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Abstract: In a mixture experiment the collinearity problems, implied by the sum

to one functional relationship among the factors, have strong consequences on the

identification and analysis of regression models for such designs. Here to address

these problems, mixture designs are represented as sets of homogeneous polynomi-

als. Techniques from computational commutative algebra are employed to deduce

generalized confounding relationships on power products, and to determine families

of identifiable models.
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1. Introduction

In a mixture experiment the response variables depend on the proportion

of the components or factors, but not on the absolute amount of the mixture.

There is a vast literature on experiments with mixtures, including the seminal

work by Scheffé (1958, 1963) and the highly cited textbooks by Cornell (2002)

and Aitchison (1986). We refer the reader to the bibliographical list therein.

We study mixture designs with tools from computational commutative al-

gebra (CCA). Specifically, we tailor to mixture designs the polynomial algebra

approach to identifiability analysis introduced in Pistone and Wynn (1996). In a

few words, that approach consists of representing a design with a set of polyno-

mials in k indeterminates, where k is the total number of factors in the design.

Relevant statistical information and objects are retrieved by analysis of that poly-

nomial set. From a practical view point, it is particularly useful in the analysis

of non-regular designs for describing the set of polynomials which take the same

values over the design points, for determining a finite generating set, called gener-

alised confounding relations, and for determining classes of saturated hierarchical

models identified by the design. A technical advantage of the algebraic statistic

framework is the avoidance of the computation of the rank of the design/model

matrix, which can be numerically ill-conditioned. Ill-conditioned problems and
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statistical consequences of multi-collinearity are well known in regression analy-

sis and statistical inference, see e.g., Thisted (1988, Sec. 3.5), Miller (2002) and
Björck (1996). Example 17 in the on-line supplement illustrates the instability of

a usually adopted procedure for identification and least square estimates when a

small perturbation of a coordinate of a design point of a mixture data set occurs.

The CCA approach is computational and the algorithms, provided in e.g.,
Pistone, Riccomagno and Wynn (2001), apply to mixture experiments. But the

main results are in k−1 factors. In particular only slack models are obtained and

all but one of the basic generalised confounding relations entirely exclude a factor.

The polynomial that involves all factors corresponds to the sum to one condition.
In Giglio, Riccomagno and Wynn (2001), the missing factor is reintroduced by

homogenization. This might not be fully satisfactory, see Example 7. This

asymmetry is intrinsic to the computational technology behind the mentioned

algorithms, as they depend on a technical algebraic tool called a term ordering,
see Appendix 7.1 in the online supplement. In Holliday, Pistone, Riccomagno

and Wynn (1999), term orderings have been used to advantage in the statistical

analysis of a complex data set. Here we suggest representing a mixture design
not as the set of all polynomials whose zeros include the design points, but as the

subset of all homogeneous polynomials whose zeros include the design points. The

first set is called the design ideal in the algebraic statistics literature, and we call

the second one the cone ideal. The use of the cone ideal reduces the effect of
the aforementioned asymmetry, gives a natural representation of a compositional

data set as a set of polynomials, and retains the advantages, both computational

and mathematical, of the use of algebraic statistics. The needed algorithms are

suitably modified.
Our argument is based on three observations, already present in the liter-

ature in different forms. First, a mixture design is a projective object. Each

point of the original mixture can be assimilated to a line through the point and

the origin, excluding the origin itself. The design cone is the set of all such
lines. From an algebro-geometrical perspective this leads naturally to consid-

eration of homogeneous polynomials, and thus to homogeneous type regression

models. A reference to mixture models based on homogeneous polynomials is

Draper and Pukelsheim (1998), where the mathematical tool employed is the
Kronecker product. So homogeneous polynomials are at the base of our second

observation. The third one is that no non-trivial polynomial function can be

defined over a projective variety, e.g., our cone, and rational polynomial models

play a relevant role. Cornell (2002) collects and comments on many models for
mixture experiments, including ratios of polynomial models.

We make heavy use of CCA. In Appendices 7.1-7.3 in the online supplement,

we collect definitions and results from CCA that we use, while in the main text we

report only few essential ones. For an algebraic statistics neophyte, it might be
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useful to read Appendix 7.1 first. There are many good books on computational

commutative algebra, each with its peculiarities. We mainly use the undergrad-

uate texts by Cox, Little and O’Shea (1997, 2004) and Kreuzer and Robbiano

(2000, 2005). We would like the reader to be able to perform the computa-

tions we present here for his/her own mixture designs. To this aim we specify

the name of the commands and macros required in the syntax of CoCoA, which

is a freely available system for computing with multivariate polynomials at the

webpage http://cocoa.dima.unige.it/. We could have used other excellent and

free softwares like Singular, see http://www.singular.uni-kl.de/, or Macaulay2 at

http://www.math.uiuc.edu/Macaulay2/. The proofs of the results we present

are collected in Appendix 7.4 in the online supplement, exemplifying the way

geometric properties of the experimental plan are used.

In this paper we use the terms “interaction” to mean a monomial of total de-

gree larger than one, and “main effect” for monomials of degree one. For proper

use of the terminology, statistical interpretation and analysis of the presence or

absence of an interaction in the obtained model when dealing with mixture exper-

iments, we refer to the caveats, comments, and solutions proposed in Claringbold

(1955), Cornell (2002), Cox (1971), Piepel, Hicks, Szychowski and Loeppky

(2002) and Darroch and Waller (1985).

In Section 2 we study the cone ideal and its link with the design ideal. We

choose mixture experiments with n distinct points for simplicity. In Section 3

we discuss a method to retrieve supports for homogeneous regression models

identified by a mixture experiment. The algorithm in Section 3.1, which allows

us to substitute some terms of the obtained model support retaining identifia-

bility, strongly resembles the algebraic FGLM and Gröbner walk algorithms in

Faugère, Gianni, Lazard and Mora (1993). It proved to be very useful in prac-

tice. Some typical model structures from the literature are considered in Sec-

tion 3.2. Practical examples are collected in Section 4, where the theoretical

results of the paper are applied to simplex lattice designs, simplex centroid de-

signs, and axial designs. A brief analysis of two data sets follows.

2. The Cone of a Mixture Design

The design space of a mixture design in k factors, D ⊂ Rk, is a regular (k−1)-

dimensional simplex, namely {x = (x1, . . . , xk) ∈ Rk :
∑k

i=1 xi = 1 and 0 ≤ xi ≤
1}. For this reason we can see D alternatively in the affine space Rk or in the

projective space Pk−1(R), where every point is associated to a line through the

origin. We recall that Pk−1(R) is defined as the set of equivalence classes of

points in Rk where p1 and p2 are equivalent if p1, p2, and 0 = (0, . . . , 0) ∈ Rk

lie on the same line. Moreover, if p = (x1, . . . , xk) ∈ Rk, then a representative of

the equivalence class of p in Pk−1(R) is (x1 : . . . : xk), called the homogeneous
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coordinates of p. By definition of the equivalence relationship, they are defined

up to a multiple scalar. This leads us to identify, naturally and uniquely, D
with the affine cone CD ⊂ Rk passing through the origin and D, namely CD =

{αd : d ∈ D and α ∈ R} ⊂ Rk.

Example 1. The cone of D1 = {(0, 1), (1, 0), (1/2, 1/2)} ⊂ R2 is CD1
= {(0, a),

(b, 0), (c, c) : a, b, c,∈ R} ⊂ R2, to which we can associate three projective points.

For example (0 : 1), (1 : 0), (1 : 1) ∈ P1(R) are representative of the points

in D1 as well. An analogous construction of CD2
for D2 = {(0, 0, 1), (0, 1, 0),

(1, 0, 0), (0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0), (1/3, 1/3, 1/3)} ⊂ R3 shows that

in P2(R), D2 can be represented by a 23\{(0, 0, 0)} structure with levels 0 and 1,

a fact we shall exploit in Section 4.

