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Abstract: Contingency tables are a staple of quantitative science. Statistical sci-

ence has paid continuing attention to developing theory, analytical methods, and

models for contingency tables that in turn require theoretically verifiable, compu-

tationally efficient algorithms. Despite recent advances, there remain theoretical

and computational obstacles to developing such algorithms, in some cases for tables

with relatively few cells or in low dimensions. We define and investigate a class of

multi-dimensional contingency tables — tables of network type — that overcome

these limitations and enjoy strong theoretical properties and efficient computational

algorithms. We demonstrate that tables in this class are abundant and familiar,

including 2-dimensional tables, the Rasch model, log-linear models involving sum-

mation over mostly dichotomous variables, and tables of these types subject to

structural zeroes. We describe ways to collapse non-network tables into network

tables. We construct a Markov basis for tables of network type based on moves

involving only coefficients −1, 0, +1. We provide theoretical models and efficient

algorithms for solving three important statistical problems over tables of network

type — sampling contingency tables subject to specified marginals, imputation and

analysis for item and unit nonresponse subject to edit constraints, and obtaining

exact bounds on entries in partially specified tables for purposes including statis-

tical disclosure limitation. We relate our results to the De Loera-Onn formulation

of all integer linear programs as slim 3-dimensional contingency tables.

Key words and phrases: Data confidentiality, exact bounds, imputation, integer op-

timization, log-linear model, Markov chain Monte Carlo, nonresponse, probability

sampling.

1. Introduction

Contingency tables are a staple of quantitative science. Statistical science

has paid continuing attention to developing analytical methods and models for

contingency tables over several decades (Bishop, Fienberg and Holland (1975)).

In turn, implementation of these methods requires theoretically verifiable, com-

putationally efficient algorithms. As data providers such as national statistical

offices seek to meet rapidly increasing and changing demands for data and for

new and more flexible data formats and access modalities, attention has been

given to the concept of a public use statistical data base query system (SDBQS)
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to answer such count queries as those arising from a national census (60-80 cat-

egorical variables). A SDBQS, in essence, is defined over an extremely large,

high-dimensional contingency table and consequently verifiable, efficient meth-

ods for statistical computing on tables of this magnitude and scope are needed

(Karr, Dobra, Sanil and Fienberg (2002) and Cox (2004)). An important de-

mand is to construct a (large) probability sample of tables conditional on a spec-

ified log-linear model, viz., a probability sample from the set of all contingency

tables exhibiting the minimal sufficient statistics (MSS) of the log-linear model.

A partially specified contingency table is the set of nonnegative integer solutions

of the system of linear constraints defined by fixing the values of a set of MSS.

There is evidence that efficient methods may be out of reach for many con-

tingency tables, at least in the near term. This paper defines and mathematically

characterizes a class of contingency tables of practical use for which important

statistical problems can be modeled theoretically and solved efficiently. These

tables are based on mathematical networks (Nemhauser and Wolsey (1988, Part

III), a class of linear optimization problems well-known in operations research.

We refer to this class as tables of network type, identify important and familiar

partially specified tables of network type, and illustrate the power of the charac-

terization by solving three problems over tables of network type: sampling tables

subject to specified MSS, imputation in tables for item and unit nonresponse,

and obtaining exact bounds on entries in partially specified tables.

Early work on networks and statistics focused on statistical applications of

networks for 2-dimensional tables: Cox and Ernst (1982), Kelly, Golden, Assad

and Baker (1990) (controlled rounding), Causey, Cox and Ernst (1985) (2-way

sample stratification), Cox (1987) (unbiased controlled rounding) and Cox (1995)

(complementary cell suppression). Other work deals with network structure (or

lack thereof) for specific table types: Cox and George (1989) investigate how

network structure of 2-dimensional tables is affected by subtotal constraints;

Cox (2003) studies failure of feasibility and integrality in general tables, and

shows that thin k-dimensional tables subject to (k − 1)-dimensional marginals

are network. Here we present the first effort to identify tables of network type as

a generic class to be studied, explore membership and properties of tables in this

class, develop efficient solutions over tables in this class of important statistical

problems that are not as easily solved over general tables (if at all), and relate

this classification to recent theoretical research on tables in general.

Section 2 describes the three statistical problems and issues affecting theory

and efficient solution over general contingency tables, and it presents preliminar-

ies on mathematical networks. Section 3 characterizes a large class of important,

familiar tables as network, and illustrates related classes that are not. In Section

4 we construct a Markov basis for contingency tables of network type involving
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only {−1, 0,+1}-moves, and provide algorithms for efficiently solving the three

problems over network tables. Our technique can avoid creating infeasible solu-

tions, a theoretical improvement and speed up of the Diaconis-Sturmfels method.

In Section 5, we examine network tables in the context of all tables, in two ways.

We introduce techniques for collapsing non-network tables into network tables,

and demonstrate how this can be used to obtain useful partial information for

non-network tables. We relate network tables to the De Loera-Onn isomorphic

mapping of all integer linear programs to slim 3-dimensional contingency tables,

and provide a refined mapping that distinguishes network from non-network ta-

bles. Section 6 provides concluding comments.

2. Statistical Computing over Partially Specified Contingency Tables

2.1. Three problems in statistics

In this section, we discuss three statistical problems that in Section 4 are

modeled and solved over tables of network type by means of network structure

and algorithms. Absent network or other specialized structure, these problems

in general require combinatorial optimization, are NP-hard, and often cannot be

completely solved.

First Problem: Draw a probability sample from a partially specified contingency

table

The first problem is drawing a probability sample from a partially specified

contingency table of network type, where each feasible table has nonzero probabil-

ity of selection. This is the subject of a seminal paper of Diaconis and Sturmfels

(1998) that illustrates the elegance and power of algebraic statistics, specifically

Gröbner bases (Sturmfels (1996)). At that time, computational obstacles to com-

puting the mathematical objects that define the underlying Markov chain were

formidable for tables as small as 3 × 3 × 3. Meaningful, continuing progress has

been made, particularly in low dimensions, but high dimensional and large tables

remain challenging. Our approach is related not to dimension but structure.

