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Università di Pavia and Politecnico di Torino

Abstract: In this paper we consider a Bayesian analysis of contingency tables allow-

ing for the possibility that cells may have probability zero. In this sense we depart

from standard log-linear modeling that implicitly assumes a positivity constraint.

Our approach leads us to consider mixture models for contingency tables, where the

components of the mixture, which we call model-instances, have distinct support.

We rely on ideas from polynomial algebra in order to identify the various model

instances. We also provide a method to assign prior probabilities to each instance of

the model, and we describe methods for constructing priors on the parameter space

of each instance. We illustrate our methodology through a 5 × 2 table involving

two structural zeros, as well as a zero count. The results we obtain show that our

analysis may lead to conclusions that are substantively different from those that

would obtain in a standard framework, wherein the possibility of zero-probability

cells is not explicitly accounted for.
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1. Introduction

The analysis of contingency tables has a well-established tradition, both in

the frequentist and Bayesian setting. A typical framework for this analysis is rep-

resented by the exponential family representation of the sampling distribution,

together with the log-linear, or more generally log-affine, model for the expected

cell count, see Lauritzen (1996, Chap. 4) for a rigorous treatment. Under multi-

nomial sampling, this approach presupposes implicitly that cell-probabilities,

equivalently cell-expected counts, are strictly positive. On the other hand, this

assumption is not particularly justified from a substantive viewpoint; indeed, as

we argue below, it might well hide some interesting aspects of modeling.

Typically, the positivity constraint is viewed as problematic when performing

Maximum Likelihood Estimation (MLE) in a log-linear framework if there are

some cells having zero counts, see for instance the discussion in Christensen

(1997, Chap. 8). One usually distinguishes between structural (or “fixed”) zeros,
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and random (or “sampling”) zeros. The former arise when the cells are logically

forced to have a zero-count. Consider for instance a cross-classification for people

where the personal highest educational attainment (Less than high school, High

school, College, Postgraduate) is recorded at a given time, and five years later.

Clearly it is impossible for someone to have a highest attainment of College on

the first time point, and Less than high school or High school five years later;

in general every cell that corresponds to lower attainment at the second time

period compared to the first time period is a structural zero. On the other hand,

random zeros typically occur because the sample size or the corresponding cell

probability, or both, are “small”.

Structural zeros are typically dealt with by removing them from the analysis.

One way to do this is through regression models on effect codings, see e.g.,

Simonoff (2003, Sec. 6.4). Random zeros, on the other hand, require special

handling. Essentially one should first identify those cells for which the regular

MLE of the cell-probability does not exist, i.e., is zero (this requires special

care as such cells need not coincide with those having zero counts), and then

remove them from the analysis. In any case the computation of the degrees of

freedom for model testing must be done on a case by case basis, and this requires

some ingenuity. Another difficulty generated by the presence of random zeros

is that asymptotic arguments may effectively break down because of the small-

sample size, although some computer programs may still provide MLEs when

they actually do not exist. For an informative account of the above problems, see

Haberman (1974), Bishop, Fienberg and Holland (1975, Sec. 5) and Christensen

(1997, Sec. 8.3). Recently Eriksson, Fienberg, Rinaldo and Sullivant (2006) have

provided a polyhedral description of the conditions for the existence of the MLE

for a hierarchical log-linear model, together with an algorithm for determining if

the MLE exists.

In this paper we take the view that the modeling of contingency tables should

allow explicitly for the possibility of zero-probability cells, not only to deal with

structural zeros, but also with zero-counts whose nature is undecided in the

sense that their occurrence may be consistent with either a zero probability or a

positive probability. We call the latter cells possibly zero-probability cells.

An early paper that takes a similar view is Lauritzen (1975), although the

techniques used there are quite different from the ones that we employ here.

From a modeling perspective, we contend that, for each given model, the

usual exponential-family/log-linear representation of the sampling distribution is

simply one instance of such model, while several other instances are conceptually

consistent with the assumed model, each being essentially a log-linear model

with a restricted support. The identification of such instances represent a crucial

aspect in the implementation process, and typically is of high complexity.
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In our work we rely on ideas, from polynomial algebra and the related ge-

ometric and combinatorial structure, which have been recently applied to the

analysis of some classes of (finitely) discrete statistical models. In particu-

lar, Eriksson, Fienberg, Rinaldo and Sullivant (2006) deals with hierarchical log-

linear models, Geiger, Meek and Sturmefels (2006) discusses graphical models.

