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Abstract: Statistical analysis of the interaction effect in a two-way analysis of a vari-

ance/covariance model (typically unbalanced) is often performed to provide some

additional support for the assessment of the main effect of interest. For exam-

ple, an analysis of treatment-by-center interaction, in addition to the assessment

of treatment effect, is required by the International Conference on Harmonization

Guidance in multicenter clinical studies. For this purpose, the usual test for inter-

action with zero interaction as the null hypothesis is not useful: rejecting such a

null hypothesis does not tell us whether the interaction is large enough to affect the

assessment of the main effect of interest; not rejecting such a null hypothesis does

not provide any statistical assurance for ignoring interaction. We define a measure

of interaction relative to the error variance, and derive some exact tests for testing

negligible interaction (i.e., the relative interaction measure is smaller than a given

margin) as the alternative hypothesis. If we conclude that interaction is negligi-

ble at a given significance level, we can then go on to assess the main effect. An

example is presented for illustration.

Key words and phrases: Analysis of variance/covariance, mixed effects, size and

power, test for negligible interaction, treatment-by-center interaction, unbalanced

models.

1. Introduction

In two-way analysis of variance (ANOVA), an assessment of interaction be-

tween the two factors is required before the analysis of the main effect of interest.

The traditional size α test for interaction is constructed with the null hypothesis

of zero interaction, i.e., H0: there is no interaction. This test can be used to

detect interaction, but it is not useful if the intention is to show whether we can

ignore the interaction effect, since we do not have enough statistical evidence (the

power of the size α test is unknown) to support any conclusion when the null

hypothesis of zero interaction is not rejected. In many applications, a conclusion

of truly zero interaction may be unrealistic as well as unnecessary. Therefore,

there is a need to advance the statistical theory for two-way linear models to in-

clude methodology for testing interaction with the alternative hypothesis being
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the hypothesis that there is a negligible (not exactly zero) interaction. We call

these tests for negligible interaction.

Our study is initially motivated by testing treatment-by-center interaction

in muticenter clinical trials. Multicenter trials are commonly employed in clinical

research. See the discussion in the International Conference on Harmonization

(ICH) Guidance (Statistical Principles for Clinical Trials, known as E9) issued in

1998. A two-way ANOVA with treatment as one factor and center as the other

is often adopted for multicenter trials. The following statements can be found in

the ICH Guidance (E9):

If positive treatment effects are found in a trial with appreciable num-

bers of subjects per center, there should generally be an exploration of

the heterogeneity of treatment effects across centers, as this may affect

the generalizability of the conclusions. Marked heterogeneity may be

identified by graphical display of the results of individual centers or

by analytical methods, such as a significance test of the treatment-by-

center interaction.

Here, heterogeneity of treatment effects across centers can be referred to as the

treatment-by-center interaction. If the treatment-by-center interaction is negli-

gible, then we may assess the general treatment effect by averaging treatment

effects from all centers. If the treatment-by-center interaction is large, however,

we cannot obtain any general conclusion about the treatment effect. Clearly, neg-

ligible interaction is a desirable property, but cannot be established by a classical

interaction test with the null hypothesis of zero treatment-by-center interaction.

The assessment of interaction in the context of multicenter clinical trials

has been considered by several authors. Boos and Brownie (1992) constructed a

rank-based test under a mixed effects model. Assessment of treatment-by-center

interaction for censored data was considered by Peterson and George (1993) and

Potthoff, Peterson and George (2001). Snapinn (1998) provided some insight in

the interpretation of interaction effect. However, these authors all considered

the null hypothesis of zero interaction and, thus, their tests are tests for de-

tecting interaction, not for detecting negligible interaction. In the special case

of two treatments, Gail and Simon (1985) introduced the concept of quantita-

tive treatment-by-center interaction (one treatment is uniformly better than the

other among all centers) and qualitative treatment-by-center interaction (one

treatment is better than the other treatment in some centers but worse in the

others). Ciminera, Heyse, Nguyen and Tukey (1993a,b) developed a push-back

procedure for testing qualitative treatment-by-center interaction. However, their
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alternative hypothesis is qualitative interaction and, hence, their proposed tests

are for detecting qualitative interaction rather than the more desired quantitative

interaction. To establish quantitative treatment-by-center interaction, we could

switch the null and alternative hypotheses in Gail and Simon (1985) but a new

test statistic needs to be derived.