We now outline the Diaconis-Sturmfels method, referring the reader to the

original paper for details, to Lang (1965, Chap. II) for algebraic preliminaries,

to Sturmfels (1996, Chap. 2) for Gröbner bases, and to Pistone, Riccomagno

and Wynn (2001, Chap. 2) for application of rings, ideals and Gröbner bases to

statistics.

A partially specified contingency table is the set of nonnegative integer so-

lutions to a system of integer linear equations An = b, n ≥ 0, where A is a

coefficient matrix defined by linear constraints imposed by the MSS, and b de-

notes fixed integer values of the MSS. Given a nonnegative integer solution n(0),

all other solutions are of the form n(i) = n(0)+k(i) with k(i) integer, Ak(i) = 0 and
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k(i) ≥ −n(0). KerZ(A,n(0)), the integer kernel of A at n(0), is the set of all such

k(i), also called the set of feasible moves from n(0). The set KerZ(A,n(0)) and the

set of all feasible moves
⋃

n KerZ(A,n) are subsets of KerZ(A) = {k : Ak = 0}.

A chain of solutions {n(0), n(1), . . . , n(i−1), n(i), . . .} can be constructed via suc-

cessive addition of feasible moves.

As each integer feasible solution has nonzero probability of selection, a pro-

cedure for constructing a probability sample must be capable of constructing

any nonnegative integer solution n(i) of An = b. This can be accomplished if a

Markov basis for the set of all feasible moves is available.

Definition 1. A Markov basis M(A) for the set of all feasible moves is a subset

of Kerz(A) with the property that, given any two nonnegative integer solutions

n(i), n(k) of An = b, there exists a sequence of elements f
(i)
j ∈ M(A) such that

n(k) = n(i) +

j(i)
∑

j=1

εjf
(i)
j with εj = ±1 and

n(i) +

l
∑

j=1

εjf
(i)
j is a feasible solution of An = b, 1 ≤ l ≤ j(i).

If all coordinates of f (j) equal −1, 0, +1, f (j) is a {−1, 0,+1}-move.

Diaconis and Sturmfels (1998) associate a Markov basis to elements of a re-

duced Gröbner basis for a polynomial ideal (see Sturmfels (1996, Chap. 1 and 4)).

The Markov basis is used with a hypergeometric stationary distribution π(n) for

the Markov chain in a Metropolis step to generate random samples. This elegant

method is dependent on the computability of a Gröbner basis. The general algo-

rithm for constructing Gröbner bases — the Buchberger algorithm — is doubly

exponential (Sturmfels (1996)), but research on algorithms for tables is ongoing

and algorithms at worst exponential are available (e.g., Hemmecke and Malkin

(2006)). In Section 4, we provide a theoretically verified, computationally effi-

cient algorithm for constructing a Markov chain of {−1, 0,+1}-moves for tables

of network type. In addition, we demonstrate how to eliminate the feasibility

check in the Diaconis-Sturmfels algorithm.

Second Problem: Imputation and analysis for an incomplete contingency table

The second set of problems is in the realm of imputation and analysis of

incomplete contingency tables. A 2-dimensional example illustrates the problem.

A sample of n++ respondents is asked two questions. The first question is cat-

egorized in r categories, the second in c categories. mij responses are recorded

for category (i, j), corresponding to m++ =
∑

i,j mij complete responses. In
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addition, m+,c+1 =
∑r

i=1 mi,c+1 respondents answer only the first question, with

mi,c+1 responses in first question category i, and mr+1,+ =
∑c

j=1 mr+1,j respon-

dents answer only the second question, with mr+1,j responses in second question

category j (item nonresponse), and mr+1,c+1 answer neither question (unit non-

response). As discussed in Section 4.3, several statistical problems including

nonresponse problems can be examined in this framework.

Third Problem: Exact bounds for entries of a partially specified contingency

table

The third problem is that of obtaining exact bounds for entries of a par-

tially specified contingency table of network type. Data confidentiality provides

one motivation for this problem. Small counts — defined by a specific numeric

threshold — and complements of small counts represent unacceptable disclo-

sure risk and cannot be released or inferred. One solution is to release selected

marginal totals in lieu of counts. The released marginals must of course lie above

the threshold, but this is not sufficient to ensure that an attacker could not infer

that a value is below threshold. Prior to data release, the releaser must compute

exact bounds on selected table entries (Cox (2002)). As discussed in Section 4.4,

recent theoretical results further complicate this problem.

2.2. Networks

Two sets of marginal totals are consistent if they produce the same values for

all shared lower dimensional marginal totals, including the grand total. Consider

the familiar problem of obtaining maximum likelihood estimates of entries nij in

a 2-way table conditional on specified row and column totals ni+, n+j. If the

marginals are consistent, viz., a unique grand total n++ exists, then MLE exist

for each nij, namely ni+n+j/n++.

This property should not be taken for granted: three consistent sets of 2-

dimensional marginals nij+ =

(

1 0

1 0

)

, ni+k =

(

0 1

1 0

)

, n+jk =

(

1 0

0 1

)

, for a

partially specified 2 × 2 × 2 3-dimensional contingency table subject to a no 2-

factor effects log-linear model fail to define even one table of nonnegative values,

and consequently no integer tables or MLE exist (Cox (2003, p.255, Example

1(a))).

The MLE ni+n+j/n++ for the 2-dimensional problem are not necessarily

integers. In applications such as 2-way stratified sampling, it is desirable to

replace the MLE by nearby integer values, if such exist (Cox (1987)). A second

property of 2-dimensional tables is that consistent integer marginals assure the

existence of at least one integer solution (Cox (2003)); so, integer estimates of

the MLE do exist.
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These and other strong properties of 2-dimensional tables hold because a

2-dimensional table can be modeled as a network.

Definition 2. A directed graph is a pair (V,E) where V is a set of objects called

nodes and E is a subset of V × V of objects called directed arcs. If directed arc

(u, v) ∈ E, u is the from-node of (u, v), v is the to-node, and (u, v) is directed

from u to v.

We are interested only in directed graphs without loops–arcs (u, u) are not

permitted.