Our approach falls broadly under the heading of Algebraic Statistics, see

Pistone, Riccomagno and Wynn (2001) for an early general account, as well as

the pioneering work of Diaconis and Sturmfels (1998). The field is now growing at

an impressive speed both in terms of theoretical contributions and applications,

see for example the recent monograph by Pachter and Sturmfels (2005). Further

useful references are Geiger, Heckerman, King and Meek (2001), who develop the

concept of stratified exponential families, as well as Garcia, Stillman and Sturmfels

(2005), who carry out the analysis of Bayesian networks from an algebraic statis-

tical perspective. Rapallo (2006) discusses some basic algebraic statistical tools

that deal explicitly with models for contingency tables and is a simple and use-

ful introduction to this paper. Our interest in the use of algebraic methodology

for statistical purposes was stimulated by the availability of various symbolic

computational software: here we use CoCoA, developed and maintained at the

University of Genova, Italy. Another option is the softare 4ti2.

A specific feature of this paper is the combination of methods from algebraic

statistics with the Bayesian approach. Specifically, we deal with issues like the

assignment of a prior on model space, prior elicitation on the parameter space

under each model, or instances thereof, together with model choice using the

Bayes factor, see Kass and Raftery (1995) for a review.

The paper is organized as follows: Section 2 contains some basic tools from

algebraic statistics that are used in the paper; in Section 3 such tools are applied

to a data-set; Section 4 is the core of the paper, presenting a Bayesian approach

to testing quasi-independence in two-way contingency tables using a mixture of

model-instances, thus accounting for the possible presence of zero-probability

cells. Finally, Section 5 summarizes the paper and presents some points for

discussion.

2. Algebraic Statistical Models

Consider a finite state space Q and a probability distribution on Q, which

we write as {p(x), x ∈ Q}, with p(x) ≥ 0 and
∑

x∈Q p(x) = 1. In particular,

we deal with multi-way contingency tables identified by a collection of factors

X = {X1, . . . ,XF }. If If denotes the set of levels for the factor Xf , f = 1, . . . , F ,

the state space is a product space, i.e., Q = ×F
f=1If .

A log-linear model assumes that p(x) > 0 and that log p(x) belongs to a

linear subspace H of L = R
Q, where R

Q denotes the vector space of real-valued
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functions on Q. If H is spanned by {T1, . . . , Ts}, where the Tj’s are integer valued

functions, we can write the log-linear model as

log p(x) =

s
∑

j=1

(log ζj)Tj(x), (2.1)

with
∑

x p(x) = 1. Recall that (2.1) assumes strict positivity of p(x). However,

the latter is no longer needed if we rewrite (2.1) as

q(x) = ζ
T1(x)
1 · · · ζTs(x)

s , ζj ≥ 0, j = 0, . . . , s, (2.2)

where q(x) is the un-normalized probability, so that the parameters ζ1, . . . , ζs are

only subject to non-negativity constraints. Notice that (2.2) is, for each x ∈ Q,

a (monic) monomial in the indeterminates ζ1, . . . , ζs. When x scans Q, we get a

system of binomial equations and so (2.2) could also be called a parametric toric

model, borrowing terminology from commutative algebra, see Sturmfels (1996),

as suggested in Pistone, Riccomagno and Wynn (2001).

When the cell probabilities are assumed to be strictly positive, then the log-

linear model (2.1) and the toric model (2.2) can be easily shown to be equivalent.

A third expression of the same model can be derived by elimination of the in-

determinates ζ1, . . . , ζs in the monomial parameterization of (2.2). In fact, if

M =
[

T1(x) · · · Ts(x)
]

x∈Q
is the design matrix of the log-linear model (2.1), the

orthogonal space of its range can be generated by integer valued vectors with

zero sum K =
[

k1 · · · kr

]

, and (2.2) gives for each j = 1, . . . , r,

∏

x

q(x)kj(x) =
∏

x

(

ζ
T1(x)
1 · · · ζTs(x)

s

)kj(x)
= ζ

T1(x)·kj(x)
1 · · · ζ

Ts(x)·kj(x)
s = 1, (2.3)

where the dot symbol “·”denotes scalar product.