The purpose of this article is to derive exact size α tests for negligible in-

teraction in two-way fixed effects or mixed effects models. Details about models

and the forms of hypotheses are given in Section 2. Exact tests for interaction

are given in Section 3 for fixed effects and mixed effects ANOVA and analysis of

covariance (ANCOVA) models. An example is given in Section 4 for illustration.

In most applications, tests for interaction are used together with tests for

main effects. If interaction and some main effects are assessed simultaneously,

then a union-intersection type test can be constructed using the results in this

article for interaction, and existing results for testing main effects, e.g., Searle

(1971) and Speed and Hocking (1976) for fixed effects models, and Khuri and

Littell (1987), Gallo and Khuri (1990), Öfversten (1993), Christensen (1996) and

Cheng and Shao (2006) for mixed effects models.

2. Hypotheses for Interaction

Let yijk denote the kth observation of the (i, j)th treatment in the two-way

ANOVA model

yijk = µ + αi + βj + γij + εijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij , (1)

where the εijk are independent and identically distributed (i.i.d.) N(0, σ2), and

µ and σ2 are unknown parameters. In traditional two-way ANOVA models, the

main effects αi and βj and the interaction effects γij are treated as fixed unknown

parameters. The use of mixed effects linear models has received a great deal of

attention in recent years. In multicenter clinical trials, the ICH Guidance (E9)

states that “mixed models may also be used to explore the heterogeneity of the

treatment effects”, and “these models consider center and treatment-by-center

effects to be random, and are especially relevant when the number of sites is

large”. Therefore, we also consider mixed effects models in which the αi’s are

fixed unknown parameters but the βj ’s are i.i.d. random effects distributed as

N(0, σ2
β), the γij ’s are i.i.d. random effects distributed as N(0, σ2

γ), and the βj ’s,

γij’s and εijk’s are mutually independent. The following typical constraints are

imposed: ᾱ· = 0, β̄· = 0 (when the βj are fixed effects), γ̄i· = 0, and γ̄·j = 0

(when the γij are fixed effects). Throughout the paper, for any given variable x,
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x̄ denotes an average and a dot is used in the subscript to denote averaging over

the indicated subscript, e.g., x̄· = I−1
∑I

i=1 xi and x̄i· = J−1
∑J

j=1 xij.

We now define a quantitative measure of interaction, δ. Because of the

existence of the random error εijk, it is reasonable to consider a measure relative

to the error variance σ2. Under the mixed effects ANOVA model, it is natural

to use δ = σ2
γ/σ2.

Let δ0 be a tolerance margin for interaction, i.e., the interaction effect is

practically negligible if and only if δ < δ0. The use of a tolerance margin in

assessing treatment effects is not uncommon in clinical studies; for example,

noninferiority and equivalence margins are used in noninferiority cancer trials

(e.g., Laster and Johnson (2003)) and bioequivalence studies (e.g., FDA (2001)).

In multicenter clinical trials, δ0 is determined by a regulatory agency or by the

experimenters based on historical information and/or their understanding of the

nature of the study. In any case, δ0 has to be chosen prior to the study to ensure

a fair evaluation. Since δ measures interaction and the main purpose of many

studies is to assess main effects,
√

δ0 may be chosen to be a fraction (say 20%

or 30%) of a meaningful margin for main effects relative to the error standard

deviation σ. In the stage of developing a study protocol for a clinical research,

a sample size analysis is typically performed to ensure that the power of the

test for treatment effects is approximately equal to a desired level for detecting

treatment effects when a measure of treatment effects is greater than or equal to

a clinically meaningful margin. Then,
√

δ0 can be chosen to be 20% or 30% of

the clinical meaningful margin for treatment effects.

For a chosen δ0, we consider the following hypotheses for testing negligible

interaction:

H0 : δ ≥ δ0 versus H1 : δ < δ0. (2)

In a multicenter clinical trial, if H0 is rejected at a given significance level α, then

we have statistical evidence that the heterogeneity of treatment effects among all

centers is negligible, and consequently the treatment effect, if significant, can be

interpreted without being misleading.