Definition 3. A network Ax = b, x ≥ 0 is a system of linear equations in

nonnegative variables x defined over a directed graph without loops, with the

following properties:

- network equations (rows of A) and graph nodes correspond one-to-one

- network variables xi and graph arcs (u, v) correspond one-to-one

- a network variable has coefficient −1, 0 or +1 in any equation.

Thus, each variable appears in at most two equations (one may assume

precisely two). Each network equation e is expressible:
∑

i∈Ie

xi =
∑

j∈Oe

xj +be,

where Ie is the set of to-arcs for node e, Oe is the set of its from-arcs, and

be is its node requirement, a constant that can be positive, negative or zero.

Instantiations (values) of variables are flows. Arc flows may be capacitated, viz.,

restricted by lower and/or upper bounds. Flows are nonnegative. Terminology

equations/nodes and variables/arcs is used interchangeably.

If in addition the network satisfies the requirement that the set of equations

can be partitioned into two disjoint subsets such that: for any variable, one of

its equations is in the first subset, the other in the second, then the network

is bipartite. In Section 3, we will see that our tables correspond to bipartite

networks. If we represent the network by selecting A to be the node-arc incidence

matrix of the directed graph, it easy to show that A is totally unimodular, viz.,

every square submatrix of A has determinant −1, 0 or +1.

Adjoining a linear optimization min{c(x)} to the network defines a linear

program (LP): min{c(x)} subject to: Ax = b, x ≥ 0. Total unimodularity of the

network matrix A is a very strong property fundamental to integer optimization,

as follows.

The simplex algorithm solves a linear program in two stages: identification of

an extreme point of the LP polyhedron (feasible region), and a steepest descent

algorithm for moving from one extreme point to a neighboring extreme point

exhibiting equal or lesser value of the objective. The simplex transforms A to

row-reduced echelon form, viz., row reduction followed by an invertible matrix B

to achieve: (I,N)x = Bb with I an identity matrix. Each B corresponds to an
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extreme point: x-coordinates corresponding to rows of I (the basic variables) are

set equal to the corresponding values of Bb and nonbasic variables, corresponding

to columns of N, are set to zero.

Total unimodularity of A assures that B is integer, ensuring that the basic

coordinates (Bb)i of all polyhedral extreme points are integer. Consequently,

continuous linear programming can be used to solve discrete combinatorial integer

programming problems over networks. Algorithms for network optimization are

cubic and, in some cases, quadratic in the inputs (Kennington and Helgason

(1980) and Garey and Johnson (1979, Sec. A2.4)). We present two standard,

important network theorems without proof.

Theorem 1. A capacitated network is a network.

Theorem 2. The extreme points of a network with integer node requirements

and integer arc capacities are integer.

Two-dimensional tables are network, viz., the row and column totals com-

prise the bipartite nodes. By contrast, in three dimensions the coefficient matrix

A of the set of 3 × 3 × 3 tables partially specified by MSS (nij+) = (ni+k) =




1 1 0

1 1 1

1 1 1



, (n+jk) =





1 1 1

1 1 1

1 1 0



 exhibits submatrices of determinant ±2, and

noninteger extreme points, see Example 1.

nij1 =





0.5 0.5 0

0 0.5 0.5

0.5 0 0.5



 , nij2 =





0.5 0.5 0

0.5 0 0.5

0 0.5 0.5



 , nij3 =





0 0 0

0.5 0.5 0

0.5 0.5 0



 .

Example 1. Noninteger Extreme Point for 3-Dim.Table Subject to 2-Dim.

Marginals

3. Contingency Tables of Network Type

We describe important, familiar classes of partially specified contingency

tables that are of network type, and related tables that are not. In Section

5.1, we describe approaches to collapsing non-network tables to network tables

so as to yield partial information for non-network tables that may otherwise be

unavailable.

Two-dimensional tables subject to all 1-dimensional marginals (row and col-

umn totals), or to a unique 0-dimensional marginal (grand total), are of network

type. Two-dimensional tables subject in addition to row or column subtotal con-

straints are of network type but, if subjected to both row and column subtotals,
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are not (Cox and George (1989)). By virtue of Example 1, partially specified

3-dimensional tables as small as 3 × 3 × 3 subject to MSS = all 2-dimensional

marginals (no 3-factor effects log-linear model) are not network. Example 2,

(ni++) = (n+j+) = (n++k) = (1, 1), shows that partially specified 3-dimensional

tables as small as 2×2×2 subject to MSS = all 1-dimensional marginals (complete

independence model) are not network.

nij1 =

(

0 0.5

0.5 0

)

, nij2 =

(

0.5 0

0 0.5

)

.

Example 2. Non-integer Extreme Point for 2 × 2 × 2 3-Dim. Complete Inde-

pendence Model.

We present two theorems specifying a large class of important, familiar,

partially specified contingency tables that are of network type.

Theorem 3. If a partially specified contingency table is defined by at most two

configurations of MSS, then it is of network type.

Proof. If there is only one configuration of MSS, for purposes of proof (only)

assume there are two copies of it, so that we need only consider the case of

precisely two MSS.

Each MSS is defined by separating the variables into two classes: summation

variables over which the MSS perform summation; and index variables that label

the MSS. For example in {nij+}, i and j are the index variables and k is the

summation variable. We define network nodes in terms of the index variables

and network arcs in terms of the summation variables. Reference to a specific

example will be helpful: the 3-dimensional two two-factor effects absent model,

MSS = {nij+}, {n++k}, of size I × J × K.

Comments marked (∗) refer to the example.

Create a bipartite network:

- create a left node set corresponding to index variables of the first MSS

∗ IJ nodes labeled (i, j)

- assign corresponding left node requirements

∗ left node requirements: −nij+

- create a right node set corresponding to index variables of second MSS

∗ K nodes labeled (k)

- assign corresponding right node requirements

∗ right node requirements: n++k

- construct arcs y connecting corresponding left and right nodes

∗ arc yijk connects left node (i, j) to right node (k).
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This construction completes the proof.

Theorem 4. Ignore all MSS that sum over only a single dimension of size two

(a thin dimension). If the remaining partially specified table is of network type,

then so is the original partially specified table.