In order to define the design ideal and the cone ideal, let R = R[x1, . . . , xk]

be the set of all polynomials in x1, . . . , xk, indeterminates with real coefficients,

and let I ⊂ R be a (polynomial) ideal. See Definition 3 in the online supplement

for its definition and main properties. We work with particular types of ideals

defined in Definitions 1 and 2 below. A set G = {g1, . . . , gq} ⊆ I generates I

if for all f ∈ I, there exist s1, . . . , sq ∈ R such that f =
∑

sigi, and we write

I = 〈g1, . . . , gq〉. There exist special generating sets called Gröbner bases which

depend on a term-ordering (see Appendix 7.1 and in particular Definition 6, in

the online supplement). The computation of a Gröbner basis from a generating

set is considered here as an “elementary” operation. The CoCoA command is

GBasis.

Definition 1. For D ⊂ Rk with n distinct points, define Ideal(D) = {f ∈ R[x1,

. . . , xk] such that f(d) = 0 for all d ∈ D}.

Ideal(D) is a polynomial ideal studied in Pistone, Riccomagno and Wynn

(2001).

Example 2. (cont. Example 1). Ideal(D1) = {s1(x1 + x2 − 1) + s2x1(x1 −
1/2)(x1 − 1) : s1, s2 ∈ R[x1, x2]}, and the polynomials x1 + x2 − 1 and x1(x1 −
1/2)(x1 − 1) form a generating set of Ideal(D1).

If D is a mixture experiment, then the polynomial x1 + . . . + xk − 1 al-

ways vanishes on the design points and thus belongs to Ideal(D). If the design

lies on a face of the (k − 1)-simplex then there will be a set A ⊆ {1, . . . , k}
for which

∑

i∈A xi − 1 ∈ Ideal(D). As we show in Section 3, this unduly re-

stricts the class of regression models for D retrieved with the algebraic statis-

tics methodology; we need a more general theory. The idea is to exploit the

representation of a mixture design as a cone. This will have consequences on

the structure of the regression models we can associate to D, thus extend-

ing the general theory of modelling and confounding. This has been proved
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to be particularly useful in case studies for the analysis of non-regular frac-

tions of a design in e.g., Holliday, Pistone, Riccomagno and Wynn (1999) and

Giglio, Riccomagno and Wynn (2001).

The notion of a polynomial vanishing at a projective point is rather delicate.

Indeed, the polynomial x2 − x2
3 vanishes on p = (1, 4, 2). The points p and

q = (2, 8, 4) = 2p are the same point of P2(R), but x2 − x2
3 does not vanish in

q. A way to overcome this problem is to use only homogeneous polynomials.

A polynomial is homogeneous if the total degree (sum of exponents) of each

one of its terms (or power products) is the same. For example, x1x2 − x2
3 is a

homogeneous polynomial of degree 2 which vanishes on (λ, 4λ, 2λ) for all λ ∈ R.

Definition 2. The cone ideal of a mixture design is Ideal(CD) = {f ∈ R[x1 . . . , xk]

such that f(d) = 0 for all d ∈ CD}; that is, the ideal of polynomials vanishing at

every point of the cone of the design.

It is easy to show that Ideal(CD) is an ideal. Let I, J ⊂ R be two ideals gener-

ated by the sets GI and GJ , respectively. Then I+J = {f + g : f ∈ I and g ∈ J}
is an ideal and GI∪GJ is a generating set of I+J . A polynomial ideal is said to be

homogeneous if, for each f ∈ I, the homogeneous components of f are in I as well,

equivalently if I admits a generating set formed by homogeneous polynomials.

In some computer algebra packages macros are implemented to compute gener-

ating sets of Ideal(D) and Ideal(CD) directly from the coordinates of the points

in D. In CoCoA they are called IdealOfPoints and IdealOfProjectivePoints,

respectively. See Abbott, Bigatti, Kreuzer and Robbiano (2000).

Theorem 1. For a mixture design D, Ideal(CD) = 〈f ∈ R : f is homogeneous and

f(d) = 0 for all d ∈ D〉 and Ideal(D) = Ideal(CD) + 〈
∑

xi − 1〉.

Thus, Ideal(CD) is the largest homogeneous ideal in R vanishing at all the

points of D. Moreover, a polynomial vanishing on D can be written as a combina-

tion of homogeneous components vanishing on D and the sum to one condition.

If G is a generating set of Ideal(CD) then G and
∑

xi − 1 form a generating set

of Ideal(D).

Example 3. (cont. Example 2). Ideal(CD1
) = 〈x2

1x2 − x1x
2
2〉 and Ideal(CD2

) =

〈x2
1x2 − x1x

2
2, x

2
1x3 − x1x

2
3, x

2
3x2 − x3x

2
2〉. For D3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1),

(1/3, 1/3, 1/3)}, Ideal(CD3
) = 〈x1x3 − x2x3, x1x2 − x2x3〉.

Theorem 1 states explicitly a method to construct a generating set of Ideal(D)

from a generating set of Ideal(CD) by just adjoining the sum to one condition.

Theorem 2 provides the converse. A term order is graded if xβ ≻ xα whenever
∑

αi <
∑

βi.

Theorem 2. Let D be a mixture design and CD its cone. Let G = {
∑k

i=1 xi −
1, g1, . . . , gr} be a Gröbner basis of Ideal(D) with respect to a graded term or-
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der. Then
{

ghom
1 , . . . , ghom

r

}

is a generating set of Ideal(CD), where ghom is the

homogenization of g with respect to
∑

xi.

See Kreuzer and Robbiano (2005, Sec. 4.3) for generalities on homogeniza-

tion. The generating set of the cone ideal obtained in Theorem 2 might not be a

Gröbner basis because we do not control the leading term of ghom
i (see Definition

5 in the online supplement for the leading term). The next example shows that

if G is not a Gröbner basis, the conclusion of Theorem 2 might not hold. See

also Kreuzer and Robbiano (2005, Tutorial 53 and Sec. 4.5)

Example 4. For D = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2), (0,

1/2, 1/2)}, Ideal(D) = 〈x1 + x2 + x3 − 1, xi(xi − 1/2)(xi − 1) : i = 1, 2, 3〉 and

the four listed polynomials form a generating set. For l = x1 + x2 + x3, the

ideal I = 〈xi(xi − 1/2l)(xi − l) : i = 1, 2, 3〉 ( Ideal(D) does not contain the

polynomial x2
2x3 − x2x

2
3, which instead belongs to Ideal(D) and to Ideal(CD).

For a simple test to check ideal membership see Cox, Little and O’Shea (1997,

p.93), Kreuzer and Robbiano (2000, p.114), or Pistone, Riccomagno and Wynn

(2001). See Kreuzer and Robbiano (2005, Corollary 4.4.16) for a homogeneous

membership test.

If αi ∈ R>0, i = 0, . . . , k, and the hyperplane corresponding to the equation
∑

αixi does not contain any point in CD, then Ideal(CD) + 〈
∑

αixi − α0〉 corre-

sponds to a cutting of the design cone not at the standard simplex. This returns

another affine representative of the projective representation of the mixture ex-

periment. In this case there is no immediate interpretation of the points on the

hyperplane as a mixture experiment. An obvious interpretation is as a fraction

of a bigger experiment with a linear generating constraint.

