

)
.

Set F (x, y) = FX(x)G(y). Then

αn(x, y) :=
√

n(Fn(x, y) − F (x, y))
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≤
√

n

(
F̃n

(
x, y +

log2 n

n

)
− F

(
x, y +

log2 n

n

))

+
√

n

(
F

(
x, y +

log2 n

n

)
− F (x, y)

)

=: α̃n

(
x, y +

log2 n

n

)
+

√
nFX(x)

(
G

(
y +

log2 n

n

)
− G(y)

)
.

From (2.9) and (2.5) we see that

sup
x∈DX
y∈IR

√
nFX(x)

(
G

(
y +

log2 n

n

)
− G(y)

)
≤ C

log2 n√
n

.

Then, with arbitrarily high probability for large n, and uniformly in x and y,

αn(x, y) ≤ α̃n

(
x, y +

log2 n

n

)
+ C

log2 n√
n

αn(x, y) ≥ α̃n

(
x, y − log2 n

n

)
− C

log2 n√
n





, (2.10)

where the latter inequality follows similarly.

We next consider the weak convergence of α̃n(x, y) =
√

n(F̃n(x, y)−F (x, y)),

where F̃n(x, y) = n−1
∑n

j=1 I(Xj:n ≤ x, Vj ≤ y), with Vj = εj−1 − 2εj + εj+1.

Clearly the Vj are 2-dependent. Now F̃n(x, y) = n−1
∑nF̂X(x)

j=1 I(Vj ≤ y). Write

Ĝx(y) =
1

⌊nx⌋

⌊nx⌋∑

j=1

I(Vj ≤ y),

and observe that F̃n(x, y) = F̂X(x)ĜF̂X(x)(y). Define also, for 0 < z ≤ n,

α̃2z(y) =
1√
⌊z⌋

⌊z⌋∑

j=1

(
I(Vj ≤ y) − G(y)

)
(0/0 = 0),

Zn(x, y) =

√
⌊nx⌋

n
α̃2nx(y), 0 ≤ x ≤ 1, y ∈ IR.

Note that Zn(1, y) = α̃2n(y). Since the Vj are 2-dependent, Zn(x, y) can be

written as the sum of three dependent sequential empirical processes based on

i.i.d. rv’s. So Zn is tight. It remains to prove the weak convergence of the finite

dimensional distributions. Consider (x1, y1), . . . , (xk, yk), with x1 ≤ x2 ≤ · · · ≤
xk. By the Cramér-Wold device it suffices to consider linear combinations, i.e.
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∑k
r=1 arZn(xr, yr). Now using the Central Limit Theorem for triangular arrays

of m-dependent rv’s and the fact that

k∑

r=1

arZn(xr, yr)

=

k∑

r=1

arZn(x1, yr) +

k∑

r=2

ar(Zn(x2, yr) − Zn(x1, yr))

+ · · · +
k∑

r=k

ar(Zn(xk, yr) − Zn(xk−1, yr)),

where these k terms are almost independent, we see that
∑k

r=1 arZn(xr, yr) con-

verges weakly. In summary, since g is bounded (use (2.9) and (2.6)), Zn converges
weakly on D([0, 1] × IR̄) to a centered, uniformly continuous, bounded Gaussian
process Z with covariance structure

E(Z(x1, y1)Z(x2, y2))

= (x1 ∧ x2)(G(y1 ∧ y2) + 2H1(y1, y2) + 2H2(y1, y2) − 5G(y1)G(y2)).