Proof. Cox (2003, Sec. 5) proved this for the no k-factor effects model over

partially specified k-dimensional tables of size b × c × 2k−2 (thin tables). The

general proof follows.

Ignore MSS that sum over only a single thin dimension; assume there are p of

these. Let I index all the non-excluded dimensions, and s(I) denote the product

of the sizes of these dimensions. None of these MSS can sum over the excluded

thin dimensions, otherwise the minimality of the set of MSS configurations would

be violated. The non-excluded MSS restricted to the (k − p)-dimensional space

specified by I define a network N , by assumption.

Select one of the p ignored MSS that sums over only a thin dimension;

denote this dimension l. Re-incorporating dimension l into the model defined by

the non-excluded MSS results in two components: one copy of N each for l = 1

and l = 2, with arcs denoted yI,l=1, yI,l=2, respectively. The theorem is proved

if we can show how to reincorporate the summation over dimension l into the

two component network while preserving network structure, because then we can

apply the construction recursively (p times) to recover all excluded variables and

MSS. The recursive step of the network construction is as follows.

Define s(I) new nodes, each with node requirement −nI,+. These are from-

nodes, with two arcs emanating from each: yI,l=1, yI,l=2 — each arc taken from

the corresponding copy of N . The first arc of the pair (l = 1) connects to the to-

node of yI,l=1 in the first copy, and that node maintains its node requirement. The

second arc of the pair (l = 2) connects to the from-node for yI,l=2 in the second

network, and this node is assigned a new node requirement equal to the sum of

nI,+ over all arcs now connected to the node minus the original requirement of

the node. The remaining nodes — the from-nodes of the first network copy and

the to-nodes of the second — represent equations that are linearly dependent on

equations represented by the new network, and may be ignored.

An example illustrates the proof. Consider a 3×3×2 table subject to MSS =

{nij+}, {ni+k}, {n+jk} (no 3-factor effects model over a thin table). Ignoring the

(thin) first MSS, we obtain two identical bipartite networks based on connecting

the first and second elements of MSS = {n+j1, n+j2}, {ni+1, ni+2} by variables

yij1, yij2. I enumerates (i, j) and s(I) = s(i)s(j). The final network has left

node set enumerated by I = (i, j) with node requirements −nij+. Its right node

set involves s(i) + s(j) nodes. The first s(i) right nodes have node requirement

ni+1 and are connected to the left node set by arcs yij1; the second s(j) have
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node requirement
∑

j nij+ − n+j2 and are connected to the left node set by

arcs yij2. Redundancy of the remaining nodes is demonstrated via relationships

among the node requirements: ni+2 = ni++−ni+1 =
∑

j nij+−ni+1 and n+j1 =

n+j+ − n+j2 =
∑

i nij+ − n+j2.

In summary, familiar tables that are of network type include:

- 2-dimensional tables

- 2-dimensional tables subject to row or column subtotal constraints; in partic-

ular, defined by a hierarchical variable along (only) one of its dimensions

- no k-factor effects models over thin k-dimensional tables, e.g., over dichoto-

mous tables

- 3-dimensional one 2-factor effect and two 2-factor effects absent models

- log-linear models with precisely two configurations of MSS

- multiple, algebraically independent copies of any of the above

- any of the above subject to feasible structural zeroes.

Note that there are no restrictions on the dimension of tables of network type

or, excepting thin tables, on their size.

Tables of network type provide analysts with computational efficiency and a

firm theoretical foundation. Tables of network type provide table designers and

analysts with a new set of options, sometimes the only option, as discussed in

Section 5.

4. A Markov Basis for Tables of Network Type and Solutions for the

Three Statistical Problems

4.1. Markov basis

We represent KerZ(A) = {n : An = 0} as a network, as follows. Each row of

A corresponds to an equation involving coefficients −1, 0, +1, and each variable

occurs in precisely two equations. Define one node for each equation. Define two

arcs corresponding to each variable x and the pair of equations g, h in which it

occurs: the first arc, the positive arc, denoted y+ goes from g to h; the second

arc, the negative arc, denoted y−, goes from h to g; each arc is referred to as the

opposite arc of the other. Each node has node requirement equal to 0; arc flows

are, as usual, nonnegative. This network, the kernel network, corresponds to the

system of equations A(y+ − y−) = 0, and maps many-to-one onto the kernel of

A. We restrict the kernel network to the unit hypercube by imposing capacity

constraints 0 ≤ y+, y− ≤ 1, which by Theorems 1 and 2 preserve network

structure and integrality of extreme points. Call the restriction the restricted

kernel network. Corresponding to restricted network extreme points {y+
s , y−s }

are restricted network extreme point moves y = {ys} = {y+
s −y−s }. The following

is clear.
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Lemma 1. Extreme point moves y of the restricted kernel network correspond

one-to-one with {−1, 0,+1}-moves of KerZ(A).

Theorem 5. A Markov basis for KerZ(A) based on {−1, 0,+1}-moves can be

computed from the set of restricted kernel network extreme point moves.

Proof. Select nonzero k ∈ KerZ(A). Define a sub-network of the restricted ker-

nel network as follows. For each variable appearing in k with nonzero coefficient:

if the coefficient is positive, include its positive arc y+ in the sub-network; if neg-

ative, include its negative arc y−. For each selected arc, include the two nodes

connected by the arc. Capacitate all sub-network arcs between 0 and 1. Each

sub-network node is incident to at least one from-arc and at least one to-arc.

Pick any sub-network node and one of its to-arcs. This arc connects to a second

node distinct from the first (no loops). Pick a to-arc of the second node. This

arc connects to a third node distinct from the second but also distinct from the

first (sub-network contains no pair of opposite arcs). Continue in this manner.

This sequence of arcs eventually enters a node exited previously, thereby defining

a nontrivial circuit of arcs. A maximum flow of 1 unit can be instantiated along

this circuit. The maximum flow defines a restricted network extreme point, which

in turn defines an extreme point move (coordinates −1, 0, +1), and in turn a

{−1, 0,+1}-move f . Replace k by k− f (also in the kernel) and repeat the steps

of this paragraph. The reduced k eventually becomes 0, resulting in a Markov

basis decomposition of the original k into {−1, 0,+1}-moves k =
∑w

j=1 εjf
(j).