Finding a suitable measure for interaction is more difficult under fixed effects

ANOVA models. When model (1) is balanced in the sense that nij = n for all i

and j, we can define δ as

δ =
1

σ2IJ

I
∑

i=1

J
∑

j=1

γ2
ij . (3)
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Note that, under mixed effects models, the expectation of the right hand side of

(3) is exactly σ2
γ/σ2. The usual sum of squares for interaction in textbooks is

SSAB = n
I

∑

i=1

J
∑

j=1

(ȳij· − ȳi·· − ȳ·j· + ȳ···)
2, (4)

which is distributed as σ2 times a noncentral chi-square random variable with

degree of freedom (I − 1)(J − 1) and the noncentrality parameter Nδ, N being

the total number of observations (N = nIJ in the balanced case). Thus, the use

of δ in (4) as a measure for interaction is consistent with the use of SSAB as a

statistic for assessing the interaction effect.

Under unbalanced fixed effects models, however, an exact test for (2) with

δ defined by (3) is not available if we consider test statistics that are quadratic

forms of the cell mean vector

ȳ = (ȳ11·, . . . , ȳI1·, . . . , ȳ1J ·, . . . , ȳIJ ·)
′

(such as the SSAB defined in (4)). This is because, under an unbalanced model,

a necessary condition for a nonzero quadratic form ȳ′Dȳ/σ2 to have a noncentral

chi-square distribution with noncentrality parameter µ′Dµ/σ2 is that D depends

on the nij’s, where µ = E(ȳ). Note that ȳ′Dȳ/σ2 has a (noncentral) chi-square

distribution if and only if DΛD = D, where

Λ = diag(n−1
11 , . . . , n−1

I1 , . . . , n−1
1J , . . . , n−1

IJ ) = σ−2Var (ȳ). (5)

Write D = (D11, . . . ,DIJ), where Dij ’s are the columns of D. If D does not

depend on nij, then by taking derivatives of both sides of DΛD = D with respect

to n−1
ij , we conclude that Dij = 0. Therefore, if D does not depend on nij’s, we

must have D = 0.

Because constructing exact tests not using quadratic forms of the cell mean

vector ȳ is difficult, we consider a different interaction measure for unbalanced

fixed effects models.

For assessing interaction under unbalanced models, the following statistic is

commonly used to replace SSAB:

R(γ|µ, α, β) = R(µ, α, β, γ) − R(µ, α, β),

where R(µ, α, β, γ) is the reduction in the total sum of squares due to fitting

model (1), and R(µ, α, β) is the reduction in the total sum of squares due to

model (1) without γ-terms (or γij = 0 for all i and j). When the model is

balanced, R(γ|µ, α, β) is the same as SSAB in (4). Detailed discussions of the

use of R( )-notation can be found in Searle (1971) and Speed and Hocking (1976).
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After some algebra, it turns out that R(γ|µ, α, β) = ȳ′L(L′ΛL)−1L′ȳ, where Λ

is given by (5),

L =

(

J′
J−1

−IJ−1

)

⊗
(

J′
I−1

−II−1

)

,

Ia denotes the identity matrix of order a, Jb denotes the vector of ones of or-

der b, and ⊗ denotes the Kronecker product for matrices. Since L(L′ΛL)−1L′

ΛL(L′ΛL)−1L′ = L(L′ΛL)−1L′, R(γ|µ, α, β)/σ2 has the noncentral chi-square

distribution with degree of freedom (I − 1)(J − 1) (the rank of L(L′ΛL)−1L′)

and noncentrality parameter λ = σ−2µ′L(L′ΛL)−1L′µ = σ−2γ′L(L′ΛL)−1L′γ

(since L′µ = L′γ), where γ = (γ11, . . . , γI1, . . . , γ1J , . . . , γIJ)′. This suggests the

following measure of interaction:

δ =
λ

N
=

γ′L(L′n̄··ΛL)−1L′γ

σ2IJ
, (6)

which reduces to the δ in (3) in the balanced case where n̄··Λ = IIJ .