2.1. Notes on confounding for mixture experiments

In Pistone, Riccomagno and Wynn (2001), the authors use polynomials in

Ideal(D) to deduce (generalised) confounding relations between functions defined

over a design D. For example, x1+x2−1 ∈ Ideal(D1) testifies that the polynomial

functions x1 and 1−x2 take the same values over D1, likewise x2
1x2 = x1x

2
2 over D1

because x2
1x2 −x1x

2
2 ∈ Ideal(D1). Indeed for all d ∈ D1, (x2

1x2)(d) = (x1x
2
2)(d) =

0. Here with abuse of notation we do not distinguish between the polynomial and

its associated polynomial function. In particular, a Gröbner basis of Ideal(D1)

with respect to some term ordering gives a finite set of confounding relations

which is sufficient to deduce all the others. Usually in classical experimental

design theory this information is encoded in the alias table for the design, if it is

defined.

As already mentioned, the polynomial
∑

xi−1 belongs to Ideal(D) for every

mixture design D, thus confounding linear terms with the intercept. Thus the
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classical algebraic approach leads to the study of confounding relationships in a

smaller set of factors and the remaining factors are reintroduced in the analysis

only when the sum to one condition is considered.

Example 5. For the design D containing the corner points of the simplex in Rk,

for any corner point d and α ∈ Zk
≥0,

(xα)(d) =







1 if α = (0, . . . , 0)

(xi)(d) if α = (0, . . . , αi, 0, . . . , 0)

0 if at least two components of α are not zero.

Ideal(D) represents all generalised confounding relations over D. Likewise a

polynomial in Ideal(CD) expresses confounding among homogeneous components.

In Section 4 we study some classes of mixture designs and discuss methods to

construct classes of fractions by describing the generating polynomials of the

cone of the fraction, that is, by confounding some power products. In Section 5.2

we consider some mixture designs which exhibit some geometrical symmetries,

and which have interesting statistical properties like equal variance estimates for

main factors and for interaction terms where reasonable. They are considered to

be particularly useful in the first stage of an experiment when the design region

needs to be fairly screened.

3. Supports for Regression Models

In Pistone and Wynn (1996) and Pistone, Riccomagno and Wynn (2001) it

is noted that, for any design D, the set of real functions over D is a R-vector

space isomorphic to the coordinate ring R[D]. In turn, R[D] is isomorphic to

the quotient ring R/Ideal(D). The quotient space is a “computable algebraic

object”, for example using Gröbner bases. This makes it an important tool to

discuss functions over a design, in particular model functions.

For the definition and properties of a coordinate ring over a variety see

Cox, Little and O’Shea (1997, Chap. 5), for R[D] see Pistone, Riccomagno and

Wynn (2001, Chap. 2, Sec. 10, Chap. 5), and Cox, Little and O’Shea (2004). See

also Appendix 7.1 in the online supplement. Here we only recall that the quotient

ring R/Ideal(D) is the set of equivalence classes for the equivalence relationship

f ∼ g if f −g ∈ Ideal(D). Special monomial R-vector space bases of the quotient

ring, called standard monomials, can be obtained from particular generating sets

of Ideal(D), namely Gröbner bases, and thus depend on a term ordering. The

main steps of the computation are as follows:

1. determine a Gröbner basis of Ideal(D) with respect to a term ordering, for

example a Gröbner basis of Ideal(D1) is {x3
1−3/2x2

1 +1/2x1, x1 +x2−1} with

respect to any term ordering for which x2 ≻ x1;
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2. compute the leading term of each element of the Gröbner basis, for the exam-

ple, x3
1 and x2;

3. determine all monomials which are not divisible by the leading terms, for

Example, 1, x1 and x2
1 (see Figure 3.1a).

×
×

x1

x2

0 1 2 3

1

(a)

×

x1

x2

(b)

Figure 3.1. Standard monomials for Ideal(D1) and Ideal(CD1
). Both cases

were computed with a term order in which x2 ≻ x1.

The CoCoA macro QuotientBasis performs the algorithm above. Models

returned in Step 3 have a hierarchical structure in that if they include the mono-

mial xα, then they also must include xβ for all β ≤ α component-wise. A set of

monomials with this property is called an order ideal. Order ideals can be used

as support for saturated hierarchical polynomial models. McCullagh and Nelder

(1989) and Peixoto and D́ıaz (1996), among others, strongly argue in favour of

hierarchical regression models. Note that any standard monomial set includes

the intercept. This might not be good when analysing a mixture experiment.

Indeed, for a mixture experiment D, the procedure above returns supports for

slack models. See Cornell (2002, p.334) and Cox (1971) for comments on the dif-

ficulties in interpreting model parameters. Slack models can be homogenized to

return the support for a homogeneous regression model. We proceed differently

and propose to adapt the above procedure to the homogeneous component of the

design ideal; that is, to work with the cone ideal instead of the ideal. The result-

ing homogeneous models can be different from those obtained by homogenization

of a slack model, as shown in Example 7.

There are two difficulties. First, R/Ideal(CD) is infinite dimensional. Figure

3.1b) shows this for Ideal(CD1
). Second, usually a polynomial does not define

a polynomial function on Pk(R), equivalently on CD (see the comment before

Definition 2). One classical CCA remedy to address the first problem considers

only monomials of a certain degree s ∈ Z≥0. The basic algebraic definitions and

results are in Appendix 7.3 in the online supplement. Below we just apply them.

For a mixture design D, the above algorithm is modified as follows:
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1. determine a Gröbner basis of Ideal(CD) with respect to a term ordering, for

Ideal(CD1
) it is {x1x

2
2 − x2

1x2} for any term ordering;

2. compute the leading terms of each element of the Gröbner basis, for the ex-

ample, x1x
2
2 for term orderings for which x2 ≻ x1;

3. consider all monomials of a sufficiently large total degree, for example in

R[x1, x2], there are four monomials of degree s = 3, namely x3
1, x

2
1x2, x1x

2
2, x

3
2;

4. determine all monomials of degree s not divisible by the leading terms of the

Gröbner basis, in the example, x3
1, x

2
1x2, x

3
2.

Let the symbol As represent the set of polynomials in A of degree s and

analogously define A≤s. The monomials obtained in Step 4 above form a R-

vector space basis of the quotient space Rs/Ideal(D)s, and form a subset of the

set of standard monomials for the cone ideal. We call it the degree s standard

monomial set. As in the affine case it can be used to construct the support for

regression models for D. The correctness of this statement follows directly from

Theorem 4 below.

Lemma 3. Let D be a mixture design and s ∈ Z≥0 be large enough. The R-

vector space R≤s/Ideal(D)≤s has a basis [g1], . . . , [gn], where representatives of

the equivalence classes can be chosen to be homogeneous of degree s.

Theorem 4. For a mixture design D, dimRs/Ideal(CD)s = dimR≤s/Ideal(D)≤s.

If, moreover, D has n distinct points and s is sufficiently large, then the dimen-

sions equal n.

A monomial basis of degree s can be computed with the Singular macro

kbase.

Example 6. The Gröbner basis of the homogeneous ideal of D3 = {(0, 0, 1),

(0, 1, 0), (1, 0, 0), (1/3, 1/3, 1/3)}, and for any ordering for which x1 ≻ x2 ≻ x3,

is {x1x3 − x2x3, x1x2 − x2x3, x
2
2x3 − x2x

2
3}. The leading terms are x1x3, x1x2,

x2
2x3, respectively. For s = 3 the standard monomials are x3

1, x
3
2, x

3
3, x

2
3x2, giving

the largest possible number of terms we can identify with a four point design.