4.2. Sampling contingency tables subject to specified marginals

The Diaconis and Sturmfels (1998) method constructs an aperiodic, irre-

ducible, connected Markov chain by MCMC sampling from a reduced Gröbner

basis for a polynomial ideal. This is a sophisticated and excellent methodology.

Two aspects of the method are important here. First, if the Gröbner basis is un-

available, the sample cannot be created. Second, at each iteration the proposed

solution must be examined for feasibility, increasing computation. Our contribu-

tions are as follows. First, we offer an alternative theory and a computationally

efficient algorithm for constructing the Markov chain for any table of network

type. Second, we are able to avoid infeasibility.

The original Diaconis-Sturmfels algorithm is as follows:

- Initialize: Generate an integer solution n(0) of An = b, n ≥ 0

- Set: i = 1

- Count: If i >imax, QUIT

- Select: Uniformly random selection of a member g(i) of the reduced Gröbner

basis

- Compute: n(i) = n(i−1) + g(i)
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- Feasibility: If n(i) is infeasible, return to Select

- Metropolis Step: Move to n(i) with probability min{1, π(n(i))/π(n(i−1))}

- Increment: i to i + 1

- GOTO: Count.

After sufficiently many initial iterations, a sample is constructed by includ-

ing either n(i) or n(i−1) in the sample, based on the Metropolis step. The hy-

pergeometric stationary distribution of the Markov chain is denoted above by

π(n). These probabilities involve an unknown normalizing constant and are not

computable but as the “numerators” are available the ratio of two probabilities

(Metropolis step) is computable.

For tables of network type, we replace Select with our Proposal Algorithm:

- For each pair of network arcs y+
s , y−s and M >> 0, set d(y+

s ) = −M, 0,M

with uniformly random probabilities = 1/3.

Set d(y−s ) = −d(y+
s ), and refer to this function as d(y) = d(y+ − y−)

- Set the network cost function c(y+
s , y−s ) = d(y) +

∑

s(y
+
s + y−s )

- Return the network to its Start position (see below)

- Create a {−1, 0,+1}-move g(i) by minimizing c(y+
s , y−s ) over the network.

Lemma 2. If the Proposal Algorithm yields extreme point move y(0) from

network minimization of randomly generated cost function c(y+, y−) = d(y) +
∑

s(y
+
s +y−s ), then it will yield −y(0) from network minimization of c∗(y+, y−) =

−d(y) +
∑

s(y
+
s + y−s ).

Proof. Minimization of c(y+
s , y−s ) over the network yields a solution that (1)

minimizes d(y) over the network and (2) comprises the fewest possible nonzero

arcs among all d(y)-minimizing solutions. The network constraints are: Ay =

(A,−A)
(

y+

y−

)

= 0, 0 ≤ y+, y− ≤ 1. We refer to this as the Start position for the

network. Now, arg min{−d(y)} = arg min{d(−y)} = arg min{d(y− − y+)}, so

the optimization

min{−d(y) : (A,−A)
(

y+

y−

)

= 0, 0 ≤ y+, y− ≤ 1} is equivalent to

min{d(y) : (A,−A)
(

y−

y+

)

= 0, 0 ≤ y+, y− ≤ 1}. Consequently,

min{c∗(y+
s , y−s ) : (A,−A)

(

y+

y−

)

= 0, 0 ≤ y+, y− ≤ 1} is equivalent to

min{c(y+
s , y−s ) : (A,−A)

(

y−

y+

)

= 0, 0 ≤ y+, y− ≤ 1}. Network computations are

performed on the coefficient matrix (A, −A), the cost vector c, and the right-

hand side (which is 0), and not on the column vector of variables. As the network

initializes at the Start position for each proposal, as the capacity constraints are

symmetric, and as network computations are deterministic, then the sequences

of computations for the two optimizations c(y+
s , y−s ) and c∗(y+

s , y−s ) are identical

and yield two solutions which are negative to each other, viz., solutions in which

y+, y− are reversed.
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Computing the initial solution, which can be difficult for some problems,

is trivial on a network: simply optimize any convenient objective function over

the original network. If in addition we capacitate to zero all arcs y−s in the

restricted kernel network corresponding to variables that are zero in n(i−1), then

no coordinate of n(i) can be negative and consequently n(i) is feasible, eliminating

the Feasibility check.

This methodology may be applied with great advantage to other statistical

problems, particularly smaller problems not requiring massive iteration. For

example, Buena and Besag (2000) are concerned with I × J × K tables subject

to MSS = {nij+}, {ni+k}, {n+jk}, and with computing solutions to the I ×J ×2

Rasch model. They present a specialized method for moving between solutions

in I × J × 2 tables that may move outside the feasible region, but at the next

move returns inside. The network method supercedes this approach. Given the

3 × 3 × 2 Rasch model of Example 3 (left), Buena and Besag (2000) seek to

move to all other solutions. This is easily done using the network, which reveals

that the only integer feasible move from Example 3 (left) is Example 3 (center),

resulting in a second, and only other, Rasch model — Example 3 (right).





1 0 0

0 0 1

0 1 0









0 1 0

1 0 0

0 0 1



 +





−1 1 0

1 0 − 1

0 − 1 1









1 − 1 0

−1 0 1

0 1 − 1



 =





0 1 0

1 0 0

0 0 1









1 0 0

0 0 1

0 1 0



 .

Example 3. Rasch model of Buena and Besag (2000).

It remains to verify two important conditions for our revision of the Diaconis-

Sturmfels algorithm. Namely, that (a) the Proposal Algorithm-which replaces

a uniformly random Select step–meets the conditions for Metropolis-Hastings,

and, (b) the Proposal Algorithm is capable of constructing any member of the

Markov basis with nonzero probability. Both issues are addressed in terms of the

relationship between the randomly generated cost function and extreme point

moves (Markov basic elements).