So Var (Z(x, y)) = x(G(y)+2H1(y, y)+2H2(y, y)−5G2(y)). Obviously Hk(y, y)
≤ P (ε1 − 2ε2 + ε3 ≤ y) = G(y), k = 1, 2. We have

α̃n(x, y) =
√

n

(
1

n

nF̂X(x)∑

j=1

(
I(Vj ≤ y) − G(y)

))

+G(y)
√

n(F̂X(x) − FX(x)). (2.11)

It is well known that
√

n(F̂X−FX) converges weakly to B◦FX , with B a Brownian
bridge. We also have that

√
n(F̂X − FX) and Zn are independent, and hence so

are B and Z. Using the Skorohod construction (keeping the same notation for

the new processes) we see that the right hand side of (2.11) is, almost surely,

Z(F̂X(x), y) + G(y)B(FX (x)) + o(1)

= Z(FX(x), y) + G(y)B(FX (x)) + o(1), uniformly in x and y.

So {α̃n(x, y), x ∈ DX , y ∈ IR}, converges weakly to
{
Z(FX(x), y) + G(y)B(FX (x)), x ∈ DX , y ∈ IR

}
.

Write V (x, y) = Z(FX(x), y) + G(y)B(FX(x)). Using this and the fact that V is
uniformly continuous with respect to d((x1, y1), (x2, y2)) = |FX(x1) − FX(x2)| +
|y1 − y2|, we see from (2.10) that αn converges to the same limit, i.e., we have

αn
d→ V. (2.12)
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In particular we have that

√
n(F̂X − FX)

d→ V (·,∞)
d
= B ◦ FX , (2.13)

and, similarly, with α2n(y) = αn(∞, y),

α2n
d→ V (∞, ·) d

= Z(1, ·). (2.14)

Since
√

n(Fn(x, y) − F̂X(x)Ĝ(y)) =
√

n(Fn(x, y) − F (x, y)) − G(y)
√

n(F̂X(x) −
FX(x))− F̂X(x)

√
n(Ĝ(y)−G(y)), we obtain from (2.12), (2.13), (2.14),

√
n(Fn−

F̂XĜ)
d→ V − G(y)V (·,∞) − FX(x)V (∞, ·) = Z(FX , ·) − FXZ(1, ·) =: V0.

Remark 2.2. Note that our testing procedure can in principle also be used

for testing independence of ε and X in the nonparametric heteroscedastic model

Y = m(X) + σ(X)ε, with σ an unknown, smooth, scale curve. To this end

the expression Y[j−1:n] − 2Y[j:n] + Y[j+1:n] in (2.1) needs to be replaced by an

expression where the function σ also vanishes for neighboring X-values, e.g.,

(Y[j−1:n] − Y[j:n])/(Y[j+1:n] − Y[j+2:n]).

Theorem 2.2. Under H0 and (2.7), (2.8) and (2.9),

Tn,KS
d→ sup

x∈DX
y∈IR

|V0(x, y)|, (2.15)

Tn,CM
d→

∫∫
V 2

0 (x, y)dFX (x)dG(y), (2.16)

Tn,AD
d→

∫∫
V 2

0 (x, y)

FX(x)G(y)(1 − FX(x))(1 − G(y))
dFX(x)dG(y). (2.17)

Proof. Statement (2.15) is immediate from Proposition 2.1 and statement (2.16)

follows easily from Proposition 2.1 and the Helly-Bray Theorem.

The detailed proof of (2.17) is given in a supplement to this paper; here we

just present an outline.

Set Vn,0 =
√

n(Fn − F̂XĜ). From (2.12) and Proposition 2.1, we have, using

the Skorohod construction for (2.12) (but keeping the same notation),

sup
x∈DX
y∈IR

|αn(x, y) − V (x, y)| → 0 a.s., (2.18)

sup
x∈DX
y∈IR

|Vn,0(x, y) − V0(x, y)| → 0 a.s.. (2.19)

Set M(x, y) = FX(x)G(y)(1 − FX(x))(1 − G(y)) and M̂(x, y) = F̂X(x)Ĝ(y)(1 −
F̂X−(x))(1− Ĝ−(y)). Let 0 < ε < 1/4 be arbitrary and let δ(ε) > 0 be a function
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of ε such that limε↓0 δ(ε) = 0. Denote by q1ε and q̃1ε the δ(ε)-th and (1− δ(ε))-th

quantiles of FX , respectively, and by q2ε, q̃2ε the same quantiles of G. Write

Sε = (q1ε, q̃1ε) × (q2ε, q̃2ε). We have

∣∣∣∣
∫∫

Sε

V 2
n,0(x, y)