For s = 1 we obtain the support for a non saturated model: x1, x2, x3. Below we

list the degree s standard monomials for all possible values of s.

s list of monomials of degree s degree s standard monomials

0 1 1

1 x1, x2, x3 x1, x2, x3

2 x2
1, x1x2, x2

2, x1x3, x2x3, x2
3 x2

1, x2
2, x2x3, x2

3

3 x3
1, x2

1x2, x1x
2
2, x3

2, x2
1x3, x3

1, x3
2, x2x

2
3, x3

3

x1x2x3, x2
2x3, x1x

2
3, x2x

2
3, x3

3

s > 3 xs
1, xs−1

1 x2, xs−2
1 x2

2, . . . , xs
3 xs

1, xs
2, x2x

s−1
3 , xs

3
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Example 7. The slack model obtained for D3, with respect to any ordering

with x1 ≻ x2 ≻ x3, has support 1, x3, x
2
3, x2. By homogenizing it, following

Giglio, Riccomagno and Wynn (2001), we obtain x3
1, x3x

2
1, x

2
3x1, x2x

2
1, which is

the support of a saturated homogeneous model of total degree 3, but different

from the degree 3 model in Example 6. The slack model is the “orthogonal”

projection over the subspace of Z≥0 defined by xk = 0 of a degree s model

support.

Note the following. (i) For s ≥ n, the procedure returns the support for a

saturated model of degree s. Example 6 shows that smaller values of s are possi-

ble, but the returned model support may not be saturated. (ii) Equivalently for

s large enough, the design/model matrix for D and degree s standard monomials

is invertible, and for any s it is full rank. (iii) These standard monomials are

not usually retrieved with the homogenization of a slack model. (iv) Different

identifiable models can be obtained by varying the term ordering, as in the affine

case. (v) The degree s standard monomial set can be used as a starting set to

obtain other types of identifiable sets, as shown in Section 3.1.

3.1. Changing models

Often we want to substitute standard monomials in the set obtained with the

methodology of Section 3, or in any other monomial basis of the quotient space,

with monomials from a set δ that for some reason we would prefer to consider

for the construction of the final regression model. The new set should still be

a basis of the quotient space by Ideal(D). We present an algorithm to perform

such a substitution.

For a mixture design D, let SMτ,s or SMs be the set of standard monomials

of degree s with respect to a term ordering τ . It seems reasonable to start with

a monomial set of the same size as the design, thus we take s sufficiently large.

Set l =
∑

xi, and let G be a Gröbner basis of Ideal(CD) with respect to τ .

Example 8. We consider D = {(1/4, 1/4, 1/2), (1/8, 1/8, 3/4), (1/3, 1/3, 1/3),

(1/5, 1/5, 3/5), (0, 0, 1)}, with s = 4; τ is the default term ordering in CoCoA

and δ = {x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3} is a Scheffé type model, see Scheffé

(1963, p.237), Scheffé (1958) and Cornell (2002, p.334). Thus SM4 = {x4
2, x

3
2x3,

x2
2x

2
3, x2x

3
3, x

4
3}.

Step 0. η := SMs is the current monomial basis of R/Ideal(D), W := ∅ is the set

of rewriting rules, δ′ := δ.

Step 1. Chose a monomial w ∈ δ′, let deg(w) be its total degree, and update

δ′ := δ′ \ {w}. Compute the normal form (see Definition 7 in the online

supplement) of wls−deg(w) with respect to G, obtaining NF(wls−deg(w)) =
∑

xα∈SMs
θαxα =

∑

xα∈η θ′αxα for θα, θ′α ∈ R. These equalities are valid over
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D. The second one follows by substituting the rules in W where necessary

(this can be cumbersome in practice).

Step 2. Chose a term xβ in
∑

xα∈η θ′αxα for which θ′β 6= 0 and xβ 6∈ δ, equivalently

xβ ∈ SMs. If there is not such β, repeat Step 1.

Step 3. Update η := η \ {xβ} ∪ {w}. In each g ∈ W substitute xβ with (w −
∑

xα∈η\{xβ} θ′αxα)/θ′β and get g′. Update W = {xβ ≡ (w−
∑

xα∈η\{xβ} θ′αxα)

/θ′β, g′ : g ∈ W}.

Step 4. Repeat from Step 1 until δ′ = ∅.

This is a variation of the algorithm in Babson, Onn and Thomas (2003)

where the set δ is the union of all the stairs of a given size and their border

sets. Stair is another name for an order ideal. The border of a monomial set

is computed by multiplying any monomial in the set by xi, for i = 1, . . . , k,

and excluding monomials already in the set. The starting monomial set used in

Babson, Onn and Thomas (2003), what we call η, is a stair as well. The cor-

rectness of our algorithm is proved as in Babson, Onn and Thomas (2003). Its

termination is guaranteed by the updating of δ′ in Step 1 and the finiteness of δ;

in Babson, Onn and Thomas (2003), the algorithm terminates when η contains

n monomials which are linearly independent and form an order ideal according

to the chosen term ordering. In particular, the algorithm in Babson, Onn and

Thomas (2003) returns a support for a saturated hierarchical model. Different

final monomial sets, of possibly different sizes, might be obtained by choosing

different monomials in Step 1. In the introduction we mentioned the similar-

ity with the algorithms in Faugère, Gianni, Lazard and Mora (1993), see also

Cox, Little and O’Shea (2004, Chap. 8, Sec. 5).

Example 9. (cont. Example 8). Step 1. We chose terms in δ in the order

they are presented left-to-right in Example 8. Thus w = x1 of degree 1 and

NF(x1l
3) = 8x4

2 + 12x3
2x3 + 6x2

2x
2
3 + x2x

3
3. We update δ′ = δ′ \ {x1}. Steps

2 and 3. We select xβ = x4
2 and update η = {x1, x

3
2x3, x

2
2x

2
3, x2x

3
3, x

4
3} and

W = { x4
2 ≡ 1/8x1 − 12/8x3

2x3 − 3/4x2
2x

2
3 − 1/8x2x

3
3}. Steps 1 and 2. Next

w = x2, update δ′ = δ′ \{x2} and NF(x2l
3) = 8x4

2 +12x3
2x3 +6x2

2x
2
3 +x2x

3
3 = x1.

There is no element to select as, over D, x1 = x2 is already included in η. Steps 1

to 3. We try the next monomial in δ, w = x3, which can replace x3
2x3. We update

η = {x1, x3, x
2
2x

2
3, x2x

3
3, x

4
3}, W = W ∪{x3

2x3 ≡ 1/8x3−12/8x2
2x

2
3−3/4x2x

3
3−x4

3},

and δ′. Steps 1 to 3. We update η, substituting x2
2x

2
3 with x1x2 and add the rule

x2
2x

2
3 ≡ x1x2−x2x

3
3−1/4x4

3−1/2x1+1/4x3 to W . Steps 1 to 3. Now we substitute

in η the monomial x2x
3
3 with x1x3 and add the rule x2x

3
3 ≡ −1/16x4

3 +4/9x1x2 +

2/9x1x2−2/9x1+4/243x3 to W . The current η is {x1, x3, x1x2, x1x3, x
4
3}. Steps 1

and 2. The next candidate in δ is x2x3. However, there is no interchange possible,

as over D, x2x3 = x1x3 and x1x3 ∈ η. At this step δ′ = {x1x2x3}. Steps 1 to
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3. The final monomial to be removed from η is x4
3, substituted with x1x2x3. We

add the rule x4
3 ≡ 6x1x2x3 + 14/3x1x2 − 11/3x1x3 − 7/3x1 + 235/162x3. Step 4.

As now δ′ = ∅, the algorithm ends with the new model/representatives of classes

of the quotient space η = {x1, x3, x1x2, x1x3, x1x2x3}, and with the updated set

of rules W to express polynomials in terms of monomials in η.