Our randomly generated cost functions correspond many-to-many with ex-

treme point moves of the kernel network: each of our cost functions is minimized

at an extreme point move but possibly more than one, and, conversely, each

extreme point move may minimize multiple cost functions. A minimal extreme

point move is a move whose set of nonzero coordinates does not strictly contain

that of another. For (b), it suffices to show that the Proposal Algorithm can

generate any minimal extreme point move y(0) with nonzero probability. This

holds if each y(0) uniquely minimizes a cost function c(y+
s , y−s ) of the specified

type. That cost function is given by: for each coordinate s with y
(0)
s = 1, set
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d(y+
s ) = −M , d(y−s ) = M ; if y

(0)
s = −1, set d(y+

s ) = M , d(y−s ) = −M ; otherwise,

d(y+
s ) = d(y−s ) = 0. Thus, (b) holds.

Regarding (a), the issue is whether the Proposal Algorithm for generat-

ing proposals (potential sample units) for the Markov chain, combined with the

Diaconis-Sturmfels Metropolis step, assures that the chain converges to π(n).

Diaconis-Sturmfels employ uniformly random probabilities. Proposal Algorithm

cost functions are selected in a uniformly random manner, but do not corre-

spond one-to-one with extreme point moves. Computation of move probabilities

is complex, and affected by factors such as order of the columns of A. Rather than

attempt to refine the Proposal Algorithm to achieve uniformly random selection,

instead we demonstrate that the proposal density q(n(i+1);n(i)) for the Proposal

Algorithm is symmetric, which is sufficient for convergence of the Markov chain

to the limiting distribution π(n). Thus, (a) must hold.

Theorem 6. The proposal density q(n(i+1);n(i)) for the Proposal Algorithm is

symmetric.

Proof. Given two tables n(i) and n(i+1) , if there exists a member of the Markov

basis g(i) such that n(i+1) = n(i) + g(i), then n(i) = n(i+1) + (−g(i)). Based on

Lemma 2, under any conditions for which the Proposal Algorithm creates the

proposal move g(i) to n(i+1) from n(i) based on selecting cost function c(y+
s , y−s ),

that is, g(i) = arg min{c(y+, y−)}, it will create the proposal move −g(i) to n(i)

from n(i+1) based on selecting the equi-probable cost function c∗(y), viz., −g(i) =

arg min{c∗(y+, y−)} = arg min{c(y−, y+)}. Thus, q(n(i+1);n(i)) = q(n(i);n(i+1))

and the proposal density is symmetric.

Whenever the coordinates of zero entries of n(i+1) and n(i) differ, if we at-

tempt to enforce feasibility by setting the corresponding negative arc capacities

to zero, the networks over which the two optimizations are performed will be

different. This could result in different sequences of computations and affect

proposal symmetry. Consequently, in practice it is necessary to choose between

avoiding infeasible moves and assuring an everywhere symmetric proposal den-

sity. This problem does not arise if all upper capacities remain at 1 (e.g., when

neither table contains zeroes).

4.3. Adjusting incomplete information for nonresponse

An important problem is to estimate complete count data for a 2-dimensional

table given observed partial counts and marginals. Incomplete data methods

based on fixed marginals such as iterative proportional fitting break down for

this problem because, with the exception of the grand total n++, marginal totals

are not fixed. Similarly, ratio estimation, viz., estimating cell counts nij for

the complete table by mij(n++/m++), can produce estimates that are less than



CONTINGENCY TABLES OF NETWORK TYPE 1385

observed partial marginals mi+ =
∑c+1

j=1 mi,c+1, m+j =
∑r+1

i=1 mr+1,j, possibly

to a degree greater than can be accounted for by measurement error. Similarly,

as attempted by Greene, Smith, Levenson, Hiser and Mah (2001), applying ratio

estimation to the partial marginals followed by iterative proportional fitting based

on these estimates also can result in estimates significantly less than observed

partial counts. Each of these approaches fails to completely condition estimates of

complete data on observed data. The EM algorithm overcomes these limitations

(Little and Rubin (2002, Chap. 13)), and may be applied to this problem.

This problem and other problems can be addressed if a probability sample

of integer feasible solutions is available. A framework for estimation and analysis

based on the sample size and inequality constraints imposed by observed counts

is required. The constraint system for the 2-dimensional problem is network over

ij + i + j variables:

c
∑

j=1

nij = ni+,
r

∑

i=1

nij = n+j,
r

∑

i=1

ni+ =
c

∑

j=1

n+j = n++,

i=1, . . . , r; j=1, . . . , c : nij ∈Z, nij ≥0, nij ≥mij, ni+≥mi+, n+j ≥m+j.

The restricted kernel network (Section 4.1) is constructed from this network.

Several statistical applications can be addressed by this model and the method

of Section 4.2.

Based on the restricted kernel network and Section 4.2, generate a random

sample of tables from this model. Each sample table k has an associated hyperge-

ometric probability π(k) = dk/N involving an unknown normalizing constant N .

Only the “numerator” dk is used in the Metropolis step. Numerators are com-

puted from the rc probabilities that a randomly selected sample individual falls

in table cell (i, j). For example, if item nonresponse is attributed to a missing

completely at random assumption in each row and column, and similarly if unit

nonresponse is completely at random, then the probability that a randomly se-

lected individual falls in cell (i, j) is (rcmij+cmi,c+1+rmr+1,j+mr+1,c+1)/rcn++.

The table of expected values of entries based on this missing data model

can be estimated from the sample, as follows. The hypergeometric probabilities

for the sample tables remain unknown. The limiting distribution for all tables is

π(n), and probabilities pk, pl for sample tables Tk, Tl are in the same proportions

as exhibited within the set of all tables, viz., dk/dl. As all tables consistent

with the model exhibit grand total n++, then so must the expected table, and

consequently the sum of the combination weights for estimating the expected
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value estimate is 1. The estimated expected value table is:

∑

k

pkT i

∑

k

pk

=

∑

k

dk

N
Tk

∑

k

dk

N

=

∑

k

dkTk

∑

k

dk

.