Unlike the interaction measure δ in (3), δ in (6) depends on the sample sizes

nij, although both of them are quadratic forms of γ and are identical in the

balanced case. As the previous discussion indicated, however, it is impossible in

an unbalanced model to derive a reasonable interaction measure not depending on

nij’s and an associated exact test based on a quadratic form of ȳ. Furthermore, it

is not uncommon that hypotheses depending on nij’s are tested under unbalanced

models; for example, the well-known type II analysis for treatment effects in

an unbalanced ANOVA model considers a null hypothesis depending on nij ’s

(Speed and Hocking (1976)).

It should be noted that there may be other reasonable measures of interac-

tion. The δ we choose allows us to derive the exact statistical tests, given in the

next section. Other choices of δ typically yield conservative tests. Also, we con-

sider a single aggregated measure of interaction. Under mixed effects models, the

γij are assumed to be i.i.d. so that δ = σ2
γ/σ2 is reasonable. Under fixed effects

models, the use of δ defined by (3) or (6) regards the γij ’s as exchangeable, as in

the random γij case. It is tempting to consider multiple non-aggregated measures

of interaction. However, statistical analysis based on such measures are usually

difficult and exact tests with reasonable power are typically not available.

3. Exact Tests

Some exact tests for (2) are given in this section for several different situa-

tions. If the null hypothesis in (2) is rejected, i.e., interaction is negligible, we can

then test main effects using available results in the literature (see the discussion
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in Section 1). If the null hypothesis in (2) is not rejected, applying tests for main

effects may result in misleading conclusions.

3.1. Fixed effects ANOVA models

Consider model (1) with fixed effects. Define

SSE =
I

∑

i=1

J
∑

j=1

nij
∑

k=1

(yijk − ȳij·)
2, (7)

FAB =
R(γ|µ, α, β)[(I − 1)(J − 1)]−1

SSE(N − IJ)−1
. (8)

Note that SSE and R(γ|µ, α, β) are independent. SSE/σ2 is distributed as chi-

square with N − IJ degrees of freedom. It is shown in the previous section

that R(γ|µ, α, β)/σ2 is distributed as the noncentral chi-square distribution with

degrees of freedom (I −1)(J −1) and the noncentrality parameter Nδ, where δ is

given by (6). Thus, FAB is noncentral F with degrees of freedom (I−1)(J−1) and

N−IJ and noncentrality parameter Nδ, and P{FAB < t} is a decreasing function

of δ for any fixed t and N (a property of noncentral F -distributions). Hence,

if F(I−1)(J−1),IJ(n−1),α(Nδ0) is the αth quantile of the noncentral F-distribution

with degrees of freedom (I−1)(J−1) and N−IJ and the noncentrality parameter

Nδ0, then

sup
δ≥δ0

Pδ{FAB < F(I−1)(J−1),IJ(n−1),α(Nδ0)}

= Pδ0{FAB < F(I−1)(J−1),IJ(n−1),α(Nδ0)} = α.

Consequently, for testing hypotheses (2), a size α test rejects H0 if and only if

FAB < F(I−1)(J−1),N−IJ,α(Nδ0). (9)

The power of this test is Pδ{FAB < F(I−1)(J−1),IJ(n−1),α(Nδ0)} with δ < δ0, which

is larger than α by the monotone property of the noncentral F -distribution. The

cumulative distribution function and quantiles of the noncentral F-distribution

can be determined using statistical software. In SAS, for example, CDF(“F”, x, a,

b, c) is used to compute the cumulative distribution evaluated at x and FINV(p, a,

b, c) is used to compute the pth quantile, where (a, b) are the degrees of freedom

and c is the noncentrality parameter of the noncentral F -distribution.

For some balanced models, where R(γ|µ, α, β) reduces to SSAB in (4) and

δ reduces to the one defined by (3), the power of test rule (9) is computed and

plotted in Figure 1. The test rule (9) is quite powerful for small sample sizes.