The starting monomial set does not need to be a SMs set, but could be

any other set of polynomials which are linearly independent over D. McConkey,

Mezey, Dixon and Grenberg (2000) describe the confounding relationship between

the parameters of the Scheffé quadratic model and the model with support xi

and xi(1−xi), i = 1, . . . , k, used to describe the average deviation from linearity

caused by an individual component on mixing with the other components. Indeed

the set δ could be this support, and for w = xi(1 − xi) the normal form of

xi
∑

j 6=i xj is computed.

Example 10. For D3 a brother algorithm of the above can be summarised in

the following table. It expresses the inverse of the rewriting rules in W , for

δ = {xi, xi(1 − xi) : i = 1, 2, 3}, SMτ = {1, x2, x3, x
2
3}, and any τ for which

x1 ≻ x2 ≻ x3.

B =

x1 x2 x3 x1(1 − x1) x2(1 − x2) x3(1 − x3)

1 1 0 0 0 0 0

x2 −1 1 0 0 0 0

x3 −1 0 1 1 1 1

x2
3 0 0 0 −1 −1 −1

3.2. Rational models

Sets of linearly independent functions over D can be defined starting from

a R-vector space basis of R/Ideal(D) and considering ratios of homogeneous

polynomials of the same degree.

Example 11. To D1 and {x1, x2, x1x2} we associate the real-valued rational

functions f1 = x1/(x1 + x2), f2 = x2/(x1 + x2) and f3 = x1x2/(x1 + x2)
2 where,

for example, the function x1/(x1 + x2) : CD1
−→ R is defined by (0, 1) 7−→ 0,

(1, 0) 7−→ 1 and (1, 1) 7−→ 1/2. The design matrix of D1 and f1, f2, f3 is the same

one as that of D1 and x1, x2, x1x2. As over D1 x1 + x2 = 1, there is no issue in

considering a polynomial regression model as usually done. If x1 + x2 = a for

some a ∈ R \ {0}, then a mixture-amount model either in polynomial form (see

Cornell (2002, Sec. 7.9)) or rational form can be considered. The natural rational

model, which includes terms like x1/a, can be written as a polynomial model by

introducing two extra indeterminates, say t = 1/a and the extra polynomial
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ta − 1. Namely, for θ1, θ2, θ11 parameters, θ1x1 + θ2x2 + θ11x1x2 becomes the

rational model θ1x1/(x1 + x2) + θ2x1/(x1 + x2) + θ11x1x2/(x1 + x2)
2, which in

turn translates into the pair of polynomials at − 1 and θ1x1 + θ2x2 + θ11x1x2a.

Sometimes in the literature xi is substituted with xi/(1 − xi) for i ∈ A ⊆
{1, . . . , k}. These functions are defined over D, and not over CD, and are used

as screening models, see Cornell (2002). As the corner points with component

1 at the coordinates in A should not be in the design, the normal forms of

the polynomials 1 − xi, i ∈ A, are not zero. The authors have not been able

to prove or disprove the assertion that the linear independence of a set {xα}
implies the linear independence of the “normalised” set {xα/

∏k
i=1(1 − xi)

αi}
with α = (α1, . . . , αk). An example is analysed in Section 5.2,

Some mixture model forms include inverse terms to model extreme changes in

the response behaviour. For example, Cornell (2002, Chap. 6) suggests the model
∑

θixi +
∑

θ−ix
−1
i when no design point has a zero coordinate. Rather than

checking that the design/model matrix is full rank we could employ a standard

trick in algebra which allows us to transform the above model to a polynomial

model in at least two ways. Set yi = x−1
i , to Ideal(D) add the polynomials yixi−1,

i = 1 . . . , k and work in R[y1, . . . , yk, x1, . . . , xk] with a term ordering which elim-

inates the yi indeterminates. For elimination theory, see Cox, Little and O’Shea

(1997, p.72) and Kreuzer and Robbiano (2000, Sec. 3.4). Alternatively, rewrite

the suggested model as y
∑

θixi +
∑

i θ−i
∏k

j 6=i,j=1 xj and add the polynomial

y
∏

i xi − 1.

3.3. Logistic transformations

Mixture designs in Rk+1 with no point on the boundary are obtained from

a full factorial design in Rk by applying the additive logistic transformation, or

any other transformation that maps Rk into the interior of the simplex in one

higher dimension. Let F ⊂ Rk be a full factorial design with li1, . . . , lini
∈ R

levels for factor zi. Then

Ideal(F) =

〈 ni
∏

j=1

(zi − lij), i = 1, . . . , k

〉

⊂ R[z1, . . . , zk] (3.1)

with the unique standard monomial set

{

zα : α ∈
k

∏

i=1

{0, 1, . . . , ni − 1}

}

. (3.2)

The additive logistic transformation xi = ezi/(1 +
∑

ezj ), for i = 1, . . . , k, and

xk+1 = (1 +
∑

ezj )−1, with inverse transformation zi = lnxi/xk+1, i = 1, . . . , k,
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maps z = (z1, . . . , zk) ∈ F into a mixture point. Call G the collection of such
mixture points. Note that substitution of the inverse relationship in (3.2) returns
the support for a generalisation of the model (12.6) in Aitchison (1986).

Substitution of the inverse transformation in (3.1), and inclusion of the sum
to one condition in the xi space, gives Ideal(G) = 〈

∑k+1
i=1 xi − 1,

∏ni

j=1(xi −

xk+1e
lij ), i = 1, . . . , k〉 ⊂ R[x1, . . . , xk+1].

Direct application of the Buchberger algorithm (see Cox, Little and O’Shea
(1997, Chap. 2, Sec. 7) or Kreuzer and Robbiano (2000, Sec.2.5)) shows that the

polynomials above form a Gröbner basis for any term ordering for which xk+1 ≻
xi for all i = 1, . . . , k. The corresponding standard monomial set is directly linked
with the one of the full factorial in (3.2) and it gives the support for a slack model
identified by G, call it V =

{

xα1

1 · · · xαk

k : αi ∈ {0, 1, . . . , ni − 1}, i = 1, . . . , k
}

.

As another example of the simplicity and elegance of algebraic statistics,
note that the recursive structure of the multiplicative logistic transformation

xi = ezi/
∏i

j=1 (1 + ezj ) for i = 1, . . . , k, and xk+1 =
∏k

j=1 (1 + ezj )
−1

, with
inverse zi = ln(xi/(1 − x1 − . . . − xi)), i = 1, . . . , k, sending F into H is reflected

in the recursive structure of the polynomials in

Ideal(H) = 〈
k+1
∑

i=1

xi − 1,

ni
∏

j=1

(

xi(1 + elij ) − (1 − x1 − . . . − xi−1)e
lij

)

: i = 1, . . . , k〉,

which is a Gröbner basis if we chose a term ordering for which x1 ≺ . . . ≺ xk+1.
In fact, the leading terms of the above polynomials are xk+1, xn1

1 , . . . , xnk

k , re-
spectively, and so we can apply standard techniques and complete the argument.

The corresponding standard basis is again V , while the substitution of the inverse
relationship in (3.2) returns the support for a generalisation of the model (12.7)
in Aitchison (1986).

4. Some Symmetric Mixture Designs

We start by stating a simple fact valid for mixture designs including corner
points. It is the algebraic representation of the well known fact that contrasts of
all linear effects with the intercept are identifiable by such an experiment.

Lemma 5. Let D ⊂ Rk be the mixture design formed by the k corner points of

the simplex and τ be a term order. If xk ≻ xi for all i ∈ {1, . . . , k}, then the
(generalised) confounding relationship for a general interaction xα = xα1

1 . . . xαk

k ,
α ∈ Zk

≥0, is

NF(xα) =















1 −
∑k−1

i=1 xi if xα = xαk

k

xi if xα = xi, i = 1, . . . , k − 1

0 if α has at least two non-zero components

1 if α = (0, . . . , 0).