These weights can also be used to compute a variety of other sample-based

estimates. Such estimates typically are not integer. As controlled rounding

can be performed on network tables (Cox and Kim (2006)), then base B = 1

controlled rounding applied to an estimated table yields a nearby integer table.

A second application is to use the sample to test the hypothesis that an im-

puted table is consistent with a particular incomplete data mechanism. Based on

the missing data cell probabilities, one constructs a sample of tables and numera-

tors dk, computes the numerator d0 for the imputed table, and compares d0 with

the empirical d-distribution to obtain an exact test p-value (Buena and Besag

(2000)).

4.4. Exact bounds for table entries

Exact bounds on unknown table entries subject to fixed MSS are useful for a

variety of reasons. For concreteness, we focus on statistical disclosure limitation

(Federal Committee on Statistical Methodology (1994)). Small counts, meaning

counts from 1 to some threshold t, represent unacceptable risk of disclosure of

the identity and confidential data pertaining to survey respondents. One solu-

tion is to withhold cell counts from public release and instead release selected

marginal totals. The issue is then whether released marginals can be combined

to reconstruct or estimate small counts.

This exact bounding problem is equivalent to a possibly large set of in-

teger linear programs over a typically large set of variables and constraints,

viz., for each small withheld count s: min{ns}, max{ns} subject to the released

marginals. For tables of network type, these reduce to network computations.

In tables so large that the number of optimizations is overwhelming, the method

of Sections 4.2 could be used to create a probability sample from which exact

bounds for selected entries could be estimated from weak bounds and an empir-

ical distribution based on sample values for the entry.

There is an even more significant advantage of network structure for bound-

ing entries in contingency tables. De Loera and Onn (2004) demonstrated that

arbitrary gaps can exist in integer solution sets of integer programs. Solution

sets for a linear program are interval, meaning that subject to linear constraints

all values in the range [min{x},max{x}] are feasible for each LP-variable x. De
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Loera-Onn showed that solution sets for integer linear programs are not necessar-

ily interval, and indeed can exhibit arbitrary gaps between consecutive feasible

integer values for a particular variable. This fundamentally challenges disclosure

limitation theory and practice for count data, as the notion of a safe threshold

t for small counts is based implicitly on the number of possible values the count

can take. De Loera-Onn showed, in effect, that an arbitrary small count could

have integer feasible set {1, t} which disclosure practitioners would regard as too

risky, but which is permitted by the t-threshold rule. Networks have a strong

advantage over most other tabular systems in this regard, as follows.

Theorem 7. Integer solution sets for a network are interval.

Proof. Choose an arc and any integer between its integer minimum and max-

imum. Capacitate the arc below and above by this value. LP is convex, and

therefore interval, so the capacitated network is LP-feasible. The network has

only integer extreme points, each of which exhibits the selected integer value for

the arc.

Thus, disclosure limitation theory for counts over tables of network type

remains sound.

Another set of tables that is interval, and for which a simple formula for

exact bounds is available, correspond to decomposable graphical models (Do-

bra and Fienberg (2000)). The most familiar log-linear models in this class are

complete independence models, viz., 1-dimensional MSS. Example 2 implies that

decomposable and network models define different classes of partially specified

tables. Combined, these two classes offer the practitioner a rich, varied set of

theoretically verified, computable tables.

5. Network Tables in the Context of All Tables

Section 3 provided a list of important, familiar tables that are of network

type, and similarly demonstrated that many other tables are not network. In

the latter case, the polyhedron defined by the linear programming feasible region

of the partially specified table often exhibits non-integer extreme points. This

means that in most cases integer-valued contingency table problems cannot be

solved by continuous network or linear programming methods, and may require

combinatorial optimization, which is NP-hard. In many cases a Gröbner basis is

not available, and related techniques cannot be applied.

In Section 5.1, we will examine the utility of techniques for collapsing non-

network tables into network tables in order to obtain partial information that

otherwise may be unavailable. De Loera and Onn (2004) demonstrated that any

integer linear program is isomorphic to a partially specified 3-dimensional con-

tingency table of size r×c×3 (a slim table) subject to all 2-dimensional marginal
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totals; the mapping preserves polyhedral extreme points and integer points. The-

orem 4 showed that a partially specified 2-dimensional tables of size r × c × 2

(a thin table) subject to all 2-dimensional marginal totals is network. In Section

5.2, we will examine our results in terms of the De Lorera-Onn mapping and will

present a refined mapping separating network and non-network tables.

5.1. Collapsing non-network tables to network tables

Section 3 demonstrated that a thin partially specified m-dimensional table

subject to (m − 1)-dimensional marginals along the thin dimensions is network,

and so too is a partially specified table subject to at most two configurations of

MSS. Conversely, Examples 1 and 2 indicate that many other partially specified

tables are not network. The question arises as to whether we can apply network

methods to achieve useful partial information for non-network problems that may

otherwise be intractable. One approach is to replace the original problem by a

closely related (collapsed) problem that is network.

The first approach is to collapse categories along individual dimensions. For

k-dimensional tables subject to (k − 1)-dimensional marginal totals, one can

collapse all but two of the dimensions into two subgroups, viz., along each of

the k − 2 dimensions, assign each original category to one of two subgroups and

aggregate original category counts into subgroup counts. The resulting table is

then thin, hence network, and can be analyzed efficiently and completely.

Collapsing categories is particularly useful in the context of our third prob-

lem — bounding entries — as bounds resulting from analysis of the collapsed

table, while potentially weaker, are nevertheless valid bounds. In a disclosure

limitation setting, this partial information may be crucial as, if any weak bound

is unsafe, the cell is not protected and the table (collapsed or uncollapsed) cannot

be released. In our first and second problems, involving inference and estimation

based on a probability sample, collapsing categories may mean the difference

between having a sample or not.

The second approach is to collapse configurations of MSS. One method is

to collapse individual MSS until only two configurations remain. For example,

MSS = {nij+}, {ni+k}, {n+jk} can be collapsed to MSS = {ni++}, {n+jk}.