M̂ (x, y)
dF̂X(x)dĜ(y) −

∫∫

Sε

V 2
0 (x, y)

M(x, y)
dFX(x)dG(y)

∣∣∣∣

≤
∫∫

Sε

|V 2
n,0(x, y) − V 2

0 (x, y)|
M̂(x, y)

dF̂X(x)dĜ(y)

+

∫∫

Sε

|M(x, y) − M̂(x, y)|
M̂(x, y)M(x, y)

V 2
0 (x, y)dF̂X (x)dĜ(y)

+

∣∣∣∣
∫∫

Sε

V 2
0 (x, y)

M(x, y)
(dF̂X(x)dĜ(y) − dFX (x)dG(y))

∣∣∣∣.

From (2.19) and (2.18) we now see that the first and second term on the right

converge to 0 a.s. The a.s. convergence to 0 of the third term follows from the

Helly-Bray Theorem.

Set Aε = IR2\Sε. In view of what we just proved, it is now sufficient for the

proof of (2.17) to show that for large n and appropriate δ(ε)

P

(∫∫

Aε

V 2
n,0(x, y)

M̂(x, y)
dF̂X(x)dĜ(y) ≥ ε

)
≤ ε,

P

(∫∫

Aε

V 2
0 (x, y)

M(x, y)
dFX(x)dG(y) ≥ ε

)
≤ ε.

The second inequality follows rather easily from E(V 2
0 (x, y))/M(x, y) ≤ 5 and the

Markov inequality. The first one requires a long proof using weighted empirical

process theory.

3. Simulations

Suppose that X has a uniform-(0, 1) distribution and that m(x) = x−0.5x2.

The simulations are carried out for samples of size n = 200 and 500, and the

significance level α = 0.05. Each simulation consists of 2,000 replications for

n = 200, and of 1,000 replications for n = 500.

To obtain the critical values for the test statistics Tn,KS, Tn,CM and Tn,AD,

recall that V0(x, y) can be written as

V0(x, y) = Z(FX(x), y) − FX(x)Z(1, y). (3.1)

To simulate an ‘estimated’ version of Z (for G, H1 and H2 are unknown), first

partition the interval [0, 1] by means of rx equidistant points xk = k/rx (k =
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1, . . . , rx) and use a grid of ry points yℓ (ℓ = 1, . . . , ry) on the real line. Then,

simulate rx i.i.d. ry-variate normal random vectors Zk = (Zk1, . . . , Zkry) (k =

1, . . . , rx) with zero mean and covariance matrix

Cov (Z1) =
(
r−1
x

[
Ĝ(yi ∧ yj) + Ĥ1(yi, yj) + Ĥ2(yi, yj) + Ĥ1(yj, yi) + Ĥ2(yj, yi)

−5Ĝ(yi)Ĝ(yj)
])ry

i,j=1
,

with Ĝ as in Section 2, and where

Ĥ1(y1, y2) =
1

n − 1

n−1∑

j=1

I
(
Y[j−1:n] − 2Y[j:n] + Y[j+1:n] ≤ y1,

Y[j:n] − 2Y[j+1:n] + Y[j+2:n] ≤ y2),

Ĥ2(y1, y2) =
1

n − 2

n−2∑

j=1

I
(
Y[j−1:n] − 2Y[j:n] + Y[j+1:n] ≤ y1,

Y[j+1:n] − 2Y[j+2:n] + Y[j+3:n] ≤ y2).