(4.1)
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Theorem 6. Let D be a mixture design that contains the corner points, and τ

a graded term ordering for which xk ≻ xi for all i. Then (i) 1, x1, . . . , xk−1 are

linearly independent over D, (ii) the coefficient of the term 1 in NF(xαk

k ) is 1,

and (iii) the coefficient of the term 1 in NF(xα), with xα 6= xαk

k , is 0.

4.1. Simplex lattice designs

Scheffé (1958) discusses uniformly spaced distributions of points on the sim-

plex to explore the whole factor space, and calls them simplex lattice designs.

A {k,m} simplex lattice design is the intersection of the simplex in Rk and

the full factorial design in k factors, with the m + 1 uniformly spaced levels

{0, 1/m, . . . , 1}. It has
(m+k−1

m

)

points. Directly from that description we deduce

that for the {k,m} simplex lattice design, D, Ideal(D) = 〈
∏m

j=0 (x1 − j/m), . . .,
∏m

j=0 (xk − j/m),
∑

xi−1〉, where the first k polynomials are a simple generating

set of the full factorial design and the last one is the simplex condition.

The set of slack models identified by D are well classified and they are in num-

ber k as Theorem 7 shows. In Caboara, Pistone, Riccomagno and Wynn (1999)

the set of order ideals identified by a design, and obtained via the procedure in

Section 3, is called the algebraic fan of the design.

Theorem 7. The algebraic fan of a {k,m} simplex lattice design has size k.

Each of its elements is the set of all monomials up to degree m in k − 1 factors.

Corollary 8. There are no other saturated hierarchical polynomial models iden-

tified by the {k,m} simplex lattice design, apart from those of Theorem 7.

By Theorem 1, Ideal(CD) is the radical of the ideal generated by the homo-

geneous polynomials
∏m

j=0 (xi − lj/m) for i = 1, . . . , k, and l =
∑

xi. Table 1

reports a Gröbner basis for Ideal(CD) for various combinations of k and m. It uses

the following functions: g(x1, x2, w) =
∏w

j=1(x1−jx2/m−j)(x1−x2((m−j)/j))

and, for w ∈ Z>0,

f(x1, x2) =







1 if m = 1

g(x1, x2, w) if m odd, m 6= 1 and w = ⌊m
2 ⌋

(x1 − x2)g(x1, x2, w) for m even and w = m
2 − 1.

Table 1. Ideal(CD) for some simplex lattice designs.

D Ideal(CD) Number of terms

{k, 1} Ideal(CD) = 〈xixj : i 6= j〉
(

k
2

)

{k, 2} Ideal(CD) = 〈x2

i xj − xix
2

j , xixjxl : i 6= j 6= l〉
(

k

2

)

+
(

k

3

)

{2, m} Ideal(CD) = 〈x1x2f(x1, x2)〉
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Fractions of a {k,m} design, or of any other design, can be built by confounding

identifiable terms. A systematic use of the Hilbert function computes how many

terms will be in any corresponding saturated model support and, in the homoge-

neous case, the maximum number of terms of each degree that can be included.

The relevant theory on Hilbert functions is in Appendix 7.3 in the online supple-

ment. In some cases the generating set of the fraction is simple enough to allow

the determination of the actual design points by direct investigation.

Example 12. For the {4, 4} design, the binomials x1x2 −x3x4, x1x3 −x2x4 and

x1x4 − x2x3 added to the generating set of the ideal of either the design or its

cone, select the four corner points and the centroid point. They also establish

that the terms in each binomial are confounded; that is, take the same values

over the selected fraction.

The polynomial (x1 − x2)(x3 − x4) selects the 15 points for which x1 =

x2 or x3 = x4, see Example 19 in the on-line supplement. With respect to

the default term ordering in CoCoA we obtain the support for a slack model

1, x4, x
2
4, x

3
4, x

4
4, x3, x

2
3, x2, x

2
2, x

3
2, x

4
2, x3x4, x3x

2
4, x2x4, x

2
2x4. For the same fraction

and term ordering, the support for a homogeneous model of total degree s =

0, . . . , 4, is

s SMs

0 1

1 x1, x2, x3, x4

2 x2
1, x1x2, x

2
2, x2x3, x

2
3, x1x4, x2x4, x3x4, x

2
4

3 x3
1, x

2
1x2, x1x

2
2, x

3
2, x2x

2
3, x

3
3, x

2
2x4, x2x3x4, x

2
3x4, x1x

2
4, x2x

2
4, x3x

2
4, x

3
4

4 x4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2, x2x

3
3, x

4
3, x

3
3x4, x

2
2x

2
4, x2x3x

2
4, x

2
3x

2
4, x1x

3
4,

x2x
3
4, x3x

3
4, x

4
4

In Example 12 we had to take the saturation of the ideal generated by the

homogeneous polynomials
∏4

j=0(xi − lj/4), i = 1, 2, 3, 4, and (x1 − x2)(x3 − x4)

with respect to x1, x2, x3, x4. The saturation is an algebraic operation which

allows us to take the largest homogeneous ideal defined over a variety, namely the

ideal of the variety. It can be performed in CoCoA with the command Saturation.

We do not study it here any further and refer to Hartshorne (1977), but we add

another example and some comments in order to clarify the algebraic motivation.

Example 13. In P3 with coordinates x, y, z, w, consider the two skew lines

L1 = V(x, y) and L2 = V(z,w), and the curve C = L1 ∪ L2 whose ideal is

Ideal(C) = Ideal(L1) ∩ Ideal(L2) = 〈xz, xw, yz, yw〉. If we cut C with the plane

H = V(y + z), we obtain the points A1 = (0:0 :0 :1) and A2 = (1:0 :0 :0) whose

ideal is Ideal(A1, A2) = 〈y, z, xw〉. Of course it is more natural to compute the
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ideal J = Ideal(C) + Ideal(y + z) than the coordinates of the intersection points,

and we have J = 〈y + z, xy, xw, y2, yw〉.

Clearly J 6= Ideal(A1, A2) and it is easy to verify that Js = Ideal(A1, A2)s
for s ≥ 2. So, we can say that the sum of the two ideals I and J is asymptot-

ically equal to the ideal of the intersection of the varieties V(I) and V(J). In

fact, when we compute combinations of homogeneous polynomials we always get

polynomials of degree larger than or equal to the degree of the operands.

The algebraic operation that allows us to compute the ideal of V(I) ∩ V(J)

from I + J is saturation with respect to the ideal generated by all the inde-

terminates, and it consists in looking for homogeneous polynomials f with the

property that fxmi

i ∈ I + J for some mi ∈ Z>0 and for every i = 1, . . . , k.

In the affine space this phenomenon does not show up because when comput-

ing combinations of non-homogeneous polynomials, we can obtain polynomials

of degree strictly smaller than the degree of the operands.

4.2. Simplex centroid designs

Simplex centroid designs, introduced in Scheffé (1963), are mixture designs

in which coordinates are zero or equal to each other. Thus in the k dimensional

simple centroid design, there are k points of the form (1, 0, . . . , 0),
(k
2

)

of the

form (1/2, 1/2, 0, . . . , 0),
(

k
3

)

of the form (1/3, 1/3, 1/3, 0, . . . , 0), ..., and the point

(1/k, . . . , 1/k): a total of
∑

(k
j

)

= 2k − 1 points. This design is the projection

with respect to the origin of the full factorial design with levels 0 and 1, on the

simplex in Rk. Again, easily, we see that there are 2k − 1 points. We rename “2k

design” the full factorial design with levels 0 and 1 in k factors.