For example, the first panel of Figure 1 indicates that with 100 subjects equally
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randomized to 2 treatments and 5 centers (i.e., I = 2, J = 5, n = 10) and
√

δ0

chosen as 0.5, we have an 80% power at the negligible interaction
√

δ = 0.25.
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Figure 1. Power of Test Rule (9). Balanced Fixed Effects Models With√
δ0 = 0.5. Rejection Region: FAB < F(I−1)(J−1),IJ(n−1),0.05(0.25nIJ).

3.2. Mixed effects ANOVA models

Under mixed effects ANOVA models, δ = σ2
γ/σ2 can be used as the measure

of interaction in (2) for both balanced and unbalanced models. However, the

derivation of an exact test for (2) under mixed effects models is not so simple.

Thomsen (1975) derived an exact test for testing the hypotheses δ ≤ δ0 versus δ >

δ0 under (1), with αi’s assumed to be normally distributed random effects. His

test statistic does not have an explicit form since it involves determination of an

orthogonal transformation which simultaneously diagonalizes two semi-positive

definite matrices. Although Thomsen’s method may be modified to test (2),

some additional restrictions on the choice of the orthogonal matrix are required

when the αi’s are fixed effects, which leads to an even more computationally

complicated procedure. We derive two exact tests that are explicit and simple.

The first test statistic is the FAB defined in (8). Under mixed effects models,

R(γ|µ, α, β)/σ2 is no longer chi-square distributed, although it is independent of

SSE defined by (7). Hence test rule (9) cannot be used because the F-percentile

is not the right percentile to use. However, FAB can still be used if its correct



EXACT TESTS FOR NEGLIGIBLE INTERACTION 1449

percentile can be found when δ = δ0. Since L′ȳ is normally distributed with

mean 0 and

Var (L′ȳ) = L′(σ2Λ + σ2
γIIJ + σ2

βIJ ⊗ JIJ
′
I)L = σ2L′(Λ + δIIJ)L,

L′ȳ/σ has the same distribution as [L′(Λ+δIIJ)L]1/2z, where z is a multivariate

normal random vector with mean 0 and covariance matrix I(I−1)(J−1). Note that

R(γ|µ, α, β)/σ2 = ȳ′L(L′ΛL)−1L′ȳ. Then, FAB has the same distribution as

G(δ) =
z′[L′(Λ + δIIJ)L]

1

2 (L′ΛL)−1[L′(Λ + δIIJ)L]
1

2z[(I − 1)(J − 1)]−1

χ2
N−IJ(N − IJ)−1

=

∑(I−1)(J−1)
k=1 λk(δ)χ

2
(k)[(I − 1)(J − 1)]−1

χ2
N−IJ(N − IJ)−1

, (10)

where χ2
N−IJ is a central chi-square random variable with degree of freedom

N − IJ independent of z, χ2
(k), k = 1, . . . , (I − 1)(J − 1), are independent central

chi-square random variables with degree of freedom 1 independent of χ2
N−IJ ,

and λk(δ), k = 1, . . . , (I − 1)(J − 1), are the eigenvalues of the matrix [L′(Λ +

δIIJ)L]1/2(L′ΛL)−1[L′(Λ+δIIJ)L]1/2. Although the distribution of G(δ) is of an

unfamiliar form, P{G(δ) < t} is decreasing in δ for any fixed t because G(δ) in

(10) is increasing in δ. Also, the distribution of G(δ) is known when δ is known.

Consequently, a test of size α for (2) rejects H0 if and only if

FAB < Gα(δ0), (11)

where Gα(δ) is the αth quantile of the distribution of G(δ) in (10). Note that

test rule (11) is the same as test rule (9) except that the F-percentile is replaced

by Gα(δ0). The percentile Gα(δ0) has to be numerically computed for each set

of sample sizes. For example, we can apply the Monte Carlo simulation method

using (10).