Note that Z1, . . . , Zrx can be simulated by using Zk =
√

Cov (Z1)(W
(k)
1 , . . .,

W
(k)
ry )′ (k = 1, . . . , rx), where W

(k)
1 , . . . ,W

(k)
ry are independent standard normal

random variables. The process Z is now approximated by the (rx × ry)-variate

random vector Z̃(xk, yℓ) =
∑k

j=1 Zjℓ. Hence V0 can be approximated by using

the approximation of Z and by replacing FX with F̂X in (3.1). After repeating

this procedure a large number of times, the critical values of the three tests can

be approximated very well.

We consider four types of distributions. For the first three, the null model

corresponds to a normal error term with zero mean and standard deviation equal

to 0.1, and we take m to be the conditional mean of Y given X. In the fourth case,

the error term has a standard Cauchy distribution under the null hypothesis; here

m is the conditional median. Consider for the four cases the following alternative

hypotheses:

H1,A : ε | X = x ∼ N
(
0,

1 + ax

100

)
,

with a > 0. Also, let

H1,B : ε | X = x
d
=

Wx − sx

10
√

2sx
,

where Wx ∼ χ2
sx

, sx = 1/(bx) and b > 0 controls the skewness of the distribution.

Note that the first and second moment of the variable ε created in the latter
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fashion do not depend on x, and coincide with the respective moments under H0.

When b tends to 0, the distribution of ε|X = x converges to its null distribution,

since it is well known that a standardized χ2
s-distribution converges to a normal

distribution when s → ∞. Next, let

H1,C : ε | X = x ∼ 1

10

√
1 − (cx)1/4t2/(cx)1/4 ,

where 0 < c ≤ 1 is a parameter controlling the kurtosis (which might be infinite)

of the distribution. By construction, the conditional moments up to order three

of ε given X are constant and coincide with the respective moments under the

null hypothesis, while the fourth conditional moment does depend on X (note

that the third and fourth moment do not need to exist). The distribution of ε

under H1,C converges to the null distribution of ε when c tends to 0. The last

type of error variables we consider follow a Cauchy distribution. Let

H1,D : fε(v|x) =
1

(1 + dx)π{1 + ( v
1+dx)2} ,

where d > −1 controls the scale, and fε(·|x) represents the conditional density

of ε given X = x. Clearly, the case d = 0 corresponds to the null hypothesis of

a standard Cauchy distribution.

We compare the proposed tests with the test for homoscedasticity consid-

ered by Dette and Munk (1998). The latter test is suitable for detecting devi-

ations from H0 under alternative H1,A (heteroscedasticity), but not under the

homoscedastic alternatives H1,B and H1,C . Under H1,D, the conditional vari-

ance of ε given X does not exist, and the test of Dette and Munk (1998) is not

intended to work in this case.

Tables 1−4 show the results of the simulations under H1,A, H1,B, H1,C , and

H1,D, respectively. We observe that the empirical α-levels (see a, b, c, d = 0) are

reasonably close to their nominal value of 0.05, except for the Dette-Munk test

which is conservative for the Cauchy distribution (see above), and except for

the Anderson-Darling statistic which is conservative for the normal distribution

(but the α-level does converge to the nominal level for large sample sizes - for

n = 800 it is 0.048). Despite this conservatism, the power in Table 1 is highest

for the Anderson-Darling statistic and is lowest for the Dette-Munk test. So,

although the Dette-Munk test is a test for homoscedasticity and the proposed

test is more of an omnibus test, the latter outperforms the former. For H1,B and

H1,C the Crámer-von Mises test outperforms the other tests. Note that for the

Dette-Munk test the null hypothesis of homoscedasticity holds.

Finally, for the (difficult) case of the Cauchy distribution, all three proposed

tests perform well; the Crámer-von Mises test again performs best. The Dette-

Munk test is not appropriate here.
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Table 1. Power of Tn,KS , Tn,CM and Tn,AD and the test of Dette and Munk
(DM) under H1,A.
a n = 200 n = 500

KS CM AD DM KS CM AD DM

0 0.048 0.049 0.036 0.044 0.051 0.049 0.041 0.051
1 0.123 0.170 0.169 0.081 0.305 0.401 0.458 0.100

2.5 0.305 0.431 0.460 0.140 0.744 0.857 0.911 0.223
5 0.497 0.674 0.703 0.211 0.944 0.989 0.996 0.365
10 0.673 0.855 0.871 0.265 0.997 0.999 1.000 0.486
100 0.843 0.972 0.979 0.359 1.000 1.000 1.000 0.646

Table 2. Power of Tn,KS, Tn,CM and Tn,AD and the test of Dette and

Munk (DM) under H1,B.

b n = 200 n = 500
KS CM AD DM KS CM AD DM

0 0.048 0.049 0.036 0.044 0.051 0.049 0.041 0.051
1 0.105 0.166 0.112 0.070 0.300 0.397 0.292 0.067

2.5 0.259 0.417 0.286 0.069 0.727 0.870 0.772 0.081
5 0.467 0.701 0.569 0.064 0.936 0.994 0.982 0.054
10 0.701 0.893 0.826 0.056 0.996 1.000 0.998 0.045
100 0.932 0.999 0.998 0.051 1.000 1.000 1.000 0.033

Table 3. Power of Tn,KS, Tn,CM and Tn,AD and the test of Dette and

Munk (DM) under H1,C .

c n = 200 n = 500
KS CM AD DM KS CM AD DM

0 0.048 0.049 0.036 0.044 0.051 0.049 0.041 0.051
0.2 0.063 0.086 0.062 0.056 0.120 0.146 0.135 0.046
0.4 0.114 0.166 0.134 0.063 0.287 0.370 0.339 0.050
0.6 0.215 0.313 0.261 0.069 0.589 0.699 0.666 0.055
0.8 0.438 0.582 0.509 0.087 0.878 0.946 0.945 0.063
1.0 0.815 0.949 0.937 0.126 0.999 1.000 1.000 0.104

Table 4. Power of Tn,KS, Tn,CM and Tn,AD and the test of Dette and

Munk (DM) under H1,D.

d n = 200 n = 500
KS CM AD DM KS CM AD DM

0 0.035 0.045 0.037 0.020 0.048 0.046 0.054 0.013
1 0.139 0.193 0.153 0.022 0.340 0.440 0.401 0.013

2.5 0.364 0.516 0.430 0.023 0.822 0.903 0.863 0.018
5 0.573 0.753 0.688 0.026 0.965 0.991 0.989 0.019
10 0.739 0.884 0.849 0.025 0.996 1.000 1.000 0.020
100 0.901 0.988 0.975 0.027 1.00 1.000 1.000 0.020

Table 5. P-values for the household data.

Test Y1 Y2

KS 0.027 0.980
CM 0.002 0.770
AD 0.002 0.561
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4. Data analysis

The data we consider consist of monthly expenditures in Dfl. of Dutch

households on several commodity categories, as well as a number of background

variables (Dfl. = Dutch guilders, 1 Dfl. is about e 0.45). We use expenditures

on food and total expenditures accumulated over the year from October 1986

through September 1987, and take households consisting of two persons; the sam-

ple size is 159. The data have been extracted from the Data Archive of the Jour-

nal of Applied Econometrics and have been analyzed in Adang and Melenberg

(1995).

We want to regress two responses to the regressor X = log(total expendi-

tures), namely Y1 = share of food expenditure in household budget and Y2 =

log(expenditure on food per household), according to (1.1)−(1.2). In order to

see if this model is appropriate we use our tests of Section 2. The P-values of

the tests are presented in Table 5.

This table shows that model (1.1)−(1.2) is violated by Y1, but not by Y2.

Hence this model can be used for further analysis of the log food expenditure

data. Knowing the independence of X and ε for this case makes it possible to use

statistical methods that outperform procedures that use only homoscedasticity.
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