If D is the simplex centroid design in Rk then Ideal(CD) = 〈x2
i xj − xix

2
j :

i, j = 1, . . . , k; i 6= j〉. The geometry of the design is easily deduced by inspection

of the factorised generators xixj(xi−xj): coordinates of a point in D are either 0

or equal to each other. The generating set given for Ideal(CD) is a Gröbner basis

with respect to any term ordering. The proof is a straightforward application of

the S-polynomial test; see e.g., Cox, Little and O’Shea (1997, Chap. 2, Sec. 6,

Thm. 6).

The construction of Ideal(D) can also be based on the derivation of the sim-

plex centroid design from the 2k design, but it is more complicated and involves

techniques from elimination theory. We may want to do this when, for some

reasons, we do not want to list the mixture point coordinates. The steps of the

construction are as follows.

1. The ideal of the 2k design is 〈x2
i − xi : i = 1, . . . , k〉.

2. The origin can be removed by adjoining the polynomial given by the sum

of the elementary symmetric polynomials and 1 with alternate signs (see
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Cox, Little and O’Shea (1997, Chap. 7, Sec. 2). The elementary symmetric

polynomials in R are σ1 = (x1 + . . . + xk), . . ., σr = (
∑

i1<i2<···<ir
xi1 . . . xir),

. . ., σk = (x1 . . . xk).

3. The simplicial projection is performed in two steps: extend the polynomial

ring with the variables y1, . . . , yk, and adjoin to the above ideal the polyno-

mials yi(
∑

xj) − xi.

4. Eliminate the indeterminates xi, i = 1, . . . , k, from the ideal obtained in the

previous step to get Ideal(D), which is now expressed in the yi indeterminates.

Example 14. For k = 3 the affine ideal of a 23 design is 〈x2
1−x1, x

2
2−x2, x

2
3−x3〉.

The origin is removed with the ideal operation Ideal(23 \{(0, 0, 0)}) = Ideal(23)+

〈σ3 −σ2 + σ1 − 1〉, where σ3 − σ2 + σ1 − 1 = x1x2x3 − x1x2 − x1x3 −x2x3 + x1 +

x2 + x3 − 1. Extend the polynomial ring with y1, y2, y3 and create the following

ideal: Ideal(23 \{(0, 0, 0)})+ 〈y1l−x1, y2l−x2, y3l−x3〉 ⊂ R[x1, x2, x3, y1, y2, y3],

where l = x1 + x2 + x3. Eliminate the variables x1, x2, x3, for instance with

the CoCoA macro Elim. This last step gives a set of generators for Ideal(D)

{y1 + y2 + y3 − 1, y3(y3 − 1)(2y3 − 1)(3y3 − 1), y2y3(y2 − y3), y3(2y3 − 1)(2y2 +

y3 − 1), y2(2y2 − 1)(y2 + 2y3 − 1)}.

Scheffé (1963) considers two types of fractions of a simplex centroid. A frac-

tion D of the type in Appendix B of Scheffé (1963) is built from a fraction of the 2k

design, excluding the origin. Call it F . In this case Ideal(D) is computed starting

the above algorithm with F , and Ideal(CD) can be obtained by homogenization

as in Theorem 2. The ideal of a fraction of the other type in Scheffé (1963,

Sec. 5) is built starting the algorithm from an echelon fraction of the 2k design

excluding the origin. For echelon designs, see (Pistone, Riccomagno and Wynn,

2001, Sec. 3.4). Some of the difficulties lamented in Scheffé (1963, Appendix B),

in determining identifiably models for these fractions, are then overcome by the

algebraic approach to design, specifically the algorithms in Section 3.

Example 15. For 1 < m ≤ k, let Fm be the fraction of a simplex centroid

design that includes all points with at most m non-zero components, and let

Fk be the full simplex centroid. Clearly, Fm satisfies the description in Scheffé

(1963, Sec. 5). The number of points in Fm is
∑m

j=1

(k
j

)

. The cone ideal for Fm

is 〈x2
i xj −xix

2
j , xi1 · · · xim+1

: i 6= j and i1 6= · · · 6= im+1〉 if m > 1, and for m = 1

simplifies to 〈xixj : i 6= j〉. Differently from Example 12, the given generators

are those of a saturated ideal.

Example 16. We compute the algebraic fan of D = Fm in Example 15. First

note that the given generating set is a Gröbner basis for any term ordering.

For m = 1 and any term ordering, the leading term of xixj ∈ Ideal(CD) is the

monomial itself. Thus the homogeneous model has support {xs
1, x

s
2, . . . , x

s
k} for
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any s ∈ Z≥1. If m > 1, the leading term of xi1xi2 · · · xim+1
is the monomial

itself. For a given initial term ordering on x1, . . . , xk, e.g., x3 ≻ x2 ≻ x1, the
leading term of x2

i xj − xix
2
j is x2

i xj if xi ≻ xj, and xix
2
j otherwise. For a given

initial term ordering, there are
∑m

j=1

(

k
j

)

monomials of total degree s not di-

visible by x2
i xj, with xi ≻ xj and xi1xi2 · · · xim+1

, namely for m = 3 we have
{xs

i , x
s−1
i xj , x

s−2
i xjxl : i, j, l = 1, . . . , k, i < j < l}.

4.3. Snee-Marquardt designs

In Snee and Marquardt (1976), simplex screening designs which are axial
designs are introduced and now they are known as Snee-Marquardt designs. The
Snee-Marquardt design in k factors, M, is formed by the points

k vertices (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

1 centroid ( 1
k , . . . , 1

k )

k interior points (k+1
2k , 1

2k , . . . , 1
2k ), . . . , ( 1

2k , . . . , 1
2k , k+1

2k )

k end effects (0, 1
k−1 , . . . , 1

k−1), . . . , ( 1
k−1 , . . . , 1

k−1 , 0).

To construct Ideal(M) observe that each point in M lies on a line Ai through
the ith vertex and its opposite end effect point, for i = 1, . . . , k. Ideal(M ∩
Ai) is generated by g =

∑

xi − 1 and fi = xixm(xi − (k + 1)xm)(xi − xm),
where m ∈ {1, . . . , i − 1, i + 1, . . . , k} and xj − xm, 1 ≤ j < m ≤ k, j 6=
i, l 6= i. The ideals of other types of axial designs are obtained by changing
the fi polynomials. First we prove that if h and m are different from i, then
xixm(xi − (k + 1)xm)(xi − xm) and xixh(xi − (k + 1)xh)(xi − xh) cut Ai on
the same subset. This remark justifies the fact that, in our notation, fi does
not depend on xm. In fact, xixm(xi − (k + 1)xm)(xi − xm) − xixh(xi − (k +
1)xh)(xi −xh) = (xm −xh)xi[x

2
i − (k +2)xi(xm +xh)+ (k +1)(x2

m +xmxh +x2
h)]

∈ Ideal(Ai). The ideal defining M is the intersection of the Ideal(M∩Ai). We
compute Ideal(CM) as usual. If k = 3, a straightforward computation shows
that Ideal(CM) = 〈(x1 − x2)(x1 − x3)(x2 − x3), x1x2(x1 − x2)(x1 + x2 − 5x3),
x1x3(x1 − x3)(x1 + x3 − 5x2), x2x3(x2 − x3)(x2 + x3 − 5x1)〉. Next, we want to
compute a finite generating set of Ideal(CM) for k ≥ 4.

Proposition 1. For k ≥ 4, Ideal(CM) is generated by qijkm = (xi−xj)(xh−xm),
where i, j, h,m are different from each other in {1, . . . , k}, and by frs = xrxs(xr−
xs)(xr + xs − (k + 1)xt), where r, s, t are different from each other in {1, . . . , k}.