Our second exact test is motivated by the search for a simple F -test. It

suffices to find a quadratic form that is independent of SSE and has a chi-square

distribution when δ = δ0. Consider the quadratic form

Rδ0(γ|µ, α, β) = ȳ′L[L′(Λ + δ0IIJ)L]−1L′ȳ,

which reduces to R(γ|µ, α, β) when δ0 = 0. Since ȳij· and yijk − ȳij· are indepen-

dent, Rδ0(γ|µ, α, β) and SSE defined in (7) are independent. Define

FAB(δ0) =
Rδ0(γ|µ, α, β)[(I − 1)(J − 1)]−1

SSE(N − IJ)−1
.
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Then, it can be shown that (i) the distribution of FAB(δ0) is the same as that of

H(δ) =
z′[L′(Λ + δIIJ)L]

1

2 [L′(Λ + δ0IIJ)L]−1[L′(Λ + δIIJ)L]
1

2 z

(I − 1)(J − 1)χ2
N−IJ(N − IJ)−1

;

(ii) P{H(δ) < t} is decreasing in δ for any fixed t; (iii) when δ = δ0 (the common
boundary of the hypotheses in (2)), H(δ0) has the central F-distribution with
degrees of freedom (I − 1)(J − 1) and N − IJ . Consequently, a test of size α for
(2) rejects H0 if and only if

FAB(δ0) < F(I−1)(J−1),N−IJ,α. (12)

Under a balanced mixed effects model, however, the two tests (11) and
(12) are equivalent. In fact, when nij = n for all i and j, Rδ0(γ|µ, α, β) =
SSAB/(1 + δ0n), where SSAB is given in (4), and the test rule in (12) becomes
FAB/(1 + δ0n) < F(I−1)(J−1),N−IJ,α, where FAB is defined by (8). On the other
hand, R(γ|µ, α, β) = SSAB and the test rule (11) becomes FAB < Gα(δ0) =
[(n−1 + δ0)/(n

−1)]F(I−1)(J−1),N−IJ,α. Therefore, the tests are the same. For
some balanced models, the power of test rule (11) is computed and plotted in
Figure 2. It can be seen that, compared to its fixed effect counterpart, the power
under a mixed model is typically lower, which indicates that it is generally harder
to test for negligible interaction under a mixed model.
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Under an unbalanced model, the tests defined by (11) and (12) are generally

different. Test rule (11) uses the well-known statistic FAB that is also used in

fixed effects ANOVA models (Section 3.1), and its value is directly available from

any major statistical software. The critical value Gα(δ0) in (11) is not a percentile

of a familiar distribution and a numerical computation of Gα(δ0) is required for

every given set of nij’s. On the other hand test rule (12) is an F -test, but it uses

a statistic that is not familiar to most statisticians, and is not directly available

from any major software.

For an unbalanced design with 4 treatments and 5 centers and nij’s given

in Table 2, we compared by simulation the test rules (11) and (12) in terms of

their power. In the simulation, σ2 = 1 and, hence,
√

δ = σγ . For
√

δ0 = 0.5

and 0.7, the critical values G0.05(δ0) in (11) computed by Monte Carlo are 0.972

and 1.486, respectively. The estimated powers based on 5,000 simulations are

shown in Table 1, indicating that the two tests have very similar power (test

rule (11) is slightly better), the choice between them is perhaps best decided by

computational convenience.

Table 1. Power Comparison of Tests (11) and (12) with σ = 1.0.

√
δ0 = 0.5

√
δ0 = 0.7√

δ = σγ test (11) test (12) test (11) test (12)

0.05 0.4998 0.4864 0.8494 0.8478

0.10 0.4732 0.4632 0.8224 0.8134
0.25 0.2900 0.2824 0.6452 0.6436

Table 2. Summary Statistics.

Treatment (i)

1 2 3 4

Center(j) nij ȳij· w̄ij· nij ȳij· w̄ij· nij ȳij· w̄ij· nij ȳij· w̄ij·

1 7 29.02 29.09 6 32.37 33.51 4 33.77 32.51 4 36.14 31.88

2 6 34.47 32.18 5 34.26 33.85 6 34.42 30.81 6 40.10 35.02

3 5 35.10 34.87 5 33.28 32.41 5 32.02 29.68 5 37.97 32.53

4 7 36.04 34.14 4 31.62 29.83 4 36.50 33.95 5 38.92 33.62
5 7 31.49 32.25 6 31.29 32.56 4 32.42 32.06 4 34.88 32.45

Under ANOVA Model (1) Under ANCOVA Model (13)

SSE 187.38 71.24

3.3. ANCOVA models

In some multicenter clinical trials there are covariates, such as patients’ de-

mographic variables, medical history, and other baseline characteristics, and some
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center characteristics. Including covariates that are related to the response vari-

able reduces error variability and, hence, increases the power of various tests. In

some cases non-negligible interaction is caused by the difference in patients’ de-

mographics, medical conditions or departures from the protocol (Snapinn (1998)).