This enables efficient and valid analysis or inference, albeit coarser. Another

method is to consider the MSS in pairs, perform efficient analysis on each pair,

and compare results. The utility of this approach for inference is not altogether

clear, but once again it will yield useful and perhaps valuable information for

bounding problems. The point to keep in mind is that collapsing is not to be

used in lieu of full analysis if full analysis can be performed by other means,



CONTINGENCY TABLES OF NETWORK TYPE 1389

but rather to provide an alternative to the data provider or analyst in situations

where no efficient analytical method is available for the full problem.

5.2. Thin and slim contingency tables

We have shown that partially specified thin 3-dimensional tables subject to

2-dimensional marginals are network. De Loera and Onn (2004) demonstrated

that any integer linear programming problem can be represented as a partially

specified slim 3-dimensional contingency table subject to 2-dimensional marginals

(line sums). The mapping, defined over the linear programming relaxation, is

isomorphic, so that feasible points, integer points, and extreme points of the

original and slim problems correspond one-to-one. Each rational integer linear

program is mapped to a network biflow which, after including slack, is slim. The

mapping does not distinguish networks from non-networks. Inspired by their

result, we presented a mapping of a partially specified k-dimensional table subject

to fixed marginals (MSS) to a slim 3-dimensional table subject to 2-dimensional

MSS that maps the networks of Theorems 3 and 4 to thin 3-dimensional tables

and maps non-networks to slim-but-not-thin tables.

Our mapping preserves the coefficient matrix of the original k-dimensional

table, assuring that the polyhedron is feasible, integer and extreme points corre-

spond one-to-one. Following De Loera-Onn, we introduce a fresh set of variables

for each constraining MSS, viz., we map each variable in the original system to

an appropriate number of distinct variables in the slim table, and we employ

complementary variables, viz., for variable x in the slim table, we introduce vari-

able x such that x + x = a, where a is a uniform upper bound on all variables.

We use complements to ensure that all unique variables mapped from the same

original variable in the original constraint system are forced to be equal. The

details follow.

To simplify notation, we illustrate the mapping for k = 3. Each original

variable occurs in at most three constraint equations, and maps to (at most)

three variables x, y, z in the slim table. Consider the partial slim 3-dimensional

table of Figure 1.













x 0 0

0 y 0

0 0 z

x y 0

0 0 z

























0 0 0

0 y 0

0 0 0

0 y z

0 0 z

























x 0 0

0 0 0

0 0 z

x 0 z

0 0 0













Figure 1. Partial Slim 3-Dimensional Table.
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We say “partial” because the full table has many more rows and columns in
each of its three planes. All columns above are extended downwards with zeroes;
how rows are extended and additional rows added is described below.

Begin with any original variable. All column equations are complementarity
equations: a slim table variable plus its complement equals a. The first thee rows
of the left plane specify the three (or fewer) constraint equations in which the
original variable appears; the slim table variables corresponding to the original
variable are x, y, z. The first equation appears in its original form. The second
and third equations are re-written in terms of complementary variables. The
fourth row equation in this plane has zeroes in all other entries except the two
shown and by setting the constant value of this equation to a, forces x = y. The
fifth row is simply the original third constraint equation.

The first and third rows of the middle plane are all zeroes. The second row
is the second equation. The fourth is set to a and forces y = z. The fifth is
the third equation, rewritten in complementary form. The first row of the right
plane is the first equation, rewritten in complementary form. The second is all
zeroes. The third is the third equation. The fourth is set equal to a and forces
x = z. The fifth is all zeroes. All non-zero equations running along the slim
dimension are complementarity equations, viz., the sum of two variables is a.

The procedure is iterated as follows. The next original table variable is
represented below and to the right of the preceding one. First, any constraint
equations involving this variable not already represented in the slim table system
are written into the next row(s) of the left plane. Note that only zeroes appear
to the left of the target variable in these new equations. The corresponding rows
of the middle and right planes and the next two (or fewer) rows in all three
planes are filled in the same manner as for the preceding original variables. The
result is a very large, sparse, partially specified, slim 3-dimensional table subject
to 2-dimensional MSS whose duplicated variables x, y, z are forced equal to a
common original variable, and whose polyhedron corresponds one-to-one with
that of the original partially specified k-dimensional table.

One advantage of this representation is that if the original k-dimensional
table is represented as a bipartite network (Theorem 3), the image of the mapping
collapses naturally to a thin 3-dimensional table, represented in Figure 2.





x 0 0

0 y 0

x y 0









x 0 0

0 y 0

x y 0





Figure 2. Partial Thin 3-Dimensional Table for Networks of Theorems 3 & 4.

Similarly, if the original table is a network comprising two identical net-
works connected by a line sum over a thin dimension (Theorem 4), then the



CONTINGENCY TABLES OF NETWORK TYPE 1391

mapping may be revised to collapse to a thin 3-dimensional table, as follows.

First, map only the original variables from the first thin plane. Second, replace

complementary variables x and equations x + x = a, x + y = a, x + y = a

by corresponding thin line equations xij1 + xij2 = nij+, etc., resulting again in

Figure 2. Conversely, if the original partially specified k-dimensional table is not

network, then it cannot map to a thin 3-dimensional table, and instead must

map to a slim-but-not-thin table.

6. Concluding Comments

We have modeled a large class of familiar, important log-linear models (a.k.a.

partially specified contingency tables) as mathematical networks, and have pro-

vided theory and algorithms for computing three important, general problems

over these tables: probability sampling of contingency tables, imputing for item

and unit nonresponse subject to edit constraints, and exact bounding of entries.

We have constructed Markov bases for partially specified contingency tables of

network type comprising {−1, 0,+1}-moves. We show how to avoid creating

infeasible solutions. Theoretical and computational problems for the vast ma-

jority of problems outside our class are formidable. We show how to collapse

tables that are not network to network tables, enabling efficient partial analysis

in these cases. We relate our classification to that of De Loera-Onn for gen-

eral integer linear programs, present a refined mapping that separates network

from non-network tables, and show that network tables overcome the integer

gap limitation. Our results argue that table designers and analysts can benefit

from creation and use of tables within a well-understood class as developed here

to facilitate accurate and efficient analysis, particularly in situations where full

analysis is not possible or practical.
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