As the sum of the elements of each kj , j = 1, . . . , r, is zero, the sum of the

elements of both the positive part k+
j and the negative part k−j are equal, so that

we could write equation (2.3) as

∏

x

q(x)kj(x)+ −
∏

x

q(x)kj(x)− = 0, j = 1, . . . , r. (2.4)

It follows that the toric model (2.2) implies a set of r binomial and homoge-

neous equations in the un-normalized probabilities q(x), x ∈ Q.

If the probabilities are assumed to be strictly positive, then the three descrip-

tions, i.e., log-linear (2.1), toric (2.2), and implicit binomial (2.4), are equivalent.

We remark that while (2.1) and (2.2) are parametric models, the nature of (2.4)

is essentially non-parametric. When the positivity assumption is relaxed, a non-
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trivial situation occurs. The basic fact is that different toric parameterizations

can lead to the same implicit binomial, because they are equivalent only on the

strictly positive part of the model. However, the implicit binomial equations

are satisfied by all limits of the positive cases; thus the implicit binomial is the

best expression of the so-called extended exponential model, i.e., the exponential

model plus all its limits.

We summarize here a few basic facts of the theory of toric statistical models.

Given a log-linear model and all its limit points, a specific set of configurations

of zero-probability cells arises. This set cannot be recovered by setting to zero

some parameters in a generic toric parametric representation, because most of

the equivalent toric representations will not produce all possible probabilities of

the model in (2.4). However, there exists a “maximal” parametric toric repre-

sentation such that all configurations of zero-probability cells compatible with,

i.e., limit of, the initial model are obtained by letting some parameters be zero.

Such a representation results from the following steps.

1. All toric models compatible with the implicit binomial model (2.4) are char-

acterized by a string of T exponents, see (2.2), which is a non-negative integer

vector orthogonal to the basis [k1 . . . kr] of the orthogonal space of the initial

design matrix M .

2. The lattice of non-negative integer vectors t ∈ N
Q
+, such that the condition

t ·kj = 0 holds for each j = 1, . . . , r, has a finite number of generators that can

be computed with symbolic software. Here “generator” means that all such

vectors are component-wise sums of a finite number of generators, possibly

repeated. The minimal set of generators is called the minimal Hilbert basis.

3. If the generators are S1, . . . , Su, then the “maximal” toric model is

q(x) = ζ
S1(x)
1 · · · ζSu(x)

u x ∈ Q. (2.5)

Here “maximal” means that (2.5) is a (possibly non-identifiable) parameteriza-

tion of the full implicit binomial model, i.e., the extended model. All members

of the implicit model (2.4) with zero-cell probabilities are obtained by letting

some ζj’s be zero. For example, let ζ1 = 0. Then the support of the resulting

probability will be the set Q1 = {x ∈ Q : S1(x) = 0}. On such a restricted

support, the model will again be toric:

q(x) = ζ
S2(x)
2 · · · ζSu(x)

u , x ∈ Q1,

or exponential if all the other parameters ζ2, . . . , ζu are assumed to be strictly

positive. In this sense, we say that each toric model is a union of exponential

models with different supports. Each one of these models is called an instance of

the model.
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Current symbolic software allows one to compute, for a given parametric

model, the set of corresponding implicit binomial descriptions. Moreover, the

collection of allowable models obtained by setting some cell probabilities equal

to zero can be identified in terms of the functions Tj(x), see Geiger, Meek and

Sturmefels (2006) and Rapallo (2006).

3. Example: New Cancer Incidence and Gender

We now turn to the discussion of an example involving both structural and

random zeros. Our analysis aims primarily at illustrating the main features of

our method.

The Division of Cancer Prevention and Control of the National Cancer In-

stitute in the United States provides (estimates of) counts of new cases of cancer

classified according to various demographic and geographic factors, see Simonoff

(2003, p.226). The following table reports data for different types of cancer,

separated by gender, for Alaska in the year 1989.

Type of cancer Female Male Total

Lung 38 90 128

Melanoma 15 15 30

Ovarian 18 * 18

Prostate * 111 111

Stomach 0 5 5

Total 71 221 292

Clearly cells (3, 2) and (4, 1) are structural zeros, while we regard the zero

count corresponding to the combination (Stomach, Female) as a possibly zero-

probability cell. An assumption of interest in this case is that of quasi-independence

(QI), corresponding to the standard independence assumption for all cells, ex-

cluding those having a structural zero. For this hypothesis, Simonoff (2003,

p. 228) finds a p-value between 2% and 3%, depending on the method that is

employed. Using a conventional frequentist interpretation, the data thus seem to

provide significant evidence against the QI-model, although this evidence is not

very strong.

Let I = {1, 2, 3, 4, 5}, J = {1, 2} denote the set of levels for the rows and

columns respectively, and consider the two-way table with cells in the set A =

I × J \ {(3, 2), (4, 1)}.

Under the QI-model the un-normalized cell probabilities qij are given by

qij = ρiψj , (i, j) ∈ A. (3.1)

If the probabilities are strictly positive, one can write log qi,j = αi+βj , (i, j) ∈ A,

with αi = log ρi, βj = logψj. Accordingly the design matrix M , together with a
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suitable choice of an orthogonal matrix K, as described in Step 1 of Section 2,

are

M =



























α1 α2 α3 α4 α5 β1 β2

11 1 0 0 0 0 1 0

21 0 1 0 0 0 1 0

31 0 0 1 0 0 1 0

51 0 0 0 0 1 1 0

12 1 0 0 0 0 0 1

22 0 1 0 0 0 0 1

42 0 0 0 1 0 0 1

52 0 0 0 0 1 0 1



























K =



























k1 k2

11 1 0

21 −1 −1

31 0 0

51 0 1

12 −1 0

22 1 1

42 0 0

52 0 −1



























.

One can check that, under the condition qij > 0, (i, j) ∈ A, the model of

quasi-independence in (3.1) is equivalent to the implicit binomial model given by

the two constraints
{

q11q22 − q21q12 = 0

q51q22 − q21q52 = 0.
(3.2)

The above equations are the standard conditions for independence in the two

2 × 2 tables with rows {1, 2}, respectively {2, 5}. This is equivalent to the inde-

pendence of the sub-table {1, 2, 5}×{1, 2}, since independence for an R×C-table

is equivalent to its 2 × 2 minors being zero.

The maximal design matrix Mmax and the model in monomial form, see

(2.5), are

Mmax =



























ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7

11 0 0 0 0 1 0 1

21 0 0 1 0 0 0 1

31 1 0 0 0 0 0 0

51 0 0 0 1 0 0 1

12 0 0 0 0 1 1 0

22 0 0 1 0 0 1 0

42 0 1 0 0 0 0 0

52 0 0 0 1 0 1 0

























































































q11 = ζ5ζ7

q21 = ζ3ζ7

q31 = ζ1

q51 = ζ4ζ7

q12 = ζ5ζ6

q22 = ζ3ζ6

q42 = ζ2

q52 = ζ4ζ6

. (3.3)

Notice that the cells associated to a structural zero in the same row are param-

eterized independently from the rest of the table. If we take out these cells, we

simply get the full independence model on the sub-table with rows {1, 2, 5}.

The instances for the QI-model are computed by considering the (23−1)(22−

1) = 21 instances corresponding to independence in the 3 × 2 sub-table, times
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the 22 = 4 instances of the two free cells, plus the (22 − 1) instances where the

3 × 2 sub-table is zero. The total is 87.

4. Testing Quasi-Independence in the New Cancer Data

We provide a Bayesian analysis of these data using the methodology devel-

oped in the previous sections. We refer to the model which imposes no restriction

on the cell probabilities, save the zero-probability cells (3, 2) and (4, 1), as the

Structural Zero model and label it as SZ. Since the table has ten probability

cells, of which two are fixed to be zero, the number of SZ-instances is equal to

28 − 1 = 255, corresponding to all possible combinations of “+” and “0” in the

8 free cells, excluding the trivially impossible case of all “0”.

Moreover, only two of the above SZ-instances are logically consistent with

the observed data: that giving a positive probability to all eight free cells, and

that giving zero-probability to cell (5, 1) only. We label these instances SZ0 and

SZ1, where the subscript refers to the number of zero-probability cells, corre-

sponding to the tables

SZ0 SZ1

Type of cancer Female Male Female Male

Lung + + + +

Melanoma + + + +

Ovarian + 0 + 0

Prostate 0 + 0 +

Stomach + + 0 +

Similarly, for the given data, it is not difficult to realize that there exists

only one logically consistent instance of the quasi-independence model, i.e., that

having all positive cell-probabilities (except for the two cells corresponding to

structural zeros), which we label QI0; it is schematically equivalent to SZ0 above.

4.1. Conventional approach

We test the model of quasi-independence against the structural-zero model

using a Bayesian approach. In a “conventional setting”, wherein no particular

provision for zero-probability cells is envisaged, we would simply consider one

instance for each of the above two models, namely SZ0 and QI0.

Given the cell counts n = (nij), a typical analysis would involve the compu-

tation of the Bayes factor, see Kass and Raftery (1995), of QI0 versus SZ0, i.e.,

BF(QI0 : SZ0) =

∫

fQI0(n|θQI0)πQI0(θQI0)dθQI0
∫

fSZ0
(n|θSZ0

)πSZ0
(θSZ0

)dθSZ0

=
mQI0(n)

mSZ0
(n)

, (4.1)

where
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• fSZ0
is the multinomial sampling distribution under SZ0, with cell-probabilities

θSZ0
= (θij), (i, j) ∈ A, and similarly for fQI0 under the quasi-independence

model, whose cell-probabilities are denoted by θQI0;

• πSZ0
and πQI0 are the prior densities for θSZ0

, respectively θQI0;

• mSZ0
denote the marginal distribution of n under SZ0, and similarly for mQI0.

To obtain the posterior probability of model QI0 one should provide, in addition,

its prior probability pQI0 = Pr(QI0), leading to

Pr(QI0|n) =
pQI0BF(QI0 : SZ0)

pQI0BF(QI0 : SZ0) + pSZ0

, (4.2)

where pSZ0
= Pr(SZ0) = 1 − pQI0.

A Bayesian analysis of this problem might take the prior πSZ0
to be Dirichlet,

i.e.,

θSZ0
∼ Di(α), (4.3)

with α = (αij) and αij > 0, see e.g., Bernardo and Smith (1994, pp.134-135 and

441)) and O’Hagan and Forster (2004, Chap.12). As a consequence, mSZ0
(n) is

a Multinomial-Dirichlet with distribution

mSZ0
(n) =

N !
∏

(i,j)∈A nij!
×

HA(α)

HA(α∗)
,

n = (nij), nij = 0, 1, . . . , N,
∑

i,j

nij = N, (4.4)

where

HT (y) =
Γ(
∑

t∈T yt)
∏

t∈T Γ(yt)
,

and α∗ = α+ n.

Consider now the quasi-independence model QI0 and, in particular, the

choice of the prior πQI0. This presents some conceptual and practical challenges

that we now try to elucidate. Although, in principle, priors under distinct mod-

els need not be related, as they express prior beliefs conditionally on different

states of information, it is nevertheless desirable that they should be related at

least when models are nested within an encompassing model. Pragmatically, this

would simplify the elicitation task, since one would only assign a prior on the pa-

rameter under the latter model, and then derive the corresponding priors under

each of the remaining models from this single prior. This procedure should also
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achieve some sort of internal “compatibility” among prior specifications. A gen-

eral discussion of strategies for building compatible priors under several related

models is contained in Dawid and Lauritzen (2001). Further discussion, elab-

oration and references may be found in Consonni, Gutiérrez-Peña and Veronese

(2007), and in Consonni and Veronese (2006).

Before turning to model QI0, it is expedient to rewrite the joint distribution

of the counts nij, (i, j) ∈ A, for the SZ0-model as

fSZ0
(n|θ) = fSZ0,1(n(1)|θ) × fSZ0,2(n(2)|n(1), θ), (4.5)

where n(1) = (n31, n42, N−n31−n42) and n(2) = (nij : (i, j) ∈ A\{(3, 1), (4, 2)}).

Since, for (i, j) ∈ A, the joint distribution of n = (nij), under SZ0, is multinomial

with size N and vector of probabilities θ = (θij), written Mu(N ; θ), it is easy to

check that fSZ0,1(n(1)|θ) is a Mu(N ;λ) with λ1 = θ31, λ2 = θ42, λ3 = 1−λ1−λ2,

while fSZ0,2(n(2)|n(1), θ) is given by Mu(N − n31 − n42; γ), where

γij =
θij

1 − θ31 − θ42
=

θij
∑

(i,j)∈A\{((3,1),(4,2))}

, (i, j) ∈ A \ {((3, 1), (4, 2))}.

The parameters λ and γ are variation independent, i.e., their joint range is the

product of the two individual ranges.

Under QI0 we must have

γij = γi+γ+j, (i, j) ∈ A \ {(3, 1), (4, 2)},

where γi+ = γi1 + γi2, i = 1, 2, 5, γ+j = γ1j + γ2j + γ5j , j = 1, 2.

Let γR denote the collection of γi+, and γC that of γ+j. Then the distribution

of the counts n under QI0 can be written as

fQI0(n|λ, γR, γC) = fQI0,1(n(1)|λ)fQI0,2(n(2)|n(1); γR, γC), (4.6)

where fQI0,1(n(1)|λ) is Mu(N ;λ1, λ2, λ3), and so coincides with the expression of

fSZ0,1(n(1)|θ) in (4.5), while fQI0,2(n(2)|n(1), γR, γC) is given by

fQI0,2(n(2)|n(1); γR, γC)

=
(N − n31 − n42)!

∏

(i,j)∈A\{(3,1),(4,2)nij !}

× γ
n1+

1+ γ
n2+

2+ γ
n5+

5+ × γ
ñ+1

+1 γ
ñ+2

+2 , (4.7)

where ñ+j = n1j + n2j + n5j.

One sees that under QI0 the joint distribution factors into three terms, one

involving λ, one involving γR and one involving γC .

Consider now the prior distribution. Given that θSZ0
∼ Di(αSZ0

) we first

remark that λ and γ, are independent, because of (ii) of Lemma 1, see the
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Appendix; as a consequence we also get that λ is independent of the pair (γR, γC).

Furthermore γ ∼ Di(αij , (i, j) ∈ A \ {(3, 1), (4, 2)}), so that γR ∼ Di(αR) and

γC ∼ Di(αC), where αR and αC are defined in accordance with γR and γC ,

respectively. Assuming independence of γR and γC makes the computation of the

marginal distribution mQI0(n) straightforward since we can separately integrate

the three terms in (4.6), see also (4.7), each integral being, up to the multinomial

coefficient, of Multinomial-Dirichlet type.

Specifically we get

mQI0(n) =
N !

∏

(i,j)∈A nij!

×
H(α31, α42, α+ − α31 − α42)

H(α∗
31, α

∗
42, α

∗
+ − α∗

31 − α∗
42)

×
H(α1+, α2+, α5+)

H(α∗
1+, α

∗
2+, α

∗
5+)

×
H(α̃+1, α̃+2)

H(α̃∗
+1, α̃

∗
+2)

, (4.8)

where α+ =
∑

(i,j)∈A αij , α̃+j = α1j + α2j + α5j , α̃
∗
+j = α1j + n1j + α2j + n2j +

α5j + n5j.

4.2. Allowing for zero-probability cells

Philosophically, we stress the view that each instance of a model must be

assigned a positive probability a-priori; in this sense we adhere to the principle

that Lindley (1985, p.104) names the “Cromwell’s rule”. This leads us naturally

to the idea of regarding a model M as a finite mixture of its instances. This aspect

represents a characterizing feature of our approach to the analysis of contingency

tables.

We can thus write the mixture representation of M as

fM(n|θM) =
∑

h

qMh
fMh

(n|θMh
), (4.9)

where θM is the collection of all instance-specific parameters θMh
and qMh

is the

prior probability attached to instance Mh.

Specializing (4.9) to the SZ and QI model, and then computing the marginal

distribution of the data under each model, leads to the Bayes factor

BF(QI : SZ) =
qQI0

mQI0
(n)

qSZ0
mSZ0

(n) + qSZ1
mSZ1

(n)
. (4.10)

We consider in detail the computations that are needed for the evaluation

of BF(QI : SZ). Let ξ ∈ (0, 1) be the chance that a cell has zero probabil-

ity, and assume that the allocation of zero probability to each cell takes place
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independently. Then, we can derive qSZ0
and qSZ1

, and obtain

qSZ0
=

(1 − ξ)8

1 − ξ8
, (4.11)

qSZ1
=
ξ(1 − ξ)7

1 − ξ8
. (4.12)

Consider now the assignment of qQI0
. We recall that we have 87 instances with

total probability C(ξ), so

qQI0
=

(1 − ξ)8

C(ξ)
. (4.13)

Table 4.1 reports the value of qSZ0
, qSZ1

, qQI0
for selected choices of ξ (for

values of ξ above 0.5, the values are zero to two decimal places).

Table 4.1. Prior probabilities qSZ0
, qSZ1

, qQI
0

for selected values of ξ.

ξ qSZ0
qSZ1

qQI
0

0.1 0.43 0.05 0.78

0.2 0.17 0.04 0.51

0.3 0.06 0.03 0.23
0.4 0.02 0.01 0.07

0.5 0.00 0.00 0.01

Consider the marginal distribution of the data under the SZ1-instance. The

conditioning method of Lemma 1, item (ii), leads immediately to θSZ1
∼ Di(αSZ1

),

where αSZ1
= (αij , (i, j) ∈ A \ {(5, 1)}), whence mSZ1

has an expression analo-

gous to that of mSZ0
, the only difference being that now the set over which the

indexes vary is A \ {(5, 1)}.

For given ξ and α, the Bayes factor BF(QI : SZ) can be computed using

(4.10). Notice that the multiplicative term N !/
∏

(ij)∈A nij! appears both in the

numerator and denominator of (4.10), and so cancels out (strictly speaking the

product for the instance SZ1 is over a set that does not contain (5, 1); however,

since n51 = 0, the result is the same whether this value appears or not).

Consider first the assignment of ξ, which represents the chance that a cell has

probability zero. Save for the case of a structural zero, it seems reasonable that we

assign a low value to ξ, since the corresponding event should be regarded a priori

as a rather unusual circumstance. In view of Table 4.1, setting ξ = 0.1 seems a

sensible choice. Indeed, while the prior probability of model QI is higher than

that of SZ, nevertheless the discrepancy between the two values (0.78 against

0.48 = 0.43 + 0.05) is less pronounced for this choice of ξ than for other choices.

Thus, the comparison between the two models is fairer.
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We now take into consideration the choice of α. Unless there exists sub-

stantive prior information allowing one to discriminate a-priori between cells, we

choose the same value ᾱ for each αij; low values of ᾱ are recommended when

prior information is weak. Natural choices are represented by ᾱ = 0.5, corre-

sponding to the Jeffreys prior, or ᾱ = 1, corresponding to a uniform prior on the

simplex.

We now provide a method for the choice of ᾱ, using the technique of the

imaginary training sample. This method has been implemented for instance by

Spiegelhalter and Smith (1980) to deal with model choice using improper priors.

We believe, however, that the idea can be usefully applied also in the context of

proper priors, see Consonni, Gutiérrez-Peña and Veronese (2007) for elaboration.

Consider for simplicity only the models SZ0 and QI0. Suppose we can iden-

tify a minimal imaginary training sample that provides maximal support (irre-

spective of the prior) to model QI0. Then it is reasonable to require that the

Bayes factor for these fictitious data should be approximately 1, i.e., the models

are “equally likely” in terms of the empirical evidence. To see why this should be

the case, notice that on the one hand the data actually support QI0 very strongly

and, on the other hand, the sample size is so small that the evidence in favor of

either model should be roughly the same. The condition that the Bayes factor

should be 1 can be employed to select reasonable values for the hyper-parameters

of the prior distribution.

Consider the situation in which we have one observation in each cell, for

a total of eight observations. It is straightforward to verify that this table is

perfectly consistent with theQI0-model: in particular the actual and fitted counts

(the latter based on ML estimates) coincide. If we fix ξ = 0.1 as suggested above,

the value ᾱ = 1 provides a Bayes factor equal to 1.03, which is quite satisfactory;

on the other hand ᾱ = 0.5 would give a BF equal to 0.67. We also experimented

with other values of ᾱ and did not get values of BF close to 1.

Having set ξ = 0.1 and ᾱ = 1, we now proceed to the analysis of the cancer

data. The Bayes factor of QI against SZ is 0.17, which clearly does not support

the hypothesis of quasi-independence. To better assess this value, it is useful to

derive the Bayes factor against QI, which is merely the reciprocal of the above,

and to further transform it using the logarithm in base 10. In this way we can

make use of the scale developed by Jeffreys, see Kass and Raftery (1995) and

Robert (2001, p.228), for the interpretation of the evidence provided by a Bayes

factor. Specifically, the evidence against QI is

• poor if 0 < log10 BF(SZ : QI) < 0.5,

• substantial if 0.5 < log10 BF(SZ : QI) < 1,

• strong if 1 < log10 BF(SZ : QI) < 2,

• decisive if log10 BF(SZ : QI) > 2,
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where BF(SZ : QI) = 1/BF(QI : SZ). We find log10(1/0.17) = 0.77, which

thus represents substantial evidence against QI, essentially in accord with the

frequentist answer which states a p-value between 2% and 3%. It is instructive

to verify what would have been the result of a conventional Bayesian analysis

based on the positive-cell models SZ0 and QI0, as opposed to the model based

on mixtures developed in this paper. Recall that, in the standard case, the

BF would simply be the ratio mQI0(n)/mSZ0
(n). In this case the BF takes the

value 0.55, which is appreciably higher than the value 0.17 obtained with our

analysis. More interestingly, when translated to the Jeffreys scale, we obtain

log10(1/0.55) = 0.26 which only represents poor evidence against QI, an order of

magnitude lower on the Jeffreys scale than the one we obtained with our analysis.

5. Discussion

We have presented a new methodology for the Bayesian analysis of contin-

gency tables that allows explicitly for the possibility of zero-probability cells.

In order to apply our algebraic Bayesian approach to large and sparse con-

tingency tables, we realize that a purely “automated” approach can be expected

to run into serious computational issues. Still, technology is rapidly evolving in

this area, as evidenced for instance, within the field of Maximum Likelihood Esti-

mation in the recent paper by Eriksson, Fienberg, Rinaldo and Sullivant (2006);

see also Patcher and Sturmfels (2005) for a variety of high-dimensional applica-

tions. A careful choice of prior distribution is often the only sensible way to

make the analysis viable, see for instance Diaconis and Rolles (2006) in the con-

text of Markov chains with forced zeros. We therefore believe that a blend of

computational algebraic methods and prior information on the set of possibly-

zero probability cells is likely to be the best option for the analysis of moderate

to large multi-way tables.

Appendix

We summarize below some useful facts about the Dirichlet distribution, see

e.g., Bernardo and Smith (1994, pp.134-135), but notice that our notation is

slightly different from theirs.

Lemma 1. Let θ = (θ1, . . . , θs), with 0 < θk < 1, k = 1, . . . , s, and
∑s

k=1 θk = 1. Assume that θ ∼ Di(α), with α = (α1, . . . , αs) and αk > 0.

(i)
(

θ1, . . . , θr,

s
∑

l=r+1

θl

)

∼ Di

(

α1, . . . , αr,

s
∑

l=r+1

αl

)

, r < s.

(ii) Let θ′m = θm/
∑r

q=1 θq, m = 1, . . . , r, r < s. Then (θ′1, . . . , θ
′
r) ∼ Di(α1, . . . , αr),

and (θ′1, . . . , θ
′
r) is independent of (θr+1, . . . , θs).
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(iii)Let θ∗1 = θ1 + . . . + θi1, . . ., θ
∗
t = θit−1

+ . . . + θs, 1 ≤ t < s. Then

(θ∗1, . . . , θ
∗
t ) ∼ Di(α∗

1, . . . , α
∗
t ), α

∗
1 = α1 + . . .+ αi1 , . . . , α

∗
t = αit−1

+ . . .+ αs.
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