Incoporation of these inhomogeneity variables in the model may help to reduce

the interaction.

Including covariates in the analysis leads to the following popular two-way

ANCOVA model:

yijk = µ+αi+βj+γij+η′wijk+εijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij, (13)

where η is a q-dimensional unknown parameter vector, the wijk’s are q-dimension-

al covariate vectors, and the εijk’s are N(0, σ2) random errors. The assumptions

on the αi’s βj’s and γij’s in model (13) are the same as those under model (1).

Let y be the vector formed by listing yijk in the order j, i and k. Then (13) can

be written in the matrix form as y = Xθ +Wη + ε, where X is the usual design

matrix for the two-way ANOVA model, W is the design matrix containing wijk’s,

θ = (µ, α1, . . . , αI , β1, . . . , βJ , γ11, . . . , γIJ)′, and ε is the error vector. The least

squares estimator of η is η̂ = [W′(I − PX)W]−1W′(I − PX)y, where PX =

X(X′X)−X′. Define uijk = yijk − η̂′wijk and ū = (ū11·, . . . , ūI1·, . . . , ū1J ·, . . . ,

ūIJ ·)
′, which can be called the adjusted cell mean vector. Let

SSE = y′(I − P(X,W))y = ε′(I − P(X,W))ε, (14)

where P(X,W) is the same as PX with X replaced by the matrix (X,W). Note

that η̂ = η+[W′(I − PX)W]−1
W′(I − PX)ε. Since W′(I − PX)(I − P(X,W)) =

W′(I − P(X,W)) = 0, η̂ and (I − P(X,W))ε are independent. Furthermore, ε̄ij·

is independent of (I − P(X,W))ε since (I − P(X,W))PX = PX − P(X,W)PX = 0.

From ūij· = µ + αi + βj + γij + (η − η̂)′w̄ij· + ε̄ij·, we conclude that SSE and ū

are independent.

Note that ū is normally distributed with covariance matrix Var (ū) = (V +

Λ)σ2 for fixed effects models and Var (ū) = (IJ ⊗ (JIJ
′
I))σ

2
β + IIJσ2

γ + (V +

Λ)σ2 for mixed effects models, where V = w̄′[W′(I − PX)W]−1w̄ and w̄ =

(w̄11., . . . , w̄I1., . . . , w̄1J., . . . , w̄IJ.)
′. It can be seen that results in the previous

sections are derived based on the key fact that R(γ|µ, α, β) and Rδ0(γ|µ, α, β) are

quadratic functions of ȳ independent of SSE. Under the ANCOVA model, the

adjusted cell mean vector ū plays the role of ȳ. As an illustration, we consider

testing (2) under (13). We modify the test statistic in (12) as

FAB(δ0) =
ū′L[L′(Λ + V + δ0IIJ)L]−1L′ū[(I − 1)(J − 1)]−1

SSE(N − IJ − q)−1
, (15)
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where SSE is defined in (14). Since under δ = δ0, Var (L′ū) = σ2L′(σ2(Λ +

V)+ δ0IIJ)L, we conclude that ū′L[L′(Λ+V+ δ0IIJ)L]−1L′ū/σ2 ∼ χ2
(I−1)(J−1)

independent of SSE/σ2 ∼ χ2
N−IJ−q since we have shown that ū and SSE are inde-

pendent. Therefore, FAB(δ0) defined in (15) is distributed as F(I−1)(J−1),N−IJ−q,

and the test rule is modified accordingly as FAB < F(I−1)(J−1),N−IJ−q,α. Simi-

larly, the results in Sections 3.1 and 3.2 still hold under two-way ANCOVA models

with the following modifications: (i) ȳ is replaced by ū; (ii) SSE is defined by

(14); (iii) the degree of freedom for SSE, which appears as denominator degree of

freedom in some tests, is changed from N − IJ to N − IJ − q due to estimation

of η; (iv) δ in (3) or (6) is replaced by γ′L[L′n̄··(Λ + V)L]−1L′γ/σ2IJ ; and (v)

the matrix Λ in any statistic is replaced by Λ + V. For example, the statistic

FAB in (8) is defined as

ū′L[L′(Λ + V)L]−1L′ū[(I − 1)(J − 1)]−1

y′(I − P(X,W))y(N − IJ − q)−1
.