A corollary of Proposition 1 is that

HFR/Ideal(CM)(s) =























1 if s = 0

k if s = 1

2k if s = 2

3k if s = 3

3k + 1 if s ≥ 4.
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5. Notes on the Analysis of Two Data Sets

5.1. A non-regular mixture design

In Giglio, Riccomagno and Wynn (2001), a non-regular mixture experiment

with k = 8 and n = 18 is analyzed. For the initial term ordering h ≺ g ≺ f ≺

e ≺ d ≺ c ≺ b ≺ a on the factors, a hierarchical slack model for the response is

obtained. Instead of homogenising that model support, we consider the cone ideal

and, for the same initial ordering, we obtain the degree 2 homogeneous support

M1 = {df, ef, f2, ag, bg, cg, dg, eg, fg, g2 , ah, bh, ch, dh, eh, fh, gh, h2}. Some of

the terms in M1 are replaced by terms of different degree using the algorithm

in Subsection 3.1. In particular, we can replace the quadratic terms of f2, g2, h2

by the linear terms f, g, h and obtain a (more) Scheffé (like) model, named M2.

We could as well have replaced some interaction terms with linear terms, for

example building models degree by degree using a suitable δ set in the algorithm

in Subsection 3.1. We do not pursue this here. Finally, following Cornell (2002),

we can construct a support for a third model where xixj in M1 are replaced by

the rational terms xixj/((1 − xi)(1 − xj)). We refer to this model as M3. Such

a substitution with rational terms is not always possible, but in this specific

example it can be shown that the linear independence of the terms in M3 over

the design follows from the linear independence of the terms in M1, because of

the particular structure of the design.

Often for practical purposes, a reduced model which fits the data reason-

ably well is preferred to the saturated one. Table 2 shows the values of the

determination coefficient R2, the adjusted one, R2
A, and the residual error σ̂ for

the submodels obtained with backward stepwise regression. We use the leaps

function in the statistical software R; see http://cran.r-project.org.

Table 2. Results of submodel selection.

Initial model Final terms R2 R2
A 102σ̂

M1 h2, bh, df, eh 0.977 0.958 6.1

M2 f, h, bh, fh 0.983 0.978 4.4

M3
ef

(1−e)(1−f) ,
g2

(1−g)2 , bh
(1−b)(1−h) , 0.974 0.964 5.7

ch
(1−c)(1−h) ,

gh
(1−g)(1−h)

5.2. A fraction of the simplex centroid design

A particular fraction of the simplex centroid with k factors is proposed in

McConkey, Mezey, Dixon and Grenberg (2000) for screening for significant in-

teractions. It exhibits some sort of symmetries. The fraction is constructed

by considering the k corners of the simplex, and those combinations with p
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non-zero factors such that any pair of non-zero factors appears in the design
just once. The fact that there are many such fractions, obtained by relabel-

ing of the factors, is clearest from the structure of the polynomial representa-
tion below. The fraction obtained is of the echelon type described in Scheffé

(1963, Sec. 5), and it is labeled {k|p} in McConkey, Mezey, Dixon and Grenberg
(2000). There it is noted that there are some values of k for which a {k|p} frac-

tion cannot be constructed. We focus our attention on the {9|3} case analysed
in McConkey, Mezey, Dixon and Grenberg (2000). To construct the cone ideal
consider the polynomials

xi(xj − xk), xj(xi − xk), xk(xj − xi) : (i, j, k) ∈ A

and xixj(xi − xj) : i 6= j, i, j ∈ {1, . . . , 9},

where the second set of polynomials gives the simplex centroid design in 9 factors,
and the set A = { (1, 2, 3), (1, 4, 8), (2, 5, 9), (3, 6, 7), (4, 5, 6), (2, 4, 7), (3, 5, 8),

(1, 6, 9), (7, 8, 9), (1, 5, 7), (2, 6, 8), (3, 4, 9)} corresponds to the non-zero factor
triplets in our design points. The centroid point (1 : . . . : 1) still satisfies that

set of equations. The algebraic operation to remove it is the colon of ideals
(see e.g., Cox, Little and O’Shea (1997, Chap. 4, Sec. 4) and can be achieved

by taking the saturation of the ideal generated by the above polynomials and
x1x2x3x4x5x6x7x8x9, or any degree three monomial with exponents not in A, for
example x4x8x9, where the saturation is with respect to Ideal(x1, . . . , x9). The

Hilbert function of the cone ideal is

HFR/Ideal(CD)(s) =







1 if s = 0

9 if s = 1

21 if s ≥ 2,

and thus we can construct a saturated homogeneous model of degree two. For the
default term ordering in CoCoA with x1 ≻ . . . ≻ x9, the support for such a model

is {x2
1, x

2
2, x2x3, x

2
3, x

2
4, x4x7, x4x8, x4x9, x

2
5, x5x6, x5x7, x5x8, x5x9, x

2
6, x6x7, x6x8,

x6x9, x
2
7, x

2
8, x8x9, x

2
9}. A feature of a {k|p} fraction is that double interactions

are completely confounded over the design in sets of size p, e.g., for the {9|3}
fraction, the polynomials x1x2 − x1x3, x1x2 − x2x3 and x1x3 − x2x3 belong to
Ideal(CD); that is, the column of a design/model involving the polynomials x1x2,

x2x3 and x1x3 are equal. For this reason, equation (3) in McConkey, Mezey,
Dixon and Grenberg (2000) includes the sum x1x2+x1x3+x2x3 as a model term.

In the model support obtained above, the term xi can be replaced by the
terms x2

i for all i = 1, . . . , 9, e.g., by application of the algorithm in Section 3.1.

The design/model matrix for the obtained model and the fraction {9|3} is a block
matrix of the form

[

I9 0

P 1
9I12

]

,
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where Ik is the identity matrix of size k, and P is the 12 × 9 matrix listing the
coordinates of the mixture points.

6. Further Comments

If the points of D do not lie on a hyperplane, none of them is the origin, and
each line through the origin and a design point does not contain any other design
point, then the cone ideal is still well defined. The identifiability theory of the
homogeneous model supports works exactly as for mixture designs. In particular
Ideal(CD) is the largest homogeneous ideal in Ideal(D). Although mathematically
sensible, this operation does not seem to be particularly interesting if the design
points do not lie on a hyperplane, except perhaps for mixture amount experiments
in the original scale, where the point coordinates retain an interpretation as
proportions of a total amount which can vary from design point to design point.

For an experiment where the relative proportions of the components are
significant rather than the total amount, few relevant facts are implied by con-
sidering the cone ideal. The design points are recovered as the variety obtained
from intersecting the cone ideal with the simplex ideal as shown in Theorem 1.
The generalised confounding relationships collected in Ideal(CD) are the same
whatever the total amount of the mixture is. Likewise, the homogeneous model
supports are the same independently of the total mixture amount.

Both the confounding relationships and the model support are easily com-
puted even for fairly irregular designs, i.e., designs that do not manifest any
geometric symmetry. An exact evaluation of the speed of the algorithms as a
function of the sample size and number of factors has not been done. An es-
timation can be obtained from Abbott, Bigatti, Kreuzer and Robbiano (2000).
Macros in the computational algebra package CoCoA to compute homogeneous
model supports, the ideals, and the cone ideals of the designs in Section 4 are
available from the first author.

A general remark on the algebraic statistics approach is that it allows a sym-
bolic approach to identifiability. Thus numerical approximations are postponed
to the estimation phase of an analysis. For example, rather than checking numer-
ically if the rank of the design/model matrix for a candidate model is maximal,
one computes a basis of the quotient space. This might be advantageous or dis-
advantageous according to situation. We find that the information embedded
in the ideal of a design, or of its cone, are useful in visualising the constraints
imposed on the power terms by the design.
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Scheffé, H. (1958). Experiments with mixtures. J. Roy. Statist. Soc. Ser. B 20, 344-360.
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