4. An Example

An example from a Phase II clinical trial is presented in this section. Since

the compound is currently only at Phase II development stage, all background

information is concealed. The trial was conducted in five centers with a total of

105 patients, randomized to one of the four treatment groups. The statistical

model specified in the study protocol for a continuous primary response variable

is a two-way ANCOVA model (i.e., model (13)) with patients’ baseline responses

as a univariate covariate. Sample sizes nij’s and some summary statistics for the

data are given in Table 2. The model is unbalanced with the nij ranging from

4 to 7. Note that the SSE under the ANCOVA model is 71.24, while the SSE

under the ANOVA model ignoring the covariate is 187.38.

The textbook test for interaction with zero interaction (γij = 0 for all i and

j) as the null hypothesis uses the statistic FAB given in (8). Under both fixed ef-

fects and mixed effects models (with or without the covariate), FAB has a central

F -distribution when the null hypothesis of zero interaction is true. Based on the

data, the p-value under the ANOVA model (ignoring the covariate) is less than

0.0001, whereas the p-value under the ANCOVA model is 0.1850. As discussed in

Section 1, these results are useless for assessing treatment effects in the presence

of possible treatment-by-center interaction. When the covariate is ignored, there

is strong evidence that the treatment-by-center interaction is not zero, but we do

not know whether the treatment-by-center interaction is large enough that assess-

ing treatment main effects is inappropriate. When the covariate is included in the

analysis, a p-value of 0.1850 indicates that the null hypothesis of zero interaction
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cannot be rejected at the typical 5% significance level, but it does not provide

any statistical assurance in concluding zero treatment-by-center interaction.

We now consider the tests for negligible interaction proposed in the previ-

ous section. First, we need to determine δ0, a margin for treatment-by-center

interaction. For illustrative purpose (not data analysis), we choose
√

δ0 to be 0.5

and 0.7, which are respectively about 20% and 30% of the clinical meaningful

margin for treatment effects relative to the standard error σ. With these choices

of δ0, results for testing treatment-by-center interaction with hypotheses given

by (2) are listed in Table 3 for ANOVA and ANCOVA models with fixed and

mixed effects. For mixed effects models, both test rules (11) and (12) are used.

Consider first the fixed effects models. From Table 3, we cannot reject the null

hypothesis in (2) if the covariate is ignored. However, under the ANCOVA model,

for both δ0 values we can reject the null hypothesis in (2) at a significance level

of 5%. Ignoring the covariate may substantially increase the error variability

and, hence, there is not enough power in the interaction test under the ANOVA

model. This is also true for the analysis under the mixed effects models. Under

the mixed effects ANCOVA model, we cannot reject the null hypothesis in (2)

when
√

δ0 = 0.5, although we can reject the null hypothesis in (2) at 5% level of

significance when
√

δ0 = 0.7. It is reasonable to believe that the interaction test

under mixed effects models is not as powerful as that under fixed effects models

(see Figures 1-2).

Table 3. Results for Testing Negligible Interaction.

√
δ0 = 0.5

√
δ0 = 0.7

Model Test Statistic p-value Test Statistic p-value

Fixed Effect, ANOVA 6.0500 0.9823 6.0500 0.6943

Fixed Effect, ANCOVA 1.3900 0.0166 1.3900 0.0001

Mixed Effect, ANOVA, Test (11) 6.0500 0.9958 6.0500 0.9176

Mixed Effect, ANCOVA, Test (11) 1.3900 0.1754 1.3900 0.0368

Mixed Effect, ANOVA, Test (12) 2.6026 0.9947 1.6864 0.9159

Mixed Effect, ANCOVA, Test (12) 0.5531 0.1270 0.3590 0.